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Abstract
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1. INTRODUCTION

A trader who privately knows his own preferences may demand more
favorable terms than he is in truth willing to accept. Such behavior, which
is the essence of bargaining, may lead to an impasse that delays or lessens
the gains from trade. A trader who acts as a price-taker, by contrast,
honestly responds to prices with his true demand. Price-taking behavior
together with market-clearing prices guarantee efficient allocations. Two
assumptions of price theory are many traders and complete information. The
former justifies price-taking behavior by diminishing any single trader’s
impact on prices, and the latter makes plausible the discovery of market-
clearing prices. Price theory and its assertion that trade at market-
clearing prices is efficient, however, provide insight into a far greater
variety of situations than the strength of these assumptions would suggest.
The problem is to explain how this is possible.

Our contribution is to consider a finite market in which the rules for
trading are explicit, the number of traders can be small, and each trader
privately knows his own preferences. We show that strategic noncooperative
behavior in this market converges rapidly to price-taking behavior as the
number of traders increases. Bilateral trade can be very inefficient
because of strategic behavior; we show that this inefficiency quickly
becomes inconsequential. Numerical evidence even suggests that markets with
as few as twelve traders can be almost fully efficient.

The mechanism we consider is a simple model of a call market. A call
market collects bids and offers from traders, constructs supply and demand
curves, fixes a market-clearing price, and executes the indicated trades.
The daily opening price of each stock listed on the New York Stock Exchange
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is set by a call market that aggregates the bids and offers that have
arrived overnight. Call markets twice a day fix copper and gold prices in
London. The Wunsch system of computerized trading conducts periodic call
markets in each of the listed stocks of the New York Stock Exchange. Of all
the institutions that mediate trade, call markets come closest to
operationalizing Marshall’s supply-demand diagram, which is so central in
microeconomic thought.1

An independent private values model. There are m buyers and n sellers
who meet to trade units of an indivisible good. Each buyer wants to buy one
unit and each seller wants to sell one unit. A trader'’s preferences are

. . . 2
determined by his redemption value. We use v (for value) to denote a

buyer’'s redemption value and c (for cost) to denote a seller’s redemption
value. A seller’'s payoff when he trades is the difference p-c between the
price p and his cost c¢. A buyer’s payoff when he trades is the difference
v-p between his value v and the price p. A trader who fails to trade has a
payoff of zero.3

Each seller's cost is independently drawn from a distribution F and
each buyer’'s value is independently drawn from a distribution G. While a
trader privately observes the draw of his own redemption value, he remains
ignorant of those of others beyond the distributions from which they are

drawn. The distributions F and G are common knowledge. We assume that F

See Schwartz (1988) for further discussion of the use of call
markets.

This term is suggested by the experimental literature. We use it
instead of "reservation value", which connotes a rule of behavior.

The traders are thus risk neutral. Allowing risk aversion
complicates the proofs but does not change the essential results (see

Rustichini, Satterthwaite and Williams (1990)).
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and G are C1 functions on [0,1] whose respective densities f and g are
positive on [0,1].

The mechanism and its incentives. Each of the n sellers submits an
offer while each of the m buyers submits a bid. The bids and offers are
aggregated into demand and supply functions. The crossing of their graphs
determines an interval [a,b] from which a market-clearing price may be
selected. The price p is (l-k)a + kb, where each choice of k ¢ [0,1]
defines a different mechanism. Trade occurs among buyers who bid at least p
and sellers whose offers were no more than p. The market then disperses.

This mechanism is called the k-double auction (or k-DA) because it is a two-

sided auction of bidding and offering.

An example shows the mechanics of this institution, the incentives it
provides, and the inefficiency that may result. Suppose k = 0.5, m = n = 3,
the three buyers bid 0.95, 0.50, and 0.42, and the three sellers offer 0.10,
0.35, and 0.53. As Figure 1.1 shows, any price in the interval [0.42, 0.50]
is market-clearing. Given that k = 0.5, price is set at 0.46 and two units
trade among the sellers who made the two lowest offers and the buyers who
made the two highest bids.

Two points deserve emphasis. First, traders can affect the price and
this affects their behavior. For example, the buyer who bid 0.50 regrets ex
post that he did not bid 0.43, for if he had, then the price would have been
0.425. This possibility causes each trader to strategically shade his
offer/bid away from his redemption value. Second, this strategic
misrepresentation may lead to inefficiently few units being traded. In this
example, the seller who offered 0.53 and the buyer who bid 0.42 did not

trade. If, as is plausible, this seller’'s cost is 0.47 and this buyer'’'s



value is 0.51, then efficiency mandates that they should trade. The
possibility that a trader’s attempt to affect price may backfire and prevent
a profitable trade is what limits each trader's misrepresentation.
Equilibrium. Harsanyi’'s (1967-68) Bayesian model is used to analyze
the effect of incentives and incomplete information upon trade. Because a
trader only knows the distributions from which the redemption values of
others are drawn, he bids against each other trader’s rule for selecting his
offer/bid as a function of his redemption value. In turn, the others bid
against his rule. A trader’s strategy is a Lebesgue measurable function
that specifies an offer/bid for each of his possible redemption values. A

set of strategies, one for each trader, defines a Bayesian-Nash equilibrium

if, at each redemption value of each trader, the offer/bid specified by his
strategy maximizes his conditional expected utility given that the other
traders are using their specified strategies. For simplicity, we only
consider equilibria that are symmetric in the sense that all traders on the
same side of the market use the same strategy. Let S be the common strategy
of sellers, B the common strategy of buyers, and let <S,B> denote the use of
S by each seller and B by each buyer. Two more restrictions upon <S,B> are
added in section 2; one implies that neither S nor B is a dominated strategy
and the second that trade occurs with positive probability in <S,B>.
"Equilibrium" in the remainder of the paper means a pair <S,B> that
satisfies these restrictions.

Example. In the 1-DA price is set at the top of the interval of
possible market clearing prices. It is the exceptional case in which a
seller cannot favorably influence the price at which he trades.

Consequently price-taking is his unique dominant strategy, i.e., S(c) = c.



For the case of uniform F and G, B(v) = mv/(m+1l) is the unique smooth
function such that <S,B> is an equilibrium (Williams (1990)). While the 1-
DA and the 0-DA are exceptional in that traders on one side of the market
have no incentive to misreport, the amount by which traders on the other
side of the market misrepresent is typical of all k-DAs.

Results. The meaning of price-taking behavior in this model is subtle;
passive response to an existing price is meaningless here because price is
determined simultaneously by all offers/bids. Nevertheless, if a trader
were to ignore the possibility that he might affect price, then his best
offer/bid would be his redemption value, for that guarantees he would trade
whenever the realized price yields him gains from trade. This is analogous
to a trader in a competitive market who takes the market price as given and
chooses his purchase to maximize his utility without taking into account the
small effect his purchase has on price. Within our model, price-taking
behavior is thus honest reporting of one’s redemption value.

Our first convergence result describes how quickly price-taking
behavior emerges as the market increases in size. Stated here for the
simplest case in which m = n, the maximal amount by which any trader
distorts his redemption value is O(1l/m): there exists a x(F,G), independent
of m and n, such that

v - B(v) < k/m and S(c) - ¢ < k/m (1.1)
for any equilibrium <S B> in the market of size m = n.

The emergence of price-taking behavior as the number of traders
increases makes the market increasingly efficient. Our second result
describes the rate at which this happens. To make this precise, for any

sample of redemption values the potential gain from trade is the total gain




that can be achieved by reallocating the n units to those n traders who most
highly value them. This is the amount that would be achieved in a k-DA if

each trader acted as a price-taker. The expected potential gain from trade

is the expected value of this random variable. Given an equilibrium <S,B>,

the expected gain from trade is the total expected gain received by the

traders when each follows the prescribed strategy. Finally, the expected
efficiency of an equilibrium <S,B> is the expected gain divided by the

expected potential gain and the expected inefficiency is one minus the

expected efficiency. Stated here for the simple case of m = n, our second
convergence result states that the expected inefficiency of any equilibrium
is O(l/mz).

Comparison with rates at which other mechanisms converge to efficiency
shows that this is fast. 1In the final section we compare the k-DA to three
other mechanisms including the optimal mechanism, which by construction has
the fastest possible rate of convergence. The conclusion is that the k-DA
converges as fast as the optimal mechanism for some, but not all,
distributions F and G and it strictly dominates the other two mechanisms by
converging at a faster rate.

Antecedent work on the k-DA. The k-DA has served as a simple model for
investigating trade in finite markets. A competitive market can be modelled
as a continuum of sellers whose costs are distributed according to F
together with a continuum of buyers whose values are distributed according
to G. The competitive price is the solution p* to the supply/demand
equation F(p) = 1-G(p). Telser (1978, p.300) used the environment and
institution we consider here to investigate the meaning of p* for a finite

market consisting of a sample of m buyers’ values and m sellers' costs. He



assumed price-taking behavior and showed that the sample price converges in
distribution to normality with mean p* and variance 0(l/m). Telser related
this result to Marshall's (1949, V.I1.4, p.273) "great law” that "the larger
the market for a commodity the smaller generally are the fluctuations in its
price". Our work complements Telser’s test of Marshall’s law by showing
that an increase in market size is significant not only because the samples
of redemption values will better approximate the market fundamentals F and
G, but also because it increases competition and thus more tightly
constrains strategic behavior.

Wilson (1985) initiated study of strategic behavior in the multilateral
k-DA. Assuming the existence of equilibria with certain regularity
properties, he proved that such equilibria are interim incentive efficient
in the Holmstrom-Myerson (1583) sense when the market is sufficiently large.
This means that after traders have learned their own redemption values but
before they submit offers/bids, it cannot be common knowledge that a change
in equilibrium or the institution would be Pareto-improving. Wilson's
result thus helps to explain the endurance of simple institutions such as
the k-DA.

Satterthwaite and Williams (1989b) and Williams (1990) studied
convergence to price-taking behavior in the buyer’s bid double auction,
which is essentially the same as the 1-DA. This paper subsumes both these
papers as special cases and completes them by establishing the rate of
convergence to efficiency. 1In addition, the 1-DA is contrived so that
price-taking is a dominant strategy for each seller. For the bilateral case
this implies that a unique equilibrium exists because the seller's dominant

strategy induces a unique best response from the buyer. This contrasts with



the continuum of equilibria that exist in the bilateral k-DA for k ¢ (0,1)
(Satterthwaite and Williams (198%a)). The k-DA is thus sufficiently rich to
model the classic intuition that increasing the number of traders resolves
the indeterminacy of bargaining when traders are few.

Future directions. A simple model such as ours could be generalized in
many ways.4 Its most distinctive feature is its modeling of the strategic
use of private information in the context of a plausible mechanism for
organizing trade in a finite market. This suggests that it would be most
interesting to vary both the mechanism and the information structure. With
regards to the mechanism, we envision a comparative theory of market
institutions, analogous to auction theory, that would explain the
suitability of a mechanism for a given enviromment. The comparisons of
Section 4 are a modest step towards this goal. As to the information
structure, we have worked an example with correlated values in which the
k-DA's rates of convergence continue to hold. This suggests that the
independent private values model is not a knife-edge case. Akerlof’s (1970)
famous "market for lemons”, however, epitomizes a variety of examples that
show how adverse selection can cause market failure when the traded
commodity has a common value component. Such examples emphasize the
importance of the information structure to market efficiency and suggests

the scope of the problem that remains.

Obvious candidates include the possibility of asymmetric equilibria
and the various ways in which market power can persist even as the market
increases in size.



2. THE MODEL
The rules of the k-DA. We now define the k-DA in a form that

facilitates analysis. List the n+m offers/bids as s

5
5(2) < ... =< S(n+m)'

<
(1) ~

For fixed k ¢ (0,1], set p = (1-k)s(m) + ks(m+1)-
Table 2.1 is used to explain exactly who trades at this price. Because

there are m buyers, t + u = m. then s + u = m. The

If S (m) . s(m+1),
supply s at price p therefore equals the demand t (i.e., p is a market-

clearing price) whenever s When s shortages or

(m) 7 S(m+l)" m) ~ S(m+l)’

surpluses may exist at p. In this case the allocation is carried out as far
as possible by assigning priority to sellers whose offers were smallest and
buyers whose bids were largest. If this does not complete the allocation,
then a fair lottery determines which of the remaining traders on the long
side of the market trade.

Restrictions on equilibria. In addition to symmetry, we only consider
equilibria <S,B> such that:

{c ] S(e) < 1) has positive F-measure and (v | B(v) > 0) has (2.1)

positive G-measure;

at every c, v ¢ {0,1}, S{(c) 2 ¢ and B(v) < v. (2.2)
Assumption (2.1) states that it is a positive probability event that traders
on one side of the market make offers/bids at which traders on the other
side can profitably trade. This rules out "no-trade" equilibria, e.g.,
B(v) = 0 and S(c) = 1 for all ¢, v ¢ [0,1]. Assumption (2.2) rules out
equilibria in which traders use dominated strategies. Neither (2.1) nor

(2.2) restricts the strategies that are available to any trader as he

Throughout the paper, s denotes the qth order statistic (i.e.,
the qth smallest value) in a spéglfied sample of offers/bids.
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attempts to maximize his conditional expected utility; rather, they restrict
the equilibria for which we prove results.

Basic properties of equilibria. Figure 2.1 depicts an equilibrium
<§,B>. As shown below in Theorem 2.1, this figure typifies equilibria in
three respects:

for each <§,B>, there exists values v, ¢ such that a seller with (2.3)

cost ¢ trades with positive probability if and only if ¢ < ¢

and a buyer with value v trades with positive probability if

and only if v < v;
S and B are increasing over [O,E) and (v,1], respectively; (2.4)
lim  B(v) = v = lim  ,S(c) and lim_ =S(c) = ¢ = lim . B(v). (2.5)

vi

The intervals (v,1] and [O,E) are called the intervals from which serious

offers/bids are made. Because a seller whose cost is above ¢ almost never

trades, he can costlessly submit a large number as his offer; similarly, a
buyer whose value is below v may bid a negative number. Misrepresentation
thus cannot be bounded for values in [0,v] and costs in [E,l]. It is over
the intervals from which serious offers/bids are made that equilibrium
tightly constrains the strategies S and B.

Point (2.4) implies that S and B are differentiable almost everywhere6
in [O,E) and (v,1}. This permits the first order approach we use to prove
our convergence results. Finally, by tying v to the smallest serious offers
and ¢ to the largest serious bids, (2.5) allows the inefficiency non-serious
offers/bids cause to be bounded.

Some notation is needed to make (2.3-2.5) precise. Let X denote an

offer/bid of a trader. Given <S,B>, define:

6 See, for instance, Royden (1968, p.96).
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Pb(x) probability that a buyer trades when he bids A, all sellers use S,

and the other m-1 buyers use B;

PS(X) = probability that a seller trades when A is his offer, all
buyers use B, and the other n-1 sellers use S;
wb(v,k) = 3 buyer’s expected payocff when v is his value, X is
his bid, all sellers use S, and the other m-1 buyers use B;
v = inf (v | P (B(v)) > 0};
c = sup (c | P_(S(c)) > 0};

b = sup (B(V) | v < 1);

s = inf {S{(c) | c > 0}).
Observe that Pb(X) is nondecreasing and Ps(x) is nonincreasing in .
Assumption (2.1) implies that Pb(B(v)) > 0 near v = 1 and PS(S(c)) > 0 near
c = 0. The values v, c are thus well-defined and satisfy v < 1, c >0,

Theorem 2.1. For ¢’ < c”, v!' < v"” in [0,1], the following statements

are true for an equilibrium <S,B> that satisfies (2.1) and (2.2):

Pb-B is nondecreasing and PS-S is nonincreasing on [0,1]; (2.6)

if ¢’ < c, then S(c’) < S(c"); (2.7)

if v < v", then B(v') < B(v"); (2.8)

lim B(v) = v =35 and lim S(¢) = c =b. (2.9)
viv ctc

The proof is in the Appendix.
Theorem 2.1 implies that the outcome of the k-DA is almost always a
market-clearing price. Random allocation is necessary only if (i) S(m) -

S(m+l) = p, (ii) some offers are no more than p, and (iii) some bids are as
large as p. Statements (2.7-2.8) imply that (i) occurs with positive

probability only for p below v or above c. In either of these events, (2.9)
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implies that (ii) occurs with probability zero. The possibility of random
allocation is therefore ignored in the remainder of the paper.

The dual market. Table 2.2 defines the dual market to the market
defined thus far in the paper. Its middle column summarizes our notation.
Theorem 2.2 establishes a symmetry between equilibria of a market and its
dual. This symmetry means that a bound on misrepresentation by buyers
implies a bound for sellers.

Theorem 2.2. If <S,B> is an equilibrium satisfying (2.1) and (2.2) in

the given market, then <S*,B*> is an equilibrium in the dual market

that also satisfies (2.1) and (2.2).

This follows directly from a change of variable in the integral
representation of a buyer’s expected payoff. Details can be found in

Rustichini, Satterthwaite and Williams (1990).

3. MAIN RESULTS
A buyer’s first order condition. The bound on misrepresentation that
drives our two convergence results follows from a first order condition for
equilibrium. Consider an equilibrium <S,B>. Pick v ¢ (v,1), and ¢ ¢ (O,E)
such that B’'(v) and S'(c¢) both exist and B(v) = S(¢c) = ). A buyer’'s first

- . .7
order condition at such a (c,x,v) triple is

awb(v,A)
0 8
(3.1)
- (v—A)[nK (A)f(c) + (m-1)L (A)BLX__] - kM (X))
n,m S’'(c) n,m B’ (v) n,m ’

A seller's first order condition is similar and can be found in
Rustichini, Satterthwaite and Williams (1990).
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where:

Kn,m(A) = the probability that offer/bid X lies between S(m-l) and S(m) in a
sample of m-1 buyers using strategy B and n-1 sellers using S;

Ln,m(k) = the probability that bid A lies between S(m-l) and S(m) in a
sample of m-2 buyers using strategy B and n sellers using S;

Mn’m(k) = the probability that bid A lies between S(m) and S(m+l) in a
sample of m-1 buyers using strategy B and n sellers using S.

Formulas (A.6-A.8) in the Appendix define these probabilities.

This equation can be derived by following Satterthwaite and Williams
(1989b, Thm. 3.1). It is helpful to develop some intuition here by
explaining how (3.1) equates a buyer’s marginal expected gain from changing
his bid with his marginal expected cost. If the bid A is too small to
include him among those who trade, then by increasing it an incremental
amount AX he may surpass other bids and offers and move into the set of
buyers who trade. The sum in brackets times AX is the probability that this
occurs: the first term in the sum is the marginal probability of acquiring
a unit by passing a seller’s offer and the second term is the marginal
probability of acquiring a unit by passing another buyer’s bid. The profit
from such a trade is between (v-\) and (v-A-A)). Therefore the marginal
expected profit for a buyer who raises his bid is (v-X) times the term in
brackets. On the other side of the ledger, if the bid X i1s large enough to
include him among those who trade, then increasing it by A) may simply
increase the price he pays by kA) through the price-setting rule (l-k)s +

(m)

ks(m+1). Mn o is the probability that the buyer increases the price he pays

by kal. Therefore an m is the buyer's marginal expected loss from

3

increasing his bid above .
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For v ¢ [v,1], the first order condition (3.1) of a buyer may fail if
either (i) B(v) is outside of the range of S or (ii) S’(c) does not exist
for the value of ¢ that solves S(c¢) = B(v). Nevertheless as long as B’'(v)
exists the inequality

g(v)
(V-A)(m-l)Ln,m(A)B,(v) - an’m(A) <=0 (3.2)

holds because in equilibrium the marginal expected gain from passing a buyer
(disregarding the possibility of passing a seller) as a result of raising
one’s bid surely can not exceed the marginal expected cost from raising the
price. Theorem 2.2's result that B’ exists almost everywhere in [yv,1]
therefore implies that (3.2) holds almost everywhere in that interval. This
inequality is the basis for our first convergence result.

Convergence to price-taking behavior. The bounds on misrepresentation

that Theorem 3.1 establishes are stated in terms of the function

1 m 1 n
q(n,m) max n [ 1 + - ], = [1 + - ]

Informally the theorem states that (i) a trader’s equilibrium
misrepresentation is 0(q(n,m)) on the interval from which he makes serious
offers/bids and (ii) the complement of this interval, in which
misrepresentation can not be bounded, has length O(q(n,m)). To develop some
intuition concerning these rates, consider a sequence of markets in which
n/m is bounded both above and away from zero. When n/m is restricted in
this way, the equality O(q(n,m)) = 0(l/n) = 0(l/m) holds and describes the
rate at which (i) price-taking behavior emerges on the intervals over which
serious offers/bids are made and (ii) these intervals grow to include the

entire range [(0,l] of possible redemption values.
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Theorem 3.1. Suppose F and G are C1 distributions on [0,1] with
positive densities over this interval and k ¢ [0,1]. Consider any
equilibrium <5,B> of the k-DA in a market with m buyers and n sellers
that satisfies (2.1) and (2.2). There exists a constant x<(F,G) > O,
which is independent of <S,B>, m, and n, such that

v - B(v) = kq(n,m) : (3.
for all v ¢ (v,1],

S(c) - ¢ = kq(n,m) (3.
for all c «¢ [O,E), and

v, 1 - c < kq(n,m). (3

Proof. We prove below that

P

v-B(v) = T3 [1 + %} 3.

for v ¢ (v,1], where

G(x) (L-G(x)F®) } ' (3.

T =2 sup g qpmax { g(x)’ g(0) (1-F(x))

where x is a dummy variable. The rest of the theorem then follows easily.
* *

Applying (3.6) to the equilibrium <S5 ,B > of the dual market described in

Theorem 2.2 implies

S(c)-c = (L-e) - BY(1-e) = X [1 + 0 ] 3.

for c ¢ [O,E), where r* is defined by (3.7) for the dual market as

_ 1-F(x) Fx)(1-G6(x))
r¥x = 2 Supxe[O,l]maX { F(x) £(x)C(x) } . (3.

3)

4)

.5)

6)

7)

8)

9)

To obtain the bounds (3.3-3.4) in the theorem from (3.6) and (3.8), we note

that n/(n-1) and m/(m-1) are both less than 2 and set

k = 2 max(7rk,r*(1-k)). (3.10)

15



To bound v, apply Theorem 2.1 and the bound just established to deduce that

V=35 = limclOS(c) = limclO(S(c)-c) < kq(n,m). A similar argument bounds
l-c.
For v ¢ (¥,1], let X = B(v). Solving (3.2) for v-B(v) gives

an m(A)

v-B(v) =< (m-l)Ln ;(A)g(v) B' (v), (3.11)

which holds for almost all v ¢ (v,1]. In the Appendix it is shown that

Mo ()
_n.m n (1-Gv))EF(v)
L <2 [G(V) Y n T 1-F(v) ] ) (3.12)

3

from which it follows that

v-B(v) < ’:T [1 + % ] B’ (V) (3.13)

3

for all v ¢ (v,1l} at which B’ (v) exists. This implies (3.6) for v at which
B’(v) = 1. The remainder of the proof shows that (3.6) also holds for
v ¢ (v,1] at which either (i) B'(v) > 1 or (ii) B’(v) fails to exist.

We first note the following. Consider an increasing sequence (vi) that
has as its limit v ¢ (v,1}. Suppose vi-B(vi) < xq(n,m) for each element of
the sequence. Then v-B(v) < kq(n,m) because limi_mvi = v and, since B is
increasing, B(v) = limiﬂmB(vi).

Consider now a v" ¢ (v,1] at which B'(v") > 1. At some value v in the
interval [v,v") the derivative B’ (v) exists and is not more than one. To
see this, recall from Theorem 2.1 that limleB(v) = v, If at almost all v ¢
(v,v") the derivative B’ (v) were more than one, then at all v in this
interval B(v) would exceed v, which violates (2.2). The value v'= sup(v ¢
(¥,v") I B'(v) < 1) therefore exists. Our result from immediately above

implies that v'-B(v’') < kq(n,m). Almost everywhere in (v',v") the
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derivative B'(v) exists and exceeds one. Since B is increasing, it follows
that

-
".y! < fv’ B/ (v)dv < B(v") - B(v'),
which upon rearrangement gives the desired result: v"-B(v") < v'-B(v') <
kq(n,m).

Next consider values of v ¢ (v,1] at which B’ (v) does not exist.
Because B is differentiable almost everywhere, any such value is a limit
point of an increasing sequence of values at which B' exists. The desired
bound holds wherever B’ exists and hence at every value in the sequence. As
argued above it therefore holds at v. Q.E.D.

Two observations should be made about the bound (3.6) on buyer’s
misrepresentation. First, it is increasing in k, which is intuitive because
k measures a buyer’s potential influence upon the price at which he trades.
For k = 0, in fact, (3.6) implies that B(v) = v, which is the buyer’s
dominant strategy for the only k-DA in which he cannot influence price to
his advantage. Second, formula (3.7) for r suggests that convergence may
lag at values v where g(v) is small. This is intuitive, for a small density
means that it is unlikely that the values of other buyers are near v, i.e.,
competition is less intense. On the other hand, (3.6) does not fully
reflect global incentive constraints because it is mainly derived from a
first order condition. Perturb G on some small interval (v-§,v+§) so that g
is made very small near v. While this causes (3.6) at v to explode, it may
not radically change the equilibria, for the strict monotonicity of B above
v means that B(v) is constrained by how B is defined in ([v,v-§) where (3.6)

hasn’'t changed. One should thus be cautious in using (3.6) for comparative

statics.
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Convergence to efficiency. The function q(n,m) becomes infinite and
Theorem 3.1's bounds become ineffective as n/m approaches either zero or
infinity. Consequently our convergence to efficiency result is restricted
to sequences in which n/m is bounded both above and away from zero.

Theorem 3.2. Suppose F and G are C1 distributions on [0,1] with

positive densities over this interval and let K > 1. For m and n such

that
1/K < n/m < K, (3.14)
consider equilibria <S,B> of the k-DA with m buyers and n sellers that

satisfy (2.1-2.2). There exists a number £{(K,F,G), independent of m

and n, such that the expected inefficiency of any such equilibrium is

no more than §/m2

Proof. A lower bound on the denominator of expected inefficiency is
computed by pairing off each of nAm (= min(n,m)) buyers with a seller and
noting: (i) the expected potential gain from trade within each pair is some
positive number n; (ii) the expected potential gain from trade among all n+m
traders is at least as large as the amount that can be achieved through
pairwise trading. The expected potential gain from trade is therefore at
least n(nAm).

The proof is thus reduced to showing that the numerator of expected
inefficiency is 0(l/m). The idea is as follows. A seller and a buyer
inefficiently fail to trade at a given price only if the offer/bid of each
is on the wrong side of the price. Because misrepresentation is 0(1l/m),
their redemption values must be within 0(1l/m) of the price. The value of a
missed trade is thus 0(l/m), and the expected number of missed trades is

bounded by the expected number of the n+m redemption values that lie within
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0(1/m) of the price, which can be bounded by a finite number that depends
upon F and G but not n and m. For simplicity, the calculation in the formal
proof below is conditioned on the mth smallest redemption value (hereafter
denoted as t ) instead of the price. Also, the bounds in this argument

(m)

are ineffective when t is near zero or one, so the losses in this event

(m)
are bounded using a separate argument that rests upon the exponentially fast
decline of the probability that t(m) is so extreme.
The following notation is needed for the formal proof:
t = a sample of n+m redemption values;
= the distribution of t ;
g S (m)
L(t) = the total value of trades that inefficiently fail to occur given t

and <S,B>.

The goal is to show that E[L(t)]) is 0(l/m). We write

E[L(t = E[L(t)|t du(t 3.15
(L(®)) = [ E[L(e) e\ ] dule ) (3.15)
and then bound the value of this integral over the intervals [0,¢), [e,1-¢],
and (l-¢,1], where ¢ > 0 is chosen so that

2K+1

F(e), 1-F(l-¢), G(eg), 1-G(1l-¢) = (1/2) (3.16)

The desired bound is then an immediate consequence of the following lemmas:

Lemma 3.1. The probability that t is below ¢ is O(Z-m) and the

(m)

probability that t is above l-¢ is O(Z-n).

(m)
Lemma 3.2. There exists a number v(¢,F,G), independent of t(m), such
that E[L(t)|t(m)] < v(e,F,G)/m for t(m) e [e,1-¢].

Because the total value of missed trades is no more than mAn, Lemma 3.1
implies that the integral in (3.15) over [0,&) and (l-¢,1] is 0(l/m). Lemma
3.2 then provides the needed bound over [e¢,l-¢]. Q.E.D.

Proof of Lemma 3.1. Two inequalities are needed:
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max(m,n) < min(Km,Kn), (3.17)
and

[m+n] < amax(m,n)'

m (3.18)

Inequality (3.17) follows immediately from (3.14); (3.18) is proven in the
Appendix.
The probability that the redemption values of a specific set of m

traders all lie below ¢ is no more than [max(F(c),G(c))]m, and there are

(m;n) such sets of traders. The probability that t(m) is below ¢ is thus no
more than

m+n m max(m,n) 1 amax(m,n) - -m

[ o ] [max{G(e),F(e))] =<4 2(2K+1)m = aKm 2 < 2

where the first inequality follows from (3.18) and the choice of ¢ and the

second from (3.17). A similar argument shows that the probability that t

(m)

lies above l-¢ is O(Q-n). Q.E.D.

Proof of Lemma 3.2. For the value of « given by Theorem 3.1, define
v =k + K(1 + K). (3.19)

Given (3.14), it follows that

v - B(v) < v/m for v € (v,1], (3.20)
S(c) - ¢ < y/m for ¢ € [0,c), and (3.21)
v, l-c < v/m. (3.22)

We restrict our attention to values of m sufficiently large that y/m < &, so
that v ¢ [0,¢) and C € (l-¢,1].

We first bound the value of a missed trade given a sample t for which
t(m) € [e,1-¢]. 1Inequalities (3.20-3.21) imply

t(m) - y/m < S (m) < t(m) + v/m. (3.23)
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A buyer with value v and a seller with cost ¢ inefficiently fail to trade

only if:
B(v) < S(m)’ so the buyer does not trade; (3.24)
S(c) = S(m+l) > S(m)’ so the seller doesn’t either; (3.25)
v > ¢, so a profitable trade exists between the (3.26)

the buyer and the seller.

Statement (3.24) implies v =< S(m) + y/m, (3.25) implies c = S(m) - v/m, and

these together with (3.26) imply

s - y/m<c <v < S(m) + y/m. (3.27)

(m)

The value v-c¢ of a missed trade is thus no more than 2vy/m.
The proof is now completed by bounding the expected number of missed

trades given t Statements (3.27) and (3.19) imply that the redemption

(m)”

values v, ¢ of a missed trade satisfy

t(m) - 2y/m £ ¢ < v £ t(m) + 2v/m.

The expected number of missed trades conditional upon t is thus bounded

(m)

by the expected number of redemption values that lie within 2v/m of t(m)'
and summing over the number i of buyers’

This is bounded by fixing t(m)

values above t Given t and i, these i values are independently

(m)” (m)

distributed according to {G(+)-G(t Y1/[1-G(¢t

)], whose density is

(m) (m)

)}. Similarly, the remaining n-i costs are independently

g(-)/{l-G(t(m)

distributed according to [F(:)-F(t Y1/[1-F(t

)], whose density is

(m) (m)

)]. Because t < l-¢ and f and g are continuous, these

(m) (m) —

densities are bounded above by some number a(F,G,¢) that is independent of

£(-)/[1-F(t

m. Conditional upon t the expected number of redemption values above

(m)’

and within 2y/m of t is thus no more than n(2vy/m)(a(F,G,e)). A similar

(m)

argument shows that for some B(F,G,e¢) the expected number of redemption
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values below and within 2y/m of t is no more than m(2vy/m) (B(F,G,e)).

(m)
Using (3.14) we thus obtain a constant bound on the expected number of
redemption values within 2vy/m of t(m) that holds for all t(m) e [e,1l-¢],
which completes the proof. Q.E.D.

Existence of equilibria. This paper does not contain an existence
proof. Nevertheless the ease of computing examples suggests that equilibria
do exist.8 For k ¢ (0,1), the buyer and seller first order conditions are
linear differential equations in 1/S’ and 1/B' that can be solved using
standard numerical techniques. In brief, an initial point (c",A",v") such
that 0 < ¢" < A" < v" < 1 determines a smooth solution <S,B> such that S(c")
= A" = B(v"). In the bilateral case (given some assumptions on F and G to
insure the sufficiency of the first order approachg) each such solution is
an equilibrium (Satterthwaite and Williams (1989a)). Because price-taking
behavior emerges as m and n increase, every initial point cannot determine
an equilibrium as the market increases in size. What happens numerically in
the multilateral case is that if an initial point does not determine an
equilibrium, then B’ or S’ turns negative somewhere along the solution the
point generates.

The set of smooth equilibria can be approximated by starting with a

grid of initial points and discarding those solutions that do not represent

Existence has been proven for the multilateral 1-DA (Williams
(1991)). Computation of equilibria is also important because it provides a
target for experimentation. Numerical solution of the first order
conditions and the possibility of experimentally testing our results are
discussed in Satterthwaite and Williams (1992).

It is sufficient that c¢ + F(c)/f(c) and v + (G(v) - 1)/g(v) are
increasing functions, which is true in the uniform case. Sufficiency of the

first order conditions is discussed in Satterthwaite and Williams ((1989a,
Thm. 3.1) and (1989b, p.495)).
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equilibria. Figures 3.1 and 3.2 show bundles of equilibrium strategies for
m=n=2and m=n =6, respectively, in the case of uniform F and G. Our
experience is that, for k ¢ (0,1), the choice of an initial point is robust,
which suggests that an infinite set of equilibria exists for each choice of

m and n.

4. COMPARISON OF MECHANISMS

Speed is relative, and mechanisms may be ranked according to how
quickly expected inefficiency converges to zero. For the case of m = n we
rank three mechanisms relative to the k-DA and find that optimal mechanisms
dominate the k-DA, the k-DA strictly dominates a dual price double auction
when F = G, and each of these mechanisms strictly dominates a fixed price
mechanism.

Optimal mechanisms. The fastest possible convergence is given by the

optimal mechanisms, where an optimal mechanism for a given F, G, m and n is

one that maximizes the expected gain from trade subject to the constraints
of incentive compatibility and individual rationality. Gresik and
Satterthwaite (1989) used the revelation principle to characterize optimal
mechanisms. Investigation of their proofs shows that the optimal mechanism
in the case of uniform F and G and m = n has an expected inefficiency of at
2 10 X .
least o/m~ for some ¢ > 0. The k-DA thus achieves the fastest possible

rate of convergence in this case. For other choices of F and G, however,

the optimal mechanism can have an expected inefficiency of zero for finite m

10 The key step is in their (7.23), which in the case of uniform F and

G establishes (in their notation) that a(r) = §/r for some positive constant
5.
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and n, which is not true for the k-DA.11 The optimal mechanism thus

dominates the k-DA.

Optimal mechanisms, however, are implausible as rules for market
organization because they are tailored to the environment m, n, F and G. As
Wilson (1987, p.36) emphasized, the rules of real markets "are not changed
as the environment changes; rather they persist as stable, viable
institutions." Notice that the k-DA’'s rules are independent of the
environment. In our view optimal mechanisms are benchmarks for measuring
performance. An open question is whether or not some robust institution
exists that surpasses the k-DA by converging as fast to efficiency in every
environment and faster in some.

A dual price double auction. McAfee (1992) defined a mechanism that is
similar to a Groves mechanism in that it elicits truthful revelation of
redemption values by giving each side of the market its own price. It has
been cleverly designed so that (i) a single price is sometimes determined,
and (ii) a surplus is generated instead of a deficit, which makes it more
plausible than a Groves mechanism.

The mechanism works as follows in the case of m = n. Let C(i) denote

the ith smallest offer and let V(j) denote the jth largest bid, i.e.,

>V

Voy =Vay =V 2 (m) = V(m+1)

and

According to eq. (3.1) of Gresik and Satterthwaite (1989), the
optimal mechanism is efficient if, in their notation, G(a,7) > 0 for a = 0.
For two buyers, one seller, and redemption values drawn from the
distribution 4n(l+x)/(fn 2), we have checked that G(0,r) > 0. This example
contrasts with the impossibility result of Myerson and Satterthwaite (1983)
which established for the bilateral case that expected inefficiency is
positive in an independent private values model. Finally, McAfee and Reny
(1992) showed that the expected inefficiency can be zero in the bilateral
case if redemption values are correlated in a particular way.
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C(O) < C(l) < C(2) < ... = C(m) < C(m+l)’
where C(m+l) =1 = V(O) and v(m+l) =0 = C(O)' The quantity q is defined by
V(q) > C(q) and V(q+l) < C(q+l) and the price p as [V(q+1)+c(q+1)]/2' Trade
then follows one of two rules, depending on the value of p:12
if p ¢ [C(q)’v(q)]’ then trade is carried out at a price of p (4.1)

between the g buyers who bid at least p and the q sellers

whose offers were no more than p;

if p g | then each buyer who submitted one of the gq-1 (4.2)

1
C(q)’v(q)l’

largest bids buys and pays V(q)’ while each seller who

submitted one of the gq-1 smallest offers sells and receives
(@
Three points should be noted. First, a trader cannot affect the price at
which he trades. McAfee used this to prove that honest revelation is a
dominant strategy. We thus assume that C(i) = C(i)
(the jth largest buyer’s wvalue). Second, the

(the ith smallest

seller’'s cost) and V

S R ED

mechanism is not efficient. In event (4.2) a trade of value v c is

(Q) " (q)

not made. Third, the mechanism generates a monetary surplus of size

(q-1) (v ) in event (4.2). McAfee postulates a nonstrategic

-c
(@) "(q)
"specialist" who absorbs this as his profit.1

Notice that at most one profitable trade is not made in this mechanism,

and it is the least profitable trade. McAfee proves that the expected value

of this lost trade is 0(l/m), which is intuitive. This implies an expected

12 Random allocation may be needed in case of ties at V( ) or C( )"
See McAfee (1992) for details. d d
13

This surplus could be returned to the traders, i.e., payments that
are independent of the offers/bids can be devised so that the surplus on
average is zero. Such payments must depend on F and G, however, which runs
afoul of Wilson's critique by making the mechanism dependent upon the environment
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inefficiency of O(l/mz) if one counts the profit of the specialist as part
of the gains from trade. A specialist, however, is normally justified by
his role in facilitating trade and not in terms of his own profit. We show
in the Appendix for the case of F = G that his expected profit is bounded
below for all m by some positive constant. Counting only the gain received
by the traders (which is appropriate for comparison to the k-DA), the
expected inefficiency of the dual price double auction is therefore 0(1l/m).
The fixed-price mechanism. As in the introduction, let p* denote the
competitive price of the limiting continuum market (i.e., the solution to

1-G(p) = F(p) in the case of m = n). In the fixed-price mechanism, which

Hagerty and Rogerson (1985) discussed, trade occurs between buyers and
sellers who indicate their willingness to trade at p*, with traders on the
long side of the market randomly given the right to trade. Gresik and
Satterthwaite (1989) showed that the expected inefficiency of this mechanism
is O(l/ml/z). Its poor performance is due to its failure to rank traders
according to their redemption values, which means that it often fails to
execute those trades of greatest value.

A numerical comparison. For the case of uniform F and G and m ranging
from 1 to 8, Table 4.1 lists the expected inefficiencies of the mechanisms
discussed above together with those of both the least and the most efficient
equilibria of the 0.5-DA. Even for such small m, the rates we discussed
above are evident for the optimal mechanism and the 0.5-DA, with the
expected inefficiency decreasing by a factor of 4 as m doubles. The rates
for the other two mechanisms are slower for small m than the rates they

eventually achieve.
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APPENDIX

Proof of Theorem 2.1. Arguments of Satterthwaite and Williams (1989b,
Thm. 2.2) and Chatterjee and Samuelson (1983, Thm. 1) generalize to prove
that Pb-B is nondecreasing and PS-S is nonincreasing on [0,1]. Because the
proofs of (2.7) and (2.8) are so similar, the proof of (2.7) is omitted.

The following notation is needed to prove (2.8):

Cb(A) = a buyer’'s expected payment when he bids A, all sellers

use S, and the other m-1 buyers use B.
Note that
wb(v,A) = Pb(A)v - Cb(A),

and that Cb(A) is nondecreasing in .

We now assume that B(v') > B(v") and derive a contradiction. Because
Pb and Pb-B are both nondecreasing, it must be true that Pb(B(v")) -
Pb(B(v')), i.e., a lower value buyer (v') bids more than the higher value
buyer (v") even though it doesn’'t increase the probability that he trades.

We show that this contradicts the assumption that B(v’) is an optimal bid

for a buyer with value v'. The argument rests upon the following facts:
the set {c | S(c) < B(v")} has positive F-measure; (A. 1)
for A ¢ (B(v"),B(v’)), the set (c | S(c) > A) has (A.2)

positive F-measure;
the set (v I B(v) < B(v")) has positive G-measure. (A.3)
Statement (A.l) is true because Pb(B(v")) > 0, (A.2) is true because S(c) =
c (by (2.2)) and X < B(v') <1, and (A.3) is true because B(v") > 0 and B(v)
< v (by (2.2)). Statements (A.l-A.3) imply that given a bid of X ¢
(B(v"),B(v')) by the selected buyer, it is a positive probability event that

s <X <s where the sample is now the n+m-1 offers/bids of the

(m) (m+1)’
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other traders. In this event, the selected buyer affects the price at which
he trades, from which it follows that Cb(A) is increasing over the interval
(B(v"),B(v')). This and (2.6) imply that
m (v',B(V')) = P (B(v'))v' — C (B(V'))
< B (B(YM))V' = € (B(V")) = m (v',B(V"),
which contradicts the optimality of the bid B(v’) for the buyer with value
v'. We conclude that B(v') < B(v").

We next show that B(v') < B(v") by supposing instead that B(v') = B(v")
and deriving a contradiction. Because B is nondecreasing over (v,l], to
show that it is increasing over this interval it is sufficient to show that
it is increasing over (v,l). We can therefore assume that v" < 1. From
above, we know B(v) = B(v") for v ¢ [v’,v"], and, because B(v) < v and
Pb(B(v")) > 0, it is clear that 0 < B(v") < v" < 1. We now argue that Pb(A)
has a jump discontinuity at X = B(v"), from which a contradiction easily
follows.

Consider a buyer with value v". Because Pb(B(v")) > 0, the set {c |
S(c) < B(v")) has positive F-measure. Because S(c) =2 ¢ and B(v") < 1, the
set {c | S(c) > B(v")}) also has positive F-measure. It therefore is a
positive probability event that (i) all other buyers bid B(v"), (ii) some
offers are no more than B(v") and some are strictly more.14 Given this
event, if the selected buyer bids B(v") then the market price is B(v") and
the available supply must be rationed among the m buyers. By raising his

bid above B(v") the selected buyer obtains a unit with probability one in

14 The assumption that m = 2 is needed here.
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this event rather than with probability less than one due to rationing. For
this reason, there exists an ¢ > 0 such that
Pb(A) > Pb(B(v )) + ¢
for all X > B(v"). An argument from Satterthwaite and Williams (1989b,
p.483) establishes the following bound on the change in the buyer’s expected
payment as he raises his bid from B(v") to X > B(v"):
€, (A) - C (B(v")) = [P (M) - PL(B(v")IX + [A - BGV)],
Combining these inequalities, for X > B(v") we have
LINCAFRY R ﬂb(V",B(V )) = [Pb(A) - P BV vt o+ Cb(B(V )) — € (b)
> g (V" - X)) + [B(v") — A].
This expression is positive for X near B(v"), which contradicts the
assumption that B(v") is an optimal bid for a buyer with value v".
We conclude by proving that limv»v+B(V) = v = s; the proof that

lim  S(c) = ¢ =b is omitted because it is so similar to this argument.
Thecgz;ality v = s is established by proving that both of the inequalities
v <s, s <y lead to contradictions. If v < s, then B(v) = v < s for
values of v that are greater than but sufficiently near v. As a
consequence, Pb(B(v)) = 0 at such values of v, which contradicts the
definition of v. If s < v, then ¢ g S(¢) < v < v for ¢ near zero and v less
than but sufficiently near v. This implies that Pb(B(v)) > 0 for such
values of v, which also contradicts the definition of v.

The equality limv»v+B(v) = v i1s established by noting first that

B(v) > s for v > v because a buyer’'s bid must exceed s if he is to have a

positive probability of trading. Therefore, as v approaches vy from above,

N %%

lim +B(v) > s =v. But v = B(v) for all v. Therefore limV*!+B(v) =

s =v. Q.E.D.
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Probabilities in the first order condition (3.1).
define the function s'l<x) by the formula
sty = inf (e | sce) = ay,
and for X ¢ [O,E) define the function B~1(A) by

B-l(A) = sup {v l B(v) < X}.

For X ¢

(v,17,

(A.4)

(A.5)

Using s'l(x) = ¢ and B‘l(x) = v, the probabilities R M, L (X)), and

Mn m(A) can be written as functions of ¢ and v:

1 (no1 . . 1 s
Ko a0 = 2 [mi ][“j ] G F(e)T (1-evN)™ T TTA-FEen™ T, e
i+j=m-1
O<i<m-1
0<j=n-1
" . . o I
Ly g = 2 [mi ][?] G(v)"F(e) (1-6(v)™ T A-Fen™ T, (A.7)
i+j=m-1
0<i<m-2
0<j=n
MO0 = 3 [mil][?] )ty (-cvn™ R 1-F(e)y™ . (A.8)
i+j=m
O<i<m-1
0<j=n
Proof of (3.12). We show that the ratio M (\)/L (X)) satisfies
n,m n,m
M (\)
n,m 2 n (1-G(v))F(c)
L oy S 2G(v) + — T (A.9)
n,m
< 2G(v) + 20 (-GLHF() (A.10)

1-F(v) !

where (A.10) implies (3.12). 1Inequality (A.10) follows from (A.9) because ¢

< XA < vand F(¢)/(1-F(c)) is increasing in c. We therefore focus upon

(A.10).

Define
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Yn,m(A) = the probability that the bid X lies between S(m) and S(m+l)

in a sample of m-2 buyers using the strategy B and n sellers
using S.
We first show that

M = (1 - G(V))Yn

n,m m * G(V)Ln m’ (A.11)

1 ’

or equivalently

Mn . Y
ST - (1 - G(v)
n,m n,m

n,m

+ G(v). (A.12)

The bound (A.9) will be obtained by bounding Yn /L . and then substituting

’ ’

into (A.12). The probability Mn m is defined for a sample of offers/bids

’

from m-1 buyers using the strategy B and n sellers using the strategy S.
Select a buyer. The event that defines Mn n is the disjoint union of the
following two events:
the selected buyer bids at least X and X lies between s and s
(m) (m+1)
in the sample of offers/bids from the remaining m-2 buyers and n

sellers;

the selected buyer bids less than A and X lies between s and s
(m-1) (m)
in the sample of offers/bids from the remaining m-2 buyers and n
sellers.
The selected buyer bids at least A with probability 1-G(v) and less than A

with probability G(v). Equation (A.1l) then follows from the definitions of

Y and L
n,m

To bound Yn m/Ln o e partition the events that define these

probabilities according to the number i of buyers' bids that are no more

than A. For 0 < i < m-2, define
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Yn’m(A) = the probability that the bid A lies between S(m) and S(m+l)
in a sample of m-2 buyers using the strategy B and n sellers
using S,and exactly i of the offers/bids at or below X are
buyers’ bids;

Ln,m(A) = the probability that the bid A lies between S(m-l) and S(m)
in a sample of m-2 buyers using strategy B and n sellers
using S, and exactly i of the offers/bids at or below X\ are

buyers’' bids.

It is clear that

m-2 i
Yn,m - Zi=O Yn,m’ (413
vioa [P P e tre)™ e o)™ 2 (1aF(eyy ™ (A.14)
n,m i m-1i ’ .
L _ Zm-2 Li d (A 15
n,m i=0 nom 20 )

. [m'z] [m_“_i] e F™ P acen™ T AR ™I (416

The identity

m-2] _ . m-2
() = oo (1)

and formulas (A.1l4) and (A.16) imply that

Y; m G(v)
L_i—‘—l < m for (m-1)/2 < i € m-2. (A.17)
n,m

’

The identity
. n
(m-1) [m-i]

and the bound

[(n+l) - (m-1i)] [m;‘l]

(n+l) - (m-1i) < 2 n
(m-1) m




together with formulas (A.1l4) and (A.16) imply that

i
Y
n,m 2 n F(c) . )
0 = = TF (o) for 0 < i < (m-2)/2. (A.18)
n,m

It follows that

Yn m ZT;é Y; m
’ = — (A.19)
L m-2 i
n,m z L
i=0 n,m
i i
ZOsis(m-2)/2 Yn,m Ei>(m-l)/2 Yn,m
- m-2 i * m-2 _1i (4.20)
z. L 2. L
i=0 n,m i=0 n,m
i i
. . Y 2. Y
< O<i<(m-2)/2 Q,m . i>(m-1)/2 ?,m (a.21)
» Lt » Pt
O<i<(m-2)/2 "n,m i>(m-1)/2 "n,m
< 2o _Flo 6 (a.22)

m 1 - F(c) 1 - G(v)’

where the left and right terms in (A.21) are bounded by first rewriting
(A.18) and (A.l17) as upper bounds on Y; o and then substituting into the
numerators. Q.E.D.

Proof of (3.18). This is established in the case of m = n by

m
o= — - < 4, (A.23)

m : m :
[2 m] Hl=1 21 M Hi=1(2l-l)
. I

I i=ll

i-1"
Because of the symmetry of (3.18) in m and n, we need only prove it for

n =2 m. This is done by induction on n: assuming (3.18) is true for n and m

with n > m, then

[n+l+m] _ n+1+m [n+m] <2 . 4max(m,n) < 4max(m,n+1)
m n+1l m

since (n+l+m)/(n+l) < 2 whenever n 2 m. Q.E.D.
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The specialist’s profit in the dual price double auction. Because a
lower bound is sought, we needn’t consider the entire event (4.2) in which

profit is made. Consider the subevent defined by 0 < v <p<ec 1

(q) (q+1) <

and c with 0 < g < m. The profit for a sample in this subevent

(q) < MEDOE
). Letting

i -1 - , which i tl t -1 -

is (q )(V(q) C(q)) whic s a east (q )(v(q) V(q+l)

X = C(q+1)’ y = V(q+l) and z = V(q)' the expected profit in this subevent is
at least

m-2](m-1
Jyezcixeyy /2 2 <q‘1)(z'y)[q-l][ q ]

(A.24)
-1 -1 -q-1
e M A FE) T 1 r))™ U n?(m-1) £(x)f(y)f(z) dxdydz.
Integrating with respect to x produces

(g-1) i m-2](m-1
fy<2<<1+y>/2 i (m-q) (2-y) [q-l][ q ]

(A.25)
e E N FE) Y 1 F22-9)™ Y mP (m-1) £(y)£(z) dydz.

Replace 1-F(z) with the smaller value 1-F(2z-y) and then perform the change

of variable w = 2z-y, y = v to obtain1

f s (q-1) (w-y) [m-Z] m-1
y<w<l a (m-q) & q-1Jt g

(A.26)

. F(y)m-l(l-F(w))m_lmz(m-l) £(y)£((w+y)/2) dydw.

15 The equality in (A.28) can be shown as follows. Divide a set A
consisting of 2m-3 objects in a set B with m-1 objects and a set C with m-2
objects. Selecting m objects from A requires selecting q from B and m-q
from C for some q. The number of ways of choosing m objects from A can thus
be computed by summing over g the number of ways of choosing q from B and
m-q from C, which gives the desired formula.
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Replace f((w+y)/2) with xf(w), where x = inf f(a)/f(b), and substitute

O<a,b=x<l
using
(q-1) [m-Z] _ [m-Z]
(m-q) 19-1 m-qJ (A-27)
m-2) {m-1 2m-3 1 {2m-2
i [m-q][ q ] - [ m ] =y [ m-l]’ (A.28)
and '
m? > gmi%m;ll (A.29)

to obtain

xé%;ll fy<w<1 [22:5](w-y)F(y)m-l(l-F(w))m-l(2m)(2m-l)f(y)f(w)dydw. (A.30)
This integral is the expected difference between the (m+l)st and the mth
redemption values in a sample of Zm independent draws from F. Because f is
positive on [0,1], this difference is bounded below by a constant times
1/(2m+1l) (David (1981), 34-35). It then follows that the seller’'s expected

profit is bounded below by a positive constant that is independent of m.

Q.E.D.
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Table 2.1

The array of offers and bids in a k-double auction.

offers bids
No. = s<m+1) r
No. =< S(m) s

Table 2.2

The dual market to a given market.

given market

dual market

number of sellers
number of buyers
seller’s cost

buyer’s wvalue
seller’s distribution
buyer’'s distribution
seller’'s strategy
buyer’s strategy

double auction

n*
m*
c*
v
*
F (x)
*
G (x)
*
S (x)
*
B (x)

k*

W
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Table 4.1.
Expected inefficiencies of the optimal mechanism, the least and most
inefficient equilibria of the 0.5-double auction, the dual price mechanism,
and the fixed price mechanism for different market sizes in the case of

uniform F and G.

m=n Optimal 0.5-DA 0.5-DA Dual Price Fixed Price
Mechanism Least Most Mechanism Mechanism

1 0.16 0.16 1.00 0.25 0.25

2 0.056 0.056 0.063 0.21 0.22

4 0.015 0.015 0.016 0.16 0.18

6 0.0069 0.0069 0.0070 0.12 0.16

8 0.0039 0.0039 0.0039 0.099 0.15

Notes. The values of the optimal and fixed price mechanisms are taken fromo

Tables I and II respectively of Gresik and Satterthwaite (1989). We
calculated the values for the dual price mechanism by a direct probability
calculation; our values for m = 2 and 4 agree with the values from a
simulation that McAfee (1992) reported in his Table I. Finally, the values
for the 0.5-DA were obtained by numerically integration using the equilibria
that we computed employing the procedure described in the last paragraph of
Section 3. Calculation of the values for the 0.5-DA posed numerical
difficulties; consequently values are reported to only two significant

digits.
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Figure 1.1. The three offers and three bids on the left
imply the supply and demand curves on the right. A
market-clearing price can be chosen between 0.42 and
0.50. The 0.5-DA selects 0.46.
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Figure 2.1. S(c¢) and B(v) are an equilibrium pair of strategies for the

0.5-DA in the case of uniform F and G and m = n = 2. For this equilibrium v

= 0.172 and ¢ = 0.828.
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Figure 3.1. A bundle of equilibrium strategies in the 0.5-DA for uniform F

and G and m =~ n = 2,




Figure 3.2. A bundle of equilibrium strategies in the 0.5-DA for uniform F

and G and m = n = 6.






