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Abstract

The procurement of supplies is often conducted through the buyer analogue of
an auction. Sealed bids are submitted and the contract is awarded to the lowest
bidder. Although this method may be an optimal way of selling an object, an
additional complication arises in the case of purchasing a good. When sellers are
privately informed about the quality of the good to be sold, these mechanisms
typically result in the provision of the lowest quality object. This paper charac-
terizes optimal mechanisms in environments where sellers are privately informed
about quality. It shows that the commonly used auction mechanism is privately
or socially optimal in only a small class of environments. In another plausible
set of environments the optimal mechanism is simply to order potential suppliers
and to tender take-it-or-leave-it offers to each sequentially. We use the duality
theorem of linear programming to provide a methodology by which necessary and
sufficient conditions can be derived to determine when any incentive compatible
trading environment maximizes social or private surplus.

*We are grateful to Kerry Back and Bentley McLeod who pointed out errors in a previous formulation
and to Morton Kamien, Roger Myerson and John Nachbar for helpful comments.



1 Introduction

The efficiency and simplicity of auctions is a major reason for their popularity both in
theoretical research and practical implementation. First price or uniform price bidding
systems are common ways both to purchase goods and services and to sell them. The
U.S. Department of Defence, for example, procures as much as thirty percent of its
supply needs via what amounts to a first price sealed bid auction. Unfortunately,
while auctions are efficient and (if properly conducted) profit-maximizing for certain
environments with incomplete information, in others, they can be strikingly inefficient.

In this paper, we illustrate that if quality uncertainty is a part of the environment,
auctions are only rarely the best mechanism. In fact, in a significant class of environ-
ments, the best mechanism is to ignore the possibility of competition among potential
suppliers and simply to choose one supplier to provide the good in all events. More
generally, we provide a methodology by which necessary and suflicient conditions can
be derived to determine when any incentive compatible trading environment maximizes
either social surplus or private surplus. We focus on the cases of reserve price auctions
and sequential take-it-or-leave-it mechanisms but our techniques can be applied to a
much wider class of institutions. The approach uses the duality theorem of linear pro-
gramming. Although it has long been recognized that such optimal mechanism design
problems are linear programs, to our knowledge this is the first direct application of
the duality theorem to this problem.

Our model generalizes an independent private values auction environment. Typi-
cally, the private information of participants on one side of the market is not directly
related to the valuation of the single uninformed seller (or buyer) on the opposing side.
In the case in which a single seller attempts to sell his product to one of many buyers,
this formulation may be convincing — a seller may well be expected to understand her
opportunity costs of yielding a good in a trade. However, in the alternative formulation,
where a single buyer attempts to obtain an object, it is no longer so obvious that the
private information of the provider, which may include the marginal costs of provision
or her use value of the good, are independent of the valuation of the buyer. We allow
the valuations of the (informed) seller and the (uninformed) buyer to depend on each
other and ask what will be the optimal trading mechanism in this case. The problem
can be examined with differing objective functions — maximizing ex ante social surplus,
ex ante aggregate seller surplus, and ex ante buyer surplus.

Much of the literature on procurement we are aware of concentrates on moral haz-
ard issues, typically issues of incentives for investiment in research and development
or some other costly effort which may affect quality. (See Rob (1986), Laffont and
Tirole (1991) or Lang and Rosenthal (1991)). Our analysis is concerned only with
the adverse selection aspect of procurement and, as such, is most closely related to
papers by Myerson (1981) and Samuelson (1983). In an environment where an unin-
formed seller faces many privately informed buyers, Myerson (1981) characterizes the
now well-known results on incentive compatibility and individual rationality in direct



revelation mechanisms which we exploit. He also provides a sufficient condition for
when a reserve price auction maximizes the expected surplus of an uninformed agent.
Samuelson examines the case of a single uninformed buyer and an informed seller and
describes the class of mechanisms which maximize ex ante social surplus. We develop
a technique which provides necessary and sufficient conditions which can be used to
determine when any given trading institution is optimal according to either criterion,
ex ante social surplus or private surplus of the uninformed agent. In doing so, we illus-
trate how small is the class of environments in which auctions are optimal and suggest
that very often relatively non-competitive institutions perform better.

2 An Example

Consider an environment where a potential buyer attempts to purchase a good of
uncertain quality from many potential suppliers via an auction where the lowest bidder
wins the contract. If the bids submitted are increasing in the quality of the good, then
while an auction may ensure trade, it also ensures trade always with the low-quality
provider. When quality is important either socially, or privately to the buyer, such an
outcome can be highly undesirable as the following example illustrates.

A potential buyer wishes to purchase a single object from one of S potential sup-
pliers. Each supplier has privately known opportunity cost, g5, which is, ex ante,
distributed uniformly and independently over I = [0,1]. An object from a seller with
cost, ¢s, generates a use value for the buyer of v(¢s) = 1/2 + 3/2¢s and, therefore,
increases social surplus by w(g;) = v(¢s) — ¢s = (14 ¢5)/2. If the allocation mechanism
is conducted by one of many possible auction-like institutions which allocate the trade
to the lowest bidder, then trade will always occur with the lowest cost and lowest qual-
ity seller. A simple computation reveals that any such procedure generates expected
social surplus, (1 4+ 1/(5 +1))/2. As S becomes large, then the procedure almost cer-
tainly ensures trade with the lowest possible quality seller and expected social surplus
converges to 1/2.

The poor performance of the auction suggests that we might look for other simple
mechanisms which dominate the auction. For example, if a single seller is chosen at
random and offered a (credible) take-it-or-leave-it price of one, then it is subgame
perfect for the seller to accept and the expected social surplus is 3/4 independent of S.
In fact, as Theorem 4.2 illustrates, this mechanism achieves the highest possible social
surplus in this example.

Why are auctions so popular? Consider a variation on the above where v(g,) = 2
for all ¢;. This is the corresponding many-seller-single-buyer analogue of the typical
many-buyer- single-seller auction model. In this case, an auction mechanism is socially
optimal. It ensures trade with the lowest quality seller as before but now such trade
generates the highest possible surplus. In this paper, we extend the intuition in these
examples to specify exactly when auctions are optimal procurement procedures and
when other simple mechanisms are optimal.



We generalize the above examples to a broad range of environments. The economic
interpretation covers many situations of adverse selection: a government attempting to
purchase goods of undeterminable quality from many potential suppliers; a firm hiring
from a pool of workers with differing skills; an insurance company purchasing risk
from clients with privately known probabilities of accident. In all of these situations,
the private information of a supplier affects her reservation value and may be directly
relevant for the ex post valuation of the buyer. It is not necessary that the potential
sellers enjoy precise information about the true value of q,. We will require, though,
that their private information be independent of that of other sellers.

The examples in this section motivate an investigation into the best way of procuring
supplies. We conduct the analysis using the methodology provided by mechanism
design. In this paper, we concentrate on two simple mechanisms. A low-price or
auction-like trading mechanism with maximum reserve prices, ks, generates trade via
a second price bidding system with the lowest bidder selling her object at either the
second lowest bid or at her reserve price as long as her own bid lies below her reserve
price, ks. Alternatively, a sequential offer institution is one in which the buyer offers
a take-it-or-leave-it price of ky to seller 1. If it is accepted, trade takes place and
the game ends. If it is rejected, the buyer makes an offer, k; to seller 2 and so on
until all sellers have rejected, in which cases no trade takes place. Both mechanisms
are incentive compatible and are easily represented as direct revelation mechanisms.
I Observe that both of these mechanisms reflect our assumption that the mechanism
designer can commit to a mechanism which may result in no trade even though trade
might be ex post desirable. We characterize necessary and sufficient conditions that
the economic environment must satisfy for the institutions to be optimal. In doing so,
an algorithm emerges which indicates how this methodology can be applied to other
mechanisms, as well.

The paper is organized as follows. Section 3 describes the environment. Section 4
presents the general linear program which constitutes the basis of our results. In
Sections 5 and 6 we provide interpretations of the conditions for when auctions and
sequential offer mechanisms are optimal and in Section 7 we provide examples of other
types of mechanisms which may be optimal in other environments.

!There are many institutions which implement the same equilibrium outcomes as those described
here. Some researchers have objected to the mechanism design approach on the grounds that many
games which implement these mechanisms also possess Nash equilibria other than those described by the
revelation game. (Postlewaite and Schmeidler (1986)). In the case of the mechanisms we analyse though
there are well-known institutions for which either a unique Nash or subgame perfect equilibrium exist
and which implement the desired direct revelation mechanism. A second price mechanism possesses
a unique equilibirium in dominant strategies . The sequential offer game possesses a unique subgame
perfect equilibrium.



3 Notation and the Model

We index sellers by s , s = 1,...,5 and abuse notation by letting S represent the
set of sellers as well; thus s € S. Every seller s observes some private information
gs € I = [0,1]. We will often refer to ¢, as quality. Each individual parameter g;
is independently distributed according to a continuous and strictly positive density
function fs(gs); Fs(gs) represents the cumulative distribution.

For any measurable set A C I, 14 represents the indicator function of the set A,
that is the function that takes value one if ¢ is in A and zero otherwise.

Agents’ preferences are defined over money and the use of the good in the standard
way: If a seller with quality ¢, engages in trade and receives a money transfer of m,
her net payoff is given by m — u(¢s). If no trade occurs, then the net payoff is zero.
Ordering indices so that u(-) is strictly decreasing and selecting units appropriately,
we may assume, without loss of generality, that u(gs) = ¢s. Thus, ¢s represents the
opportunity costs to seller s of parting with her good.

The buyer has a potential use value for a good of quality ¢, given by vs(gs). If he
gives a money transfer of m and receives an object of quality ¢, his net payoff is given
by vs(gs) — m.*No trade yields a payoff of zero for the buyer as well. Procuring the
object from seller s with quality ¢s, generates a total surplus of ws(gqs) = v5(qs) — ¢s-

For technical reasons, we assume that v; : I — R is essentially bounded (v €
Loo(I)). 2 We identify by L., the non-negative orthant of L.

The vector ¢ = (q1,...,q5) € IS is a profile of types. Given ¢ € I, q_, denotes the
projection of q to I°\{s}, We define f(¢) = fi(q1) X fa(q2) X ... X fs(gs) and for any
e S, f—i = Hs;éi fs(Q.s)'

Note that while consumption of the good allows the buyer to perceive the quality
of the object, it is assumed that the features of quality we focus on are not verifiable
by a court so that it is not possible to contract contingent on an object’s true quality.

Definition of Mechanism: A mechanism is a pair of integrable functions (ps,ts)
for each possible seller s € .S, where:

(1) ps:I° =1, t,: 1% > R,

and
(1)) S5, ps(g) < 1,Vg € I

This functions should be interpreted as follows: if sellers report
q = (q1,-.-,9s), the probability that seller s will trade his or her good is ps(¢) and the
transfer payment to/from seller s is t5(q).

.

2In order to use the duality approach we need a space with a non-empty positive orthant, hence the
requirement that the relevant functions lie in Lo (I)



Given a mechanism, the expected utility of seller s from reporting type z, when her
type is ¢s is given by

Ts(2s ' ‘Is) = f]S\s [ts(ZSv‘I—S) —4s ps(zsa ‘I—S)] f—s(‘I—S)d‘I—s

and the expected utility for the buyer (when seller s, with type g5 reports z,(g;)) is

m= S5 [ Ipela) vala) - t (@) S(@) .

where 2(q) = (z1(q1), 22(@2), - -, zs(gs))-

It follows from the revelation principle, that for any Nash equilibrium of any trading
game with outcomes in terms of payments and probability of trade, there exists a direct
revelation mechanism with truthtelling as a Nash equilibrium and which generates
the same outcome. We, therefore, consider only mechanisms in which agents report
truthfully; the mechanism must be incentive compatible (IC). For any s € §,

(IC) ms(gs | gs) > 7s(zs | gs5), Vgs € [,Vzs € 1.

In addition, one may require that it be optimal for agents to participate in this
mechanism.> Without loss of generality, let zero be the value for all agents who do not
participate in the mechanism. Thus voluntary participation requires

(IR) 7s(gs|gs) >0, Vg, €IVseS, and m > 0.
For any 2(q) € Loo(I%), define Ty : Loo(I%) — Loo(I), by

Tsz ((13) = f]s\»' Z(qqu—s) f—s(q—s) dq—s

Thus, (T5ps)(¢s) represents the expected probability of trade of seller s, conditional on
her report ¢,.

The proof of the following theorem is essentially the proof in Myerson and Satterth-
waite (1983).4

Theorem 3.1 Let {ps}s¢c g, Ps: 15 I and 5_ ps < 1. Then,

(a) There exists a collection of transfer functions {ts;(q)}ses, such that {ps,ts}ses is
a mechanism satisfying IC if and only if Typs(qs) 1s non-increasing in g Vs € §.

°In cases where the mechanism designer has great authority, such a constraint may not be present;
the designers may be able to force the buyer to participate in a scheme which yields an expected
surplus less than zero. We present the more general framework in which it may pose a restriction.
Consideration of problems without the constraint are a straightforward adaptation of the analysis.

*Samuelson (1984} provides a clear explanation of the following results for the case where there is
only one seller.



(b) Suppose that Vs € S, Tsps is non-increasing in qs. Then there exists a collection
of transfer functions {ts(q)}ses, such that {ps,ts}ses is a mechanism satisfying
IC and IR if and only if

S5 s ps(@)[(0s(qs) — ¢5)f (@) = F(gs) f-s(g—s)] dg > 0.

(¢) Suppose thatVs € S, Tsps ts non-increasing in qs. Then the ezpected buyer surplus
s given by

Th = 2 o=y flSps W(vs(gs) ~ q5)f(q) = Fs(qs)f-s(q-5)] dg — 5= 17rs (1{1)

Remark: The continuity of f; is only used in this theorem. Myerson and Satterth-
waite assume continuity but their theorem holds as well with piece-wise continuity of
fs, as do the remainder of our results.

As a consequence of Theorem 3.1, finding an optimal mechanism can be reduced
to solving a linear optimization problem in infinite dimensional spaces. The decision
variables are the probability-of-trade functions {p,} ¢ §- The objective function will
be of the form

Y51 fys hs(q) ps(q) dg
where

hs(q) = (vs(gs) — 45)f(q) = ws(gs) f(q),

when the objective is to maximize the expected social surplus, and

_ Fi(gs)
fs(as)

when the objective is to maximize the expected buyer’s surplus. The last case follows
from Theorem 3.1 (c), by setting 7(1 | 1) equal to zero and using the fact (Myerson

and Satterthwaite 1983) that IC also implies that d—"(%glg-fl < 0. Note that with this

hs(q) = (ws(gs) — ——) f(q)

formulation we will require that % € Loo(I).

The {ps} ¢ ¢ must satisfy some constraints. They must not add up to more than
one because only one good is to be traded; the expected probabilities of trade Tsp;
must be non-increasing in ¢, because IC must hold. In addition, individual rationality
may also be required. The IR constraint will take the form

Yoy Jis 95(q) ps(q)dg > 0

where
95(0) = [wy(a) — 229) ) (1)
fs(gs)
when maximizing the social surplus, and
gS((I) =0



in the buyer’s surplus case, because the IR constraint is already incorporated in the
objective function.

We examine mechanisms that maximize the buyer’s expected surplus, the aggregate
expected surplus of the S sellers, and total expected surplus. It is straightforward to
show that any mechanism which maximizes total expected surplus also maximizes ex
ante aggregate seller surplus so we focus only on expected buyer surplus and expected
total surplus in what follows.

4 The Linear Program

A few more definitions will help us state the optimization problem. Given a Banach
space V, we denote its dual, the space of bounded linear operators on V, by V*, and
we will write (-,-) to identify the bilinear mapping from V x V* to R.

We use D to represent the differential operator that assigns its derivative to any
function ¢ : I — R differentiable almost everywhere. More precisely,

Dy(z) = %(z)

whenever it is defined.
We define
Hy = {p € Loo(I®) : DTsp € Loo(1)}.

With the norm |(|p|| = {[plloc + ||DTspljoc, Hs is a Banach space, similar to a Sobolev
space. (See, for instance, Ziemer 1989.) Thus, the operator D is well defined on any
element Tsp Vp € H;. We denote by T,* and D* the adjoint operators of Ts and D
respectively.® We also define the following convex subset of H,

G, = {ps € Hy | ps > 0, Typ, is piecewise-C'', and lower semi-continuous}

The lower-semicontinuity rules out mechanisms of the form p; = 1qs>ks which do not
satisfy incentive compatibility despite having a non-positive derivative almost every-
where.

Given {(hs,9gs)}ses, consider the following linear program (P):

Maz Zle (psshs)

{ps}s [=30)
s.t.
Yo <1
DT,p, < 0,Vs€S
S (ps—gs) < 0.
ps € G, Vse S

®Given an operator O : V — W, the adjoint O* of O is the operator O : W* — V* defined by
(Oz,y) =(z,0%y), VzeV, andVye V"



The Lagrangian corresponding to P is

L= <1a7) + Zf:l ((psvhs + ags — 7) - (DTspsv/\s))

which, using the adjoint operators, can be rewritten as
[: = <1’7> + Zf:l (psahs + ags - 7 - T;D*/\s)

where 7 € Loo™(I%),As € Lo"(I) Vs € S,a € R. This representation makes the
formulation of the dual program to P transparent.

The constraint space, L., has a positive cone with non-empty interior. Also, since
hs is in Ly, and p; is bounded by 1 Vs € §, the optimal value is finite. As is common
in optimization problems, in what follows, we require that a regularity condition be
satisfied.

Regularity Condition: For all s, there exists z; € G, sucht that the constraints
in are satisfied with strict inequality.

Remark: The regularity condition is only necessary for the problem of maximizing
total surplus since it is straightforward to show that in the case of maximizing buyer
surplus, the condition is automatically satisfied. It is easy to find a feasible z; € G,
Vs € S such that Zle zs < 1 and DTz, < 0. Therefore, whether the regularity
condition holds, depends fundamentally on the IR constraint. When maximizing social
surplus, this will depend on the characteristics of g, defined in (1). If there exists an

€ > 0 such that wy(qs) > €, Vg5 < ¢, the regularity condition will be satisfied.

It follows from the duality theory for linear programs (Theorem 1 and Corollary 1,
page 219, and Theorem 1 page 220, Luenberger 1969) that ©

Theorem 4.1 Suppose the reqularity condition is satisfied.
A feasible {p;} € § Gltains the Maz in P if and only if there ezists a vy € Loo*(I%),
As € Loo™(I) Vs €S, a € R such that

(L7) = Yo (psihs) (2)
(z,—hs —ags + v+ Ty D*As) > 0, Vs€ S, Ve € F, (3)
(z,7) > 0, Vze€ Lyo(I%), (4)

®Anderson and Nash 1987 discuss in detail the duality theory for linear optimization problems in
infinite dimensional spaces.



Complementary slackness implies, in addition, that if {p,} ¢ ¢ 15 a solution to P
then

Esszl (psvags> = 07 (6)

(DTspsv /\s> = 0 Vse S, (7)

(psyhs +ags—v—TrD*A;) = 0 Vs€ S, and (8)
(1-25,ps7) = 0. (9)

Remark: G, is pointwise dense in the space of non-increasing, non-negative func-
tions in H;. Thus, whenever {p;}4 ¢ ¢ attains the maximum in P over G, {ps}; ¢ ¢

also attains the maximum over the space of non-increasing and non-negative functions
in H,.

Our algorithm to characterize optimal mechanisims relies on the previous theorem.
First, we postulate a given mechanism or candidate solution for P. Then, we obtain
necessary and sufficient conditions for the existence of the dual operators of Theorem
4.1. This procedure identifies the environments, if there are any, in which the candidate
mechanism is optimal.

We now apply this anlysis to the two simple trading mechanisms referred to in the
introduction, the sequential offer mechanism and the auction. In the former, a take-it-
or-leave-it offer of a given amount k; is tendered to the first potential seller s = 1, if
accepted, the transaction takes place and the game ends. If it is rejected, then another
offer, k2 is made to the next seller s = 2. This process continues until one seller accepts
the offer. If no seller accepts then no trade takes place.

Several mechanisms will produce the same equilibrium outcomes. For instance, a
mechanism may include two types of trivial offers. First, an offer of ks, = 0 implies
that seller s trades with probability zero and, therefore, seller s could be made her offer
at any time during the procedure. To avoid this indeterminacy in the position of the
traders, we relabel sellers so that those that never trade come last. Second, when a
seller s is assigned a potential offer of one, all sellers that follow will not trade. Hence,
any potential offer to s > s will produce the same outcome. In this case we assume
that ky = 0 for all ' > s. Finally, if no seller accepts an offer, no trade takes place. To
represent this possibility conveniently, we introduce an artificial seller with zero value
who, if called to trade receives an offer of one and sells the good for certain.

Formally, we define the canonical representation of the trading mechanism,

Sequential Offer Mechanism: Define the artificial player § with ilg =g; =0,
f5(g5) = 1, and let kz = 1. Let S' = S U {3}. A sequential offer mechanism with
offered prices of {k;},¢cs, is represented by the probability of trade functions {ps}ses
where

_oo 1 if g Sk, qi > ki, Vi<
psg) = { 0 otherwise

10



and
() ks = 0= s> &, Vs’ € § with ky # 0.
(i1) Define § = min{s | ks = 1}. Then if ¢ > 3,k; = 0.

Theorem 4.2 : Suppose h, and g, satisfy hy(g) = f(9)ho(gs) and gs(a) = £()55(as)
and hs ,§s n Loo(I) for all s. Let {ps}ses be a sequential offer mechanism. Then
{Ps}ses is a solution to P if and only if there exists a > 0 such that for any s and
sels

(a) (1qu_'r Psyhs + ags) < (s, hs + ags) Vre [O,ks],
(b) (1g,<r 1,l<qs,<ks, Pstyhs + ags — hy + agy) <0, Vr € (0,1] and 7' € [0,ky].
(c) Zsszl (ﬁsvags> =0, and Ef_—_l (ﬁs’gs> > 0.

Proof: (=) We will use repeatedly the fact that (z,TD*);) = (DTsz, ;). Let
z € G5 be such that z < 1 and Tspsz is constant over [0,ks]. Let ' € [0,k;]. By
linearity and equation (8),

(ﬁslqsgr' z,hs +ags — v - T;D*As>+
(ﬁsl,.l(qssks Z, hs + ags — Y — T;D*/\.‘)‘) + (ﬁs(l - Z)7hs + ags — 7Y — T;D*AS> = 0.

Since (Tsps — Tspsz) is constant over (0, k] and zero elsewhere, §;(1 — 2) € G and
the first and third terms are non-positive, by (3). Therefore, the second term must be
non-negative,

(ﬁslr’«]ssks z,7) < (ﬁslf’«]sSks z,hs + ags — TrD*)y).

By complementary slackness (7), (ps1g,<- z,T;D*/\s)+(ﬁ31T,<qs<ks z,TrD*)s) =
0. The first term is non-positive by (5); the second term must be non-negative. Thus,

<ﬁ317'<(135ks Z»‘Y) < (1331T/<q35k3 ths + ags>- (10)

Choose any z € G, such that DT,r < 0. The first order condition (3) and the
non-negativity of A; imply
(2,hs + 0gs) < (,7) (11)
First, let £ = 1¢,<, ps for any 7 € [0,k;]. Then (11) becomes
<1(]3ST Ps hs + ags) < <1qs§r Psy¥) < (Ps» ),
where the second inequality follows by the non-negativity of v. By (10) with ' = 0

and z = 1 the previous inequality implies (a).

11



Second, let z = 1g,<r 1,1 g <k, P for any r € [0,1]. Using (10) for s’ with
2 = 1¢,<r , (10) and (11) yield (b).

Finally, (c) is formed by a constraint of P and its complementary slackness condition
and it is therefore necessary.

(<) Using (c), it is clear that {ps}ses is feasible. We will show that if (a)-(c) hold,
then (2), (3), (4) and (5) in Theorem 4.1 are satisfied.

We begin with a Lemma establishing the existence of certain functions that will be
used to define the variables of the dual problem.

Lemma 1 Assume (a)-(c) hold. Then, for any s € S there ezxists a function hs €
Loo(I) such that

<1qs§r ,}_lsf> Z <1qs§r ahs + ag.s')’ vr € [Oaks] (12)
<1Qs§ks yhsf) = <1Qs§ks yhs + ags) (13)
he(qe) > h(gs) >0, Vs <s, g, € [0,k], gor € [0, kyr). (14)

Proof of Lemma: Choose any s and let

(1( <r 7’ls+019s) !
b= Supek, SRy 2 ek, TRGRFRm 020 (9)

where the first inequality follows by letting r = ks and ' = 0 and the second one by
(b).

Let 7 satisfy
<1qS§ks Jhs + ags) = Fo(F) b+ (Fslks) — Fo(F)) a= Fo(7) (b—a) + Fs(ks)a. (16)
Dividing both sides by Fi(k,}, it is immediate that such an 0 < 7 < k; exists.

Define,
z b ifr <7
hs(r)—{ a ifr>7
By definition, h, is non-negative and, by definition of 7, (13) holds. We will now

show that h, satisfies (12).
For any r € [0,7], by definition of b,

<1qs§'r 7hs + ags)
Fy(r)

(1g,<r ,ilsf) = Fy(r) b > Fs(r) = (1g,<r ,hs + ags).

For any r € [F, k],

<1Qs§r ,/_lsf) = Fs(f) b+ (Fs("') - Fs(F)) a= Fs(f) (b - a) + FS(T) a
= (1%5165 yhs + 093) - (Fs(ks) - FS(T)) a

12



= (lg,<r hs+ags)+ <1r<qs$ks yhs + ags) — (Fs(ks) — Fs(r)) a

1'r ’hs + ags
= g a0 + (k) - B (Crithe D00

v

(1(]351* ahs + ags)

where the first three lines follow by definition of h; and 7 equation (16); the inequality
by definition of a.
Therefore, for s' < s, z, € [0,ks] and z; € [0,k;),

1, f f ahs’ + agy hs s
< r’'<{s Sks 9 ) > Sup k <1qs$"' 2 + ag )
Fsl(ksl) — FSI(T’) - T<Ks Fs(’l‘)

ho(ze) > Inf, ., > hs(zs)

where the first and last inequalities follow from the definition of hy and hy and the
intermediate one from (b).

QED

We continue with the proof of the Theorem. Let a be as in the hypothesis.
Let v be

S
v(g) = 2 hs(gs) f(q)Ps(9)

By construction, ¥ € Loo (%) and therefore it may be regarded as an element of Lo,*(1°).
Since h, is non-negative,y is non-negative, that is (4) is satisfied.

Note that (1,p.h,f) = (Ps,hs + ags). Then, using the definition of ¥ and condition
(c), we obtain

(Ly) = Zsszl (Pss s + ags) = Zf:l (Ds, hrs).
Thus, the value of the dual equals the value of the primal, equation (2).

Define, h = i'l.g(l). Observe that A = 0if § = § and, in general, takes on the lowest
value that v ever acquires.

Define, ~
\ ~ (le<q, hsf — hs — ags) if g5 < ks
o(g:) = <1ks<z<q3’hf —hs —ags) i qs > ks

Condition (b) and the definition of h, imply the non-negativity of A, for g, € [0, k).
To check the non-negativity of A, for ¢; > kg, replace s’ with $in (b) and consider first
any s < 3. Since for r < k; we have 1¢,<, p; = 0, (b) may be rewritten for r > k; as,

[Fé(ké) - Fé(rl)] <1ks<qur ﬁéahs + ags)
< [FS(T) - Fs(ks)] <1T’<Q§Sk_§ ﬁévhé + agé)
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Dividing both sides by [F3(k;) — F3(r’)], and since the expression above holds for all
7' < kg, it holds for its infimum a. (a is the infimum for § defined in (15).) Thus, since
h = hé(l) = a, R

<1ks<(IsSr Jhs +ags — hf) <0.

For s > §, ks = 0, and (b) directly implies that that the second part of the definition
of A, is non-negative. Therefore (5) is satisfied.

For any z € G, let {¢;}2,,{b/}{2, denote the points of discontinuity of Tz (if any)
in [0, k] and (ks, 1] respectively and define for z € [0, 1),

A(z) = Limep Tsz(z — €) — Limero Ts2(z + €). (17)

Integrating by parts and using separability we have

(DTsz,2s) = ZA(C,)(quSC,,ESf ~ (hs + ags)) + (2, hs + ags — hs f)
=0

+ AL, cgocno 1S = hs = @gs)) + (2, hs + ags = hf)
=0

By the lower semicontinuity of 2, the two summation terms are non-negative, call
them K;z.
Finally, to prove that A;, o and 7 satisfy (3), for z € G
(z,hs + ags — Tr D*Xs — 7)
= <1qssks 2y hs +ags = TrD*As — ) + <1qs>ks z,hs + ags — TXD*As — %)
= <1quks z,hof =)+ <1qs>ks 2, hf —7y)— K2
S (1(]35};5 Zahsf - Z?:l ﬁ]lvl]-” + (1(]s>ks Z,hf - Zj=1 ﬁJiL]f)

Z<1qs§ks Bi 2, (hs = b F) + (Lyosk, Pi z,(h = h)f)
1<s =1
0,

IA

where the terms disappear by substituting the definition of T D*A;, using the fact that
ﬁszlqssks =0, Vs >73, and Alq‘ssks E;S:lﬁi = 1(1s5ks . The final inequality follovsis
from the definition of iy and h, because p; = 0 for s > § and by (14) applied also to h.

QED
Auction: Let ks € [0,1], Vs € § and order s so that k; > ko > ...kg. Low price

bidding institutions with reserve prices, {ks} are represented as a direct revelation
mechanism by the probability of trade functions {p;}¢ ¢ g as follows,
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. 1 if g5 < Min{qy,ks}, Vs
ps(q):{ a {as ke

0 otherwise

This mechanism can be implemented by a second price bidding scheme in which the
lowest bidder sells the good at either the price bid by the second lowest bidder if that bid
is below the second lowest bidder’s reserve price, otherwise, if all other bidders submit
bids above their reserve prices, the lowest bidder receives in payment, her reserve price.
Auction mechanisms with k; > k2 have additional necessary and sufficient conditions
which resemble those in Theorem 4.2. For conciseness, we concentrate on the case
where k; = k;. In addition, the proof is simpler if we assume that k; < 1. The
extension to the more general class requires some additional cases to examine which
we leave to the reader. 7

Theorem 4.3 : Suppose h; and g, satisfy hs(q) = f(q) 715((]5), 9s(q) = flg) s(gs)
and hg, §s € Loo(I) for all s. An auction, {ps} € g withk, = ky < 1 is a solution to
P if and only if there exists o > 0 such that for all s and i in S,

(a) <1(Ii$ki 1qSSks piz,hs + ags — h; — ag;) <0, and
(Lg,<k; Pizs—hi —agi) <0, Vz € Loo(I%).

(b) (1ks<qur yhs + ags) <0, Vr >k
() =1 (s @gs) = 0, (Bss—gs) < 0,Vs.
Proof: = First, we show that for any z € G,
<1(]s5k‘s z,TrD*As) = 0. (18)

Observe that p,(¢) can be rewritten as (If s = 1, replace [[;,(.) with 1.)
Ps = Lo <k, I Loisk; II1gi>q. + H Lki> >4, H 1gi>gs ]
i>s i<s i>s 1<s
Thus
Tops = 1y ok, [[T(1 = Fik)) TT(1 = Filge)) + [T(Fi(k:) = Filgo) TT(1 = Fil,))]
1>s 1<s i>s 1<s

Note that f;(¢s) > 0 Vg, implies DTps(¢gs) < 0 provided ¢; < k;. Then, comple-
mentary slackness, (7), implies (18).

"It will be evident in the proof that the following theorem actually holds for a much broader class
of auction-like mechanisms. Theorem 4.3 applies to any similar mechanism so long as Tsp, is strictly
decreasing over [0, k).
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Let z be such that Tsps,z € C'(I) and 1 > 2z > 0. Then (8) implies
(psz, hs + ags = TrD*As — 7))+ (Ps(1 — 2), hsy + ags — 7y =Ty D*X) =0

We may sign both terms to be non-positive using (3) as we did in Theorem 4.2. There-
fore,

<ﬁszaT;D*)‘S> = (ﬁszahs + ags — 7)’

and using (18) with z = p,2 we have
<ﬁ31qs§k5 2y hs + ags — 7) = 0,Vz, with Ts(ﬁslqssks z) € CI(I) (19)

The non-negativity of ¥ and the Lebesgue Convergence Theorem imply the second part
of (a).

Let z be such that T,(p,1 go<hs Lgu<ky z), Ts(Ps1 go<ks Lqu<ksy z) € CY(I). By
(18), @slfIsSks Locky 2 T:D*)) = 0. Then the first order condition (3) applied
to s’ implies

<1(155ks 1qs/§k5f Psz hg + agg —7) <0 (20)

Combining (19) and (20),

<1qs§k5 1qs’§ks’ Pszyher + a‘(]sl) < <1qs§ks 1‘15'Sks' Psz;hs + ags%

The Lebesgue Convergence Theorem implies that the expression above holds for all
z € Loo(I%), yielding condition (a).
(b) Since ps + 1y o o, (1= 3L, Bi) € Gs, by (3),

0 < (Bs+ lkcgeer (1 = Ty Bi)y —hs — ags + Ty D*As + 7)
= (g cqoer (1= X1 pi)s—hs — ags + Te D*As +7)
= (g, cq,cr (1= S Pi)y—hs — ags + TXD*A,)
< (U, cqoer (1= ZL15i)—hs — ags)

Complementary slackness, (8), yields the first equality, and (9) the second one. The
final inequality is established by observing that from (7) and (5),

(I cquer (1~ S TID™ A = (B + 1 g oy (1= T4 ), Ty D™A) < 0

since Ts(ps + Lk cqosr (1= 27, pi)) is decreasing,.
Condition (c) is immediate.

(<) We show that there exists a solution, a , A; and 7 , to the dual of P , with
the same value as P. Let a be such that (a) through (c¢) hold.
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We first define v,
¥ = Lomy Bslhs + ags).

By (a), v is non-negative, and using (c), the value of the dual equals the value of the
proposed primal.
Second,

) _ 0 if gs < ks
s(qS) - <1k3<1‘,<qsa —h’s - ags) otherwise

The non-negativity (5) of A; follows from (b).
For any z € G, let {b;}2,, bg = k, denote the points of discontinuity of T,z in
(ks, 1] if any. Integrating by parts,

(DToz,As) = D Ab)(Lk,<quzby —hs = ags) + (Tsly g 2 hs + ags)
=0

where A(b;) is defined as in (17) in Theorem 4.2.

The separability of h; and g, implies the second term can be written as (z, hs + ags).
From (b) and the lower semi-continuity of Tz it follows that the summation term is
non-negative, call it I(;z.

We now show that the first order condition (3) holds. Let z € G,. Using the
definition of Aj,

(z,hs + ags — Ty D*X; — v)
= <1Qs5ks z,hs + ags —v) + <1(]s>ks z, =) — Kz
S <ﬁ51qssk5 2, hs + ags — 7) + <(l - ﬁs)lq.ssks Zahs + ags — 7) + <1q.s‘>ks 2z, _‘7)

The first term is zero by definition of 4 and the last term is negative because < is non-
negative. Consider the second term. Observe that Ly <k, (1-ps) = Loo<k, 2its ies Pi

and (32,45 ies Pi) X (ZJS:I Pj)Ti = 2iss.ies Piti- Therefore, we can rewrite the middle
term in the equation above as

<1qs§k5 Zi;ﬁs,z’ES piz, hs + ags — )
A S
= <1qssks ZZi;és,ieS pi,hs + ags — Zj:l pj(hj + agj))
= Zi;es,ies <1‘5i1qssks z,hs + ags — hi — ag;).

By (a), this term is always non-positive.

QED
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5 Optimal Auctions

In this section, we discuss Theorem 4.3. Theorem 4.2 is analyzed in the next section.
Necessary and sufficient conditions for an auction with reserve prices, {k;}, to maximize
buyer surplus and social surplus are given in the following corollaries. We assume
through out the section that the regularity condition is satisfied. Given a function z,
let supp(z) represent the support of z.

Corollary 5.1 A low-price bidding institution with reserve prices, {ks} ¢ es 1>k =
ko, mazimizes expected buyer surplus if and only if for all s and i in 5,

(a) [wsl(gs)—Fi(gs)/ fs(qs)] fq) < [wi(q:)—Fi(qi)/ fi(qi)] f(q) (a.e.) insupp(pi 14 <k,
(b) Elws(qs) — Fs(qs)/ fs(qs) | ks < g5 < 7] <0, Vr € (k, 1]

Corollary 5.2 : A low-price bidding institution with reserve price, {ks}s¢c g, 1 >
k1 = kg, mazimizes expected social surplus if and only if there is an a > 0 such that
forallsin §,

(@) wa(gs) + a(ws(gs) = Fa(@:)/£:(2)) < wilds) + alwilar) = Flai)/ fi(q:)) (ae.) in
supp(f: 1, 1., )

(b) E[“’S(qS) + a(“’S(QS) - FS(QS)/fs((Is)) | ks < gs < 7'] <0,Vre (ks, 1]
(€) iy (hsralws = Fi/f,)) = 0,55 (Bssws — Fy/fs) > 0

Condition (a) illustrates how limited are the environments in which auctions are
optimal. When considering buyer’s surplus, (a) implies that ws(gs)— Fs(gs)/ fs(gs) must
be non-increasing almost everywhere in [0, ks]; When maximizing social surplus, (and
provided the IR constraint does not bind,) an auction will not be optimal unless w(g;)
is decreasing over [0, k). If the IR constraint binds, for an auction to be optimal there
must exists a non-negative a such that w;(g¢s)+ a(ws(qs) — Fs(gs)/fs(gs)) is decreasing
in quality over [0,4;]. Condition (b) determines the seller types, ¢; > ks, who never
trade. After rejecting a seller, s, for submitting a bid above k;, a further take-it-or-
leave-it price of » > k; must not generate positive surplus. The extra condition in
Corollary 5.2 ensures that the buyer’s expected surplus, given that he is trading with
the lowest seller type in the subset [0,k;] x [0,k2] X ... x [0,kg], is non-negative. In
the symmetric case, where 1 denotes the random variable which is the lowest order
statistic of realized seller types, condition (c) requires

E[w(@1) = F(Q1)/f(Q1) | Q1 < k] > 0.

Myerson (1981) shows that wy(qs)— Fs(¢s)/ fs(¢s) decreasing everywhere is sufficient
for a reserve price auction to maximize buyer surplus. Corollary 5.1 proves that this
condition is necessary only over the range [0, k] and that the weaker condition (b) need
be satisfied over the set of non-trading seller types.
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Observe that in the analogue to the many buyer-single seller symmetric auction
environment, w(q) = » — ¢q. Conditions (a) to (c) are automatically satisfied for 5.2 as
long as ¥ > 1. The standard result that auction-like mechanisms are, at least, Pareto
efficient stems from these special features of the environment.

With such strong conditions for the optimality of an auction, it is natural to ask
what other simple mechanisms might solve the optimization problem? In the next
section, we discuss the conditions for the optimality of sequential offer mechanisms.

6 Optimal Sequential Offer Mechanisms

The power of the optimal auction theorem lies in the very simple tests that are re-
quired to determine when low-price mechanisms are optimal. A similar simplicity also
underlies the sequential offer theorem. Corollary 6.1 illustrates that to determine if and
when a given sequential offer mechanism is optimal, all that is required is a compar-
ison of the proposed mechanism against a relatively small class of other mechanisms.
We state the corollary for the case of maximizing expected social surplus without the
IR constraint: the case of maximizing expected buyer surplus is covered by replacing
ws(qs) with (ws(qs) — Fs5(qs)/ fs(qs)); the case of binding IR constraints is discussed
later in the section.

Corollary 6.1 If IR does not bind, a sequential take-it-or-leave-it mechanism with
offered prices of {ks}scs, mazimizes the expected social surplus if and only if for all s
with ks > 0 and for all s > &

(a) fO Wy (Is fs ((15 d(Is > fo Wgr (Is )fs ((Is )dq.s ) vr! < kg
(b,) E[ws’(qs') I T, S qs S ks’] Z E[u)s(q.s) I qs S 7‘]7 Vr S ks» ' S ks’-
(b”) E[ws’((Is’) I ks’ < qs’ < T’] > E[ws(QS) | gs < T]a Vr < ks’ ! < ks"

Proof: Condition (a) corresponds directly to Theorem 4.2(a). Condition (b’) comes
from 4.2(b) with s’ < s since

<1(IsST 1T'<Qs’5ks/ Dstshsr + agyr) = H(l - Fi(k) / / wy(qst ) for fsdqsrdgs

1<s!

kg
= H(l - F(k )// ws’(Qs’)fs’dQs’

1<s!
> <1qs<r r<ql<k ijs”h +ags)

= (1 - F(k ws qs fs fsdQS’dQS
1 YA
= (Ful(ky) - Fa(r') TL(1 = Fi(ka)) / wa(qs) fodgs

i<s!
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Rearranging terms yields (b’). For (b”), since i’slqsmksx = 0 for s’ < s, replace s
with ¢ in 4.2(b) to get -

ks r!
<1r<qssks lqsls-rl ﬁs,hsl + agsl> = H (], - E(kl))/ /k wsl(qsl)fslfsdqsldqs
1<s,1#£s’ T s!
= (Rk) - ) T (1= Rk [ wolan)foda
i<s,ifs s!

< <1T<Qs5ks 1ks’<‘]s’$’" Pashs + ags)

ks
= (Fu(r') - Fo(ks)) T (1 - Fik)) / wa(g5)fods

1<s,i#s'
QED

Since the mechanism includes the ‘no-trade’ seller, S+ 1, condition (b’) implies that
every seller type who trades with positive probability yields positive surplus. Condition
(a) ensures that any other offer, r’ yields lower surplus than the offer, k. Notice that
if ks < 1 for every seller, condition (a) becomes the same as condition 4.3(b) in the
determination of the reserve price in the optimal auction.

Condition (b) contains the substance of the Theorem. It shows that the expected
surplus loss from lowering the offer to seller s’ (to say, ') must be greater than the
expected surplus to be made by making any offer (say r) to any seller, s, farther on
the sequence. Sellers who yield the higher conditional expected surplus are made offers
earlier. Thus, (b) both helps to determine the order in which offers are to be made and
establishes when the simple sequential offer mechanism is the best way to procure the
object. Since the alternative mechanisms are feasible, (a) and (b) are clearly necessary
conditions. Corollary 6.1 indicates they are also sufficient.

The conditions of Theorem 4.2 become even simpler if sellers are assumed to be
symmetric, as in the example in Section 2. Sequential take-it-or-leave- it offers of k to
each seller in turn is an optimal mechanism, if and only if

Elw(q) |1 <k} > Elw(q1) | 1 < 7], Vr <k,

Elw(gi) |k <q1 <r] <0Vr >k and Elw(q,)] > 0.

That is, the term, expected social surplus conditional on ¢s < 7, must be maximized at
k and any higher offer must yield non- positive surplus. Since in the example in Section
Two, the conditional expected surplus is strictly increasing in r for all 7 € [0,1], and
since IR is satisfied at k; = 1, the mechanism which maximizes social surplus is that
which consists of a take-it-or-leave-it offer of one to the first (arbitrarily selected) seller.

It is worth emphasizing that the actual number of potential sellers does not play a
role in the conditions of Theorem 4.2. In the Section Two example, even if there is a
large number of sellers, so the ex ante probability of a high quality seller is very high,
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and even though high quality is very valuable, the best that can be achieved is the
unconditional average quality.

When the IR constraint binds, the interpretations of the conditions are similar to
Corollary 6.1, though the general problem of maximizing social surplus (or equivalently,
ex ante aggregate seller surplus) is complicated by this constraint. When comparing
alternative offers 7’ and r, the potential costs of violating the individual rationality con-
straint E[ws(qs)— Fs(gs)/ fs(gs) | ¢s < 7] must be included. To allow for this constraint,
a ‘pseudo-objective function’, wy(¢s) + a(ws(gs) — Fs(¢s)/ fs(gs)), must be constructed
where a is the multiplier on this constraint. This ‘pseudo-objective function’ replaces
w;(gs) in Corollary 6.1 and the IR constraint itself enters as an additional condition. &

In the general case, with @ > 0 and asymmetric sellers, it is not necessarily true
that each seller who trades yields the same expected social surplus. Nor is it necessary
that trade with each seller yield the buyer a non-negative expected surplus. An opti-
mal mechanism may involve cross-subsidization —strictly positive buyer surplus from
trade with one seller might be used to offset socially optimal but privately suboptimal
trade with another seller in a mechanism which maximizes social surplus. Thus, some
sellers may be chosen to trade more in order to exploit their usefulness in relaxing
this constraint rather than for their direct social contribution. Note that it is possible,
then, that offers to some sellers yield the buyer a negative expected surplus while offers
to others yield strictly positive surplus. The question arises as to whether a buyer
would continue to participate in such a mechanism if the sellers who yield him positive
surplus are made offers first. If rejections occur early and the continuation of the game
promises a negative expected surplus, the buyer might refuse to continue to participate.
This issue can be addressed by adding a further sequential rationality constraint to the
optimization problem of the form that the seller offers be ordered so that for every s

Y (i wile) - Fi/fi) 2 0

1>s
Since this is also a linear constraint it is easily incorporated in the linear program.

Theoreim 4.2 sheds some light on a question left open by Samuelson (1984). Samuel-

son’s model can be considered a special case of this model where there is one true seller,
S =1 along with the artificial seller. Samuelson’s result that take-it-or- leave-it offers
maximize the buyer’s expected surplus is directly implied by Theorem 4.2. Samuelson
also shows that maximizing social surplus requires probability of trade functions with
at most two steps. Theorem 4.2 indicates precisely when single step mechanisms are
optimal and can thus be used to determine when single or double stepped mechanisms
are required.

® An example with a sequential offer game in which the IR constraint binds is
() flg)=1, Vs€S, Vg, €1,

(b) wlg.) = { 1/4, otherwise

Note that this yields sequential offers of 1/2, k = 1/2 and o = 1.
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To illlustrate the relationship between Theorems 4.2 and 4.3, consider the problem
of maximizing social surplus when w(q) = ¢, a constant for all ¢g. In this case, trade
with any seller type yields the same social surplus. Furthermore, if ¢ is high enough
the IR constraints do not bind. Either a no reserve price auction or a sequential offer
mechanism, trading with the first seller with probability one, is optimal. However, for
low values of ¢, the IR constraint is more likely to bind. Since allocation of trade is not
an issue in this example, an auction is typically better because such mechanisms are
more likely to satisfy the participation constraint — the constraint affects the buyer
only and the competition from the sellers in the auction generally yields higher surplus
to the buyer.

Theorem 4.2 indicates that to determine when and if a take-it-or-leave-it mechanism
offering {k;} is optimal, two tests are required. First, we must evaluate each seller offer
against other potential offers to the same seller. These returns are easily computed.
Second, the conditional expected surplus lost from any slightly lower offer to any early
seller must exceed the conditional expected surplus from any offer to any later seller.
The conditions of Theorem 4.2 do not depend directly on the number of potential
sellers. Only characteristics of the utility functions and distribution of uncertainty
determine whether a sequential offer mechanism is optimal.

7 Other Mechanisms

The usefulness of the approach in Section 4 is limited only by our ability to devise trad-
ing institutions which we can represent as direct revelation mechanisms.The proofs of
Theorems 4.2 and 4.3 provide insight about how to characterize necessary and sufficient
conditions for when any incentive compatible mechanism is optimal. Let {ps}5¢c ¢
characterize a direct revelation mechanism which is incentive compatible and construct
the expected probability of trade function, Tsp;(¢s). The proofs suggest that dual op-
erators, A;, must be zero where Tps(gs) is strictly increasing and otherwise be given
by
(z,T*D*)\s) = (z,hs + ags — k)

for an appropriate hs. The rest of the algorithm consists of finding conditions on the
h and g functions so that the feasibility conditions of Theorem 4.1 are satisfied. In
this section, we provide two examples where different mechanisms from those analyzed
above are optimal.

Example 1 Consider a hybrid take-it-or-leave-it mechanism in which a buyer makes
a take-it-or-leave-it offer to all sellers in turn and, if all reject, then conducts an auction.
In this example with two sellers (s = 1, 2), we use the sufficiency part of the linear
programming theorem to show one case in which this constitutes an optimal mechanism:

_ ] 12+ 1/2g,, if g; €[0,1/2]
w(gs) = { 5/4 — ¢s otherwise
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and
flgs) =1

In this example, the necessary and sufficient conditions for a take-it-or-leave-it
mechanism to be optimal hold for low ¢’s and those for an auction-like mechanism hold
for ¢’s greater than 1/2.

Claim 7.1 The mechanism which consists of offering a take-it-or-leave-it price of 5/8
to selller one and 3/4 to seller two and conducting a second price auction in the event
of two rejections, mazimizes social surplus in the above example.

Proof: Define a = 0, (z,T;D*\;) = (lg,<k z,w(qs) — W) where k& = 1/2 and
=2 [; 1q,<k w(gs)dygs, and

o, ifq <1/2

D, ifq>1/2,¢2<1/2
w(q1), if1/2<q <q
w(qg), if 1/2 <@ <q

It is straightforward to show that the value of the dual to P equals the value of the
primal with this definition. Let z be any function in G

Y(q1,92) =

<x1 U)((]s) - T:D*/\s - 7) = (1qsgk 2710> + (lqs>lc x’w((IS) - 7)

The first term on the right side follows by definition of A; and ¥. The second term
is negative by definition of ¥ and because w(qg;) is decreasing in ¢ for ¢ > 1/2. Since
w(qgs) is increasing in ¢ for ¢ € [0,1/2], for any z such that Tsz is decreasing,

(DT,z, A = (z,T*D*),) < 0.

Thus, (ps, As, v, @) form a saddle-point of the Lagrangian of P.

The prices are determined by noting that sellers of type 1/2 must be indifferent
between accepting the offered price and waiting for the auction. The expected price
from the auction is 3/4. Seller one can expect her rejection to result in an auction with
probability 1/2 while seller two knows that her rejection results in an auction for sure.

QED

Example 2 Sequential offer mechanisms could also be of the following form: the
first seller is made one offer, upon rejection, the second seller is made an offer and if
that is rejected, the first seller is made a second, higher offer. The next example shows
that this mechanism may also be an optimal mechanism. Let the environment be

3q2, if gu € ]0,1/2 Aqy, if 0,1/2
w2<q2>={ e ”wltql):{ AR

0 otherwise 1/4  otherwise

and
fs((]s) =1,Vs
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Claim 7.2 The mechanism which consists of offering a take-it-or-leave-it price of 3/4
to seller one, if that is rejected an offer of 1/2 to seller two and in the event of another
rejection an offer of 1 to seller one, mazimizes social surplus in the above ezample.

Proof: The proof follows the same lines as in Claim 7.1. We simply provide
definitions of the dual variables and leave the rest to the reader.

a=10

1, ifg <1/2
(g1, 92) = § 3/4, if g1 >1/2,q2 < 1/2
1/4, else

(QI,T;D*/\‘s) = (z’w(qS) - 7)
QED

Notice that the mechanism described in Claim (7.2) is from a larger class of mech-
anisms in which the class of seller types are partitioned into intervals, low seller types
are made (appropriately chosen) offers in turn, then higher seller types are made offers
in turn and so on until potentially all seller types are made offers. Some reflection
will reveal that as the partition is made finer, such mechanisms actually approximate
low-price mechanisms.

8 Extensions

It is worth emphasizing that we analyze a pure adverse selection model and that this
yields substantial simplicity. The moral hazard problem where quality choice is endoge-
nous would also be of interest. However, our environment may not be the best model
for such a study. A natural way to introduce moral hazard would be to allow for an
initial, costly investment, e which affects the distribution of quality. Since there is no
screening mechanism to enable an uninformed buyer to distinguish among sellers who
have invested in different levels of e, a trading mechanism only increases the likelihood
that the seller will not actually be the end user of the product. The possibility of a
trade exacerbates the incentive to shirk. A more general optimization problem can be
constructed which takes this behavior into account but, of course, the linearity of the
objective function disappears.

A different issue arises from the question of whether or not the constraint that the
buyer can purchase at most one object is reasonable. Although the buyer has use value
for a single ob ject, the possibility exists of purchasing one ob ject, learning its true value
and, conditional on the discovery that it is in fact of poor quality, proceeding to attempt
to purchase another one. Such a mechanism is incentive compatible since, subject to
a completed sale, a seller has no incentive to misrepresent the true quality. Since the
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constraint Ele ps < 1 binds, it is reasonable to conjecture that allowing the buyer to
engage in more purchases will increase welfare. Such mechanisms are of interest since
a type of optimal search behaviour could result in which a buyer continues to purchase
until an acceptable quality object is found. On the other hand, it is fair to note the
objection that information revelation in this circumstance relies rather strongly on the
fact that the seller who has just sold his good has no incentive not to lie. It may also
be unrealistic to expect that government agencies will have the political latitude that
would allow them to purchase objects and then dispose of them in the event they turn
out to be of low quality.

The techniques developed here can be extended to analyze this possibility and
indeed can be applied to any trading institution that can be described as a direct
revelation mechanism and to any additional constraints on outcomes that can be in-
corporated as linear constraints on the probability of trade functions. The marriage
of two powerful theorems, the linear programming theorem and the theorem of imple-
mentable mechanisms, yields a methodology which we feel can be fruitfully applied to
a wide range of adverse selection problems.

9 References

Anderson, E. J. and P. Nash, Linear Programming in Infinite-Dimensional Spaces,
John Wiley & Sons, 1987.

Cremer, J., and R. McLean, (1988), Full Extraction of teh Surplus in Bayesian and
Dominant Strategy Auctions, Fconometrica, 56, 1247-1257.

Laffont and Tirole, (1990), Adverse Selection and renegotiation in procurement, Review
of Economic Studies, 57, 597-625.

Laffont and Tirole: Cost Padding, Auditing and Collusion, IDEI 1991.

Lang, K. and R. Rosenthal, (1991), The Contractor’s Game, Rand Journal of Eco-
nomics, Vol 22., No. 3.

Luenberger, D., (1969), Optimization by Vector Space Methods, John Wiley and
Sons.

McAfee R.P. and P. Reny, (1992), Correlated Information and Mechanism Design,
Fconometrica, 60, 395-421

Milgrom, P., and R. Weber, (1982), A General Theory of Auctions and Bidding,
Econometrica, 50, 1089-1122.

Myerson, R., (1981), Optimal Auction Design, Mathematics of Operations Research,
6, 58-73.

Myerson, R. and M. Satterthwaite, (1983), Efficient Mechanisms for Bilateral Trad-
ing”, Journal of Fconomic Theory, 29, 265-281.

Postlewaite, A. and D. Schmeidler, (1986), Implementation in Differential Informa-
tion Economies, Journal of Economic Theory, 39, 14-33.

Rob, R., (1986), The Design of Procurement Contracts, American Economic Re-
view, Vol 76, No. 3.



Samuelson, W., (1984), Bargaining with Asymmetric Information, Econometrica,
53, 995-1005.
Ziemer, W.P., (1989), Weakly differentiable functions, Springer-Verlag,

26



