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Abstract

This paper suggests the view that decision-making under uncertainty is,
at least partly, case-based. We propose a model in which cases are assumed as
primitives, and provide a simple axiomatization of a decision rule which
chooses a "best" act based on its past performance in "similar" cases. Each
act is evaluated by the sum—over cases in which it was chosen—of the product
of the similarity of the past case to the problem at hand and the utility
level that resulted from this act in the past.

As in expected utility theory, both the utility and the similarity
functions may be derived from preferences and the latter are represented by
(the maximization of) a sum of products. However, there are some crucial
differences between case-based decision theory and expected utility theory.

In the former: N

— every two acts are evaluated over completely different (and
disjoint) histories of cases;

— neither probabilities nor states of the world are assumed as
primitives. Moreover, the theory does not distinguish between
certain and uncertain acts;

— the notions of "satisficing" decisions and aspiration levels pop
up naturally from the axiomatic derivation of case-based
decisions.

The paper also discusses various aspects, variations and applications of

the basic model.



1. Introduction

Within the areas of economic, decision and game theory, expected utility
theory enjoys the status of an almost—unrivaled dominant paradigm for
decision-making in face of uncertainty. Relying on such sound foundations as
the classical works of de Finetti (1937), von Neumann-Morgenstern (1944),
Savage (1954) and Anscombe—Aumann (1963), the theory has formidable power and
elegance, whether interpreted as positive or normative, for situations of
given probabilities ("risk") or unknown ones ("uncertainty") alike.

The strength and appeal of the expected utility paradigm are only
attested to by its various generalizations. While evidence has been
accunmulating that, if taken in its classical form, the theory is too
restrictive (at least as a descriptive one), almost all the alternative models
suggested in the literature attempt to cling to it as much as possible. With
few exceptions, the generalized models relax some of the more "demanding"
axioms (such as linearity of preferences with respect to probabilities, or
additivity of the probability measure)—while retaining the more "basic" ones
(such as transitivity). With almost no exceptions at all, these models retain
the framework of whatever classical model they generalize. (See Machina
(1987), Harless—Camerer (1991), and Camerer-Weber (1991) for extensive
surveys.)

Yet it seems—and often also heard-—that in many situations of choice
under uncertainty, the very language of expected utility models is
inappropriate. For instance, it is hardly controversial that most of the
problems of interest are not formulated in terms of given probabilities
("risk"). Excluding some examples such as gambling and planned experiments,
probabilities can seldom be argued to be a part of the "observable"
environment of the decision maker.

Indeed, one of the fundamental contributions of de Finetti (1937),

Savage (1954) and Anscombe-Aumann (1963) is the derivation of "probability"



from a more basic model, whose primitives include states of the world but not
a measure on them. While there is no denial that the applicability of such a
model by far exceeds that of the "risk" model, we argue that it still falls
short of covering the whole range of interesting phenomena. More
specifically, we claim that in many decision problems under uncertainty, the
states of the world are neither naturally given, nor can they be simply
formulated.

Comparing two examples may be helpful. First, consider Savage’s famous
omelette problem (Savage (1954, pp. 13-15)): he is about to add a sixth egg
to a bowl containing five, and faces uncertainty regarding its freshness.
Quite clearly, by introducing two states of the world——"the egg is fresh" and
"the egg isn’t fresh"-—one may reduce uncertainty to the question of which of
them obtains.

Next assume that our decision maker (DM) is about to dine in a
restaurant but, alas, (s)he does not understand the language in which the menu
is written. (Our DM is in a foreign country, attending a conference on EU
generalizations.) Here the uncertainty is about the meaning of a certain word
or, worse still, many words, expressions and propositions. The corresponding
set of states of the world is bound to be humongous and can hardly be assumed
as "naturally" given.

From a descriptive viewpoint, we find it highly unrealistic to assume
that people tend to solve the menu problem by states—of-the-world type of
reasoning, or that they behave in a way consistent with such reasoning. But
even with a normative interpretation the classical model seems unsatisfactory:
as much as one may find (say) Savage’'s model appealing, applying it in this
case 1s hardly a practical recommendation for our DM once (s)he decides to
dine out.

Naturally, similar (and more vehement) claims can be made regarding more



demanding models; the requirement that our DM would have a prior over the
states of the world, for instance, seems even more far-fetched as a
descriptive claim and even more useless as a normative one.

Before proceeding to propose an alternative model, a clarification is
due. Our DM in the restaurant may formulate a states-of-the-world model in
which all things edible are classified as "fish," "meat" and so on, and
perhaps even form beliefs about these states. Moreover, we trust that adamant
Bayesians will always be able to formulate such models and feel comfortable
with them. However, we are not trying to claim that the expected utility
paradigm is useless, nor that it is inferior to the proposed alternative. The
claim is only that for certain situations, especially those involving
ignorance, and especially for descriptive purposes, other paradigms may be
more insightful.

Our suggestion is to adopt models, developed in psychology and
artificial intelligence, and adapt them to decision making. More
specifically, we would like to focus on the theory of case based reasoning
("CBR"; see Riesbeck and Schank (1989)), which says, loosely, that the main
reasoning technique people use, especially in novel situations, is based on
comparing the situation at hand to past cases, making analogies and drawing
corresponding conclusions.

Encouraged by the success of CBR in the case artificial intelligence, we
are suggesting the following model: 1let us assume that a set of "problems" is
given as a primitive, and that there is some measure of similarity on it. (We
will be more precise in the sequel.) The problems are to be thought of as
descriptions of choice situations, as "stories" involving decision problems.
For instance, our DM may have already been in a similar situation, facing a
cryptic menu, though possibly in a different country. Yet the similarity of

the situation brings this memory to mind, and with it, hopefully, the



recollection of the choice made and the outcome that resulted. We will refer
to the combination of these three—the problem, the act and the result——as a
"case."

Generally, let us assume that all "similar" cases are recalled, and
based on them each decision is evaluated. The specific model we propose and
axiomatize here will evaluate a decision by the sum, over all cases in which
it was chosen, of the product of the similarity of the case to the one at hand
and the resulting utility. (The "utility" will be assumed to be scaled such
that the value zero will be a default value.)

For example, suppose that our dining DM (or "DDM" for short) has already
been three times in a similar situation. In two of them (s)he opted for an
item on the menu containing the letters "sala"; in a fast-food restaurant the
decision resulted in a salad (which was more or less what DDM expected), while
in a regular restaurant (in a different country) it ended up being an
interesting but inedible type of fish. The third case recalled was also in a
regular restaurant, but here the choice made was the first item in the middle
column of the menu. It turned out to be a steak.

Given that the decision problem at hand takes place at a regular
restaurant, the two last cases get higher "similarity" or "relevance"
coefficient than the first. These coefficients are multiplied by a utility
function (measuring the tastiness of the food) and the results are summed
separately for the two decisions. Thus, the act "choose an item whose name
contains ‘sala’" would be numerically evaluated as the sum of two terms; that
of "choose the first item in the middle column" would be evaluated by a single
term.

The decision between these two acts will be made according to these
values. However, if both are negative, DDM may resort to a different act,

whose default value is zero. Thus, reasonable ("satisficing") acts may be



chosen again and again, while catastrophic ones will lead DDM to further
experiment and try new choices.

A preview of the formal model may be helpful at this point. We assume
as primitives a set P of problems, a set A of acts (or decisions) and a set R
of outcomes (or results). The set of cases is defined to be C = P X A X R. A
decision problem is represented by a problem p € P and a memory (or history) M
C C. The memory M is interpreted as all past decision situations, together
with the acts chosen and the outcomes that happened to result from them. Ve

!

will assume that if m = (q,a,r) € M then p » q, and if m' = (q

,a',r') € M as
well, with m' = m, then q' % q. From a binary "preference" relation we derive
a similarity function s: P2 - [0,1] and (in a trivial sense) a utility
function u: R - R such that, given a problem p € P and a memory M, the acts a

€ A are ranked according to

(*) Ua) = Liq,a,ryem S(P,Qu(r).

(Where the summation over the empty set is taken to yield zero.)

We will assume that no problem p € P may be encountered more than once,
and the fact that p,q € P may be "identical" can be reflected by s(p,q) =
s(q,p) = 1. Notice that we have not required the similarity function to be
symmetric. Indeed, this will not be necessary, and, in view of psychological
evidence, can be unduly restrictive. (See Tversky (1977).)

Although the formula above cannot fail to remind us of expected utility
(which we consider as a very successful "case"), one should note that it has
very little in common with it: first, there is no reason for the coefficients
s(p,*) to add up to 1 or any other constant. Moreover, while in expected
utility theory every act is evaluated at every state, here each act is

evaluated over a different set of cases. To be precise, if a » b, the set of



elements of M summed over in U(a) is disjoint from that corresponding to U(b,.
In particular, this set may well be empty for some a’'s.

Second, in expected utility theory uncertainty is represented by the
probabilities. 1In the theory suggested here—Ilet us dub it case-based
decision theory (CBDT)—the uncertainty, to the extent that it has been
observed, would be reflected in the fact that for very similar (or even
"identical") problems p,q and the same act a, M may contain elements (p,a,r)
and (gq,a,t) with r = t.

In other words, beliefs and/or probabilities do not explicitly exist in
this model. However, they may be implicitly inferred from the number of
summands in (*). That is, if the decision maker happens tc choose the same
act in many similar cases, the evaluation function (*) may be interpreted as
gathering statistical data, or as forming a "frequentist" prior.

Putting this decision rule in a dynamic context one may tell the
following story: at the beginning, the memory set M is empty. At every
stage, some process introduces a decision problem p € P to the DM. We do not
model this process, and implicitly assume the DM is not aware of it, has no
beliefs about it and so forth. When M = @, the DM's choice is bound to be
arbitrary (every a € A maximizes U(e) = 0.) At later stages, the DM’'s choice
is biased by M——in favor of acts a with U(a) > 0 and against acts a with
U(a) < 0.

For the sake of illustration, consider the extreme case in which the DM
faces the "same" problem over and over again, i.e., s(p,q) = 1 for all
p,q € P. Further assume that there is no uncertainty, i.e., that for every
a € A there is r, €R such that only elements of the form (q,a,ra) are in M.
In this case, the first act a € A with u(ra) > 0 will be chosen over and over
again. Differently put, our DM will never even attempt to maximize the

utility u. (S)he is satisfied with the "reasonable" act a (so defined by



U(a) > 0) and exhibits, if you will, extreme conservatism or uncertainty
aversion.

There are two main reasons that may prod our decision maker to
experiment: first, uncertainty is present, and certain acts may result in
negative U values. Second, not all cases are similar. Consider, for
instance, the following scenario: a; may be chosen for the first problem p,.
If the second problem p, happens to be rather different (for instance, making
an omelette as opposed to choosing from an unintelligible menu), say
s(p2,p1) = 0, a different act a, may be chosen. For yet another problem Ps,
which may be similar to both p, and p, (say, ordering your meal from a
translated menu) both acts a, and a, may be competing to be chosen. Thus, a
may eventually be preferred to a, even in cases which are "identical" to p,
and even if no uncertainty is present: the mere variety of problems may
introduce enough "noise" to induce experimentation.

However, the decision rule (*) by no means forces experimentation. OQur
decision makers, the U-maximizers, are not u—maximizers; they tend to be
content with reasonable options, unless they have a "good reason" to believe
others are better. (Compare this mode of behavior with the notion of
"satisficing” decisions of Simon (1957) and March-Simon (1958).) We will
later discuss some extensions of this model.

Further discussion may prove more useful after a formal presentation of
our model and results. We devote Section 2 to this purpose. In Section 3 we
discuss some generalizations of the basic model. We show that these
generalizations may capture additional features such as the adjustment of the
"aspiration level" and "frequentist" expected utility maximization. Section 4
deals with the structure of the similarity function and outlines directions
for further research. Section 5 presents some economic applications. Section

& compares CBDT to EUT, while Section 7 concludes with some comments.



2. The Model

Let P be a nonempty set of problems. For simplicity, assume that P is
finite. (For a dynamic problem one may need an infinite set, out of which
only finitely many elements appear in M at each stage.) Let A be a finite and
nonempty set of acts. For notational convenience we will assume that all the
acts A are available at all problems p € P. It is straightforward to extend
the model to deal with the more general case in which for each p € P there is
a subset A, C A of available acts. Let R be a set of outcomes or results.

p
The set of cases is C = P x A x R.

A memory is a (finite) subset M C C such that my = (pi,ai,ri) e M

(i =1,2) and my # m, implies p; # p,. Given a memory M, denote

H=H(M) = {p& P|3a€Aa reR, s.t. (p,a,r) € M}.

That is, H is the set of problem recalled.
Next, we would like to define a preference order over acts, which will
be representable by the functional U above. In principle, for every p and M

we should have a separate order » over the finite set A. However, we will

p,M

assume a much more informative order 2o H which depends only on p and the
observed problems H (p € H), and which may compare any pair of hypothetical
acts which are "compatible" in a sense to be explained shortly.

For convenience, let us formally introduce a new outcome ry to R to be
interpreted as "this act was not chosen." For ¢.ery memory M, and q €
H = H(M), there will be one act chosen at q—with an outcome defined by M--and
the other acts will be assigned ry.

It seems innocuous to assume that an act is evaluated based on the

outcomes it led to alone. Thus, for a given H, let an act profile be an

element of RH = X.



Obviously, every act has a unique "act profile" defined by M. We will
assume that ¥ H compares acts based only on their act profile, or that

%5 H ¢ X x X.
However, we will not assume that 5 H is a complete order on RM:
consider two act profiles assigning ry = ry and r, = ry, respectively, to some
q € H. Naturally, these cannot be compared even hypothetically: for any
memory M, at most one act may be chosen in case q, and therefore at most one
act may have a value different from ry in its act profile for any given q. We
therefore define two act profiles x,y: H - R to be compatible if for every
q € H either x(q) = ry or y(q) = g (or both).

We can now state our first axiom.

Al: For every p € P and every history H = H(M), tp,H is reflexive and

transitive on X = R, and for every compatible x,y € X, x 'y H Y OL Y E X.
)

p,H
We now wish to formulate some "monotonicity," "continuity" and
"independence/separability" assumptions that will guarantee the additively

separable representation of ¥, q on X.

The state of the art in decision theory is such that one actually faces
a non-trivial choice problem here: there is a wide variety of frameworks and
axioms guaranteeing such a result. Indeed, some care must be taken since our
relation is only a partial one, but it seems safe to conjecture that in almost
any framework the crucial axiom may be appropriately modified to guarantee the
desired result with no serious loss of elegance.

To simplify the exposition we will henceforth assume (explicitly) that
R = R (the reals) and (implicitly) that it is already measured in "utiles."
That is, the rest of the axioms should be interpreted as if R were scaled so

that the "utility" function be the identity.
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Notice that under the assumption R = R, X = rH may be identified with R"
for n = |H|. Furthermore, we will assume that ry = 0, whence x,y € X are
compatible iff x*y = 0 (where the product is taken as a pointwise operation on

vectors in R".) We can now formulate

A2 Monotonicity: For every p,H, x =2 y and x*y = 0 implies x oW Y-
't

A3 Continuity: For every p,H, and x € X the sets (y]|y o H x),{ylx Ty oH Y

are closed (in the standard topology on R").

A4 Separability: For every p,H and x,y,z,w € X, 1If x*y = 0, (x + z)*(y + w) =

0, x tp,H y and z » w, then (x + z) tp,H (y + w).

p,H
Proposition 1: If Al-A4 hold, then for every p € P and every H, there exists
a function

s H - R,

pH
s.t.

Xz oy y iff quH Sp, {)x(q) 2 zqu sp,1(2)y(q) for all compatible x,y €

Next we would like to express the fact that the similarity measure is

independent of the specific memory M.

AS Similarity Invariance: For every P.4¢,9» € P and every two memories M1,M2

with qq,q, € H* = H(M!) (i = 1,2) and p € B} (i = 1,2), the following holds:

if x,y eR¥, z,weR¥®, x <, iy, Z —, u W
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and x *+ avy ~; 1y * Bv,, then z + av, ~, qay + pv,,

where Vi stands for the unit vector in RE¥' (i = 1,2) corresponding to q;

(j = 1,2) and whenever the compared profiles are compatible.

Proposition 2: Assume that, on top of the conditions of Proposition 1, A5

holds. Then there exists a function s: P2 = (0,1] such that for all p € P,

every memory M with p € H = H(M) and every compatible x,y € rH
X 2y ¥ LEE Doy s(p,@)x(q) = Loy s(P,a)y(Q).
The proofs of both propositions are given in the Appendix.

3. Variations

3.1 Memorv-Dependent Utility

The framework used in Section 2, in which outcomes are identified with
utility levels, is rather convenient to convey the main idea, but it may also
be misleading: it entails the implicit assumption that the utility function
does not depend on the memory M, on time (which may be implicit in M) and so
forth.

To illustrate this point, consider an axiomatization which is similar to
that given above, but which derives the utility function on an abstract (say,
connected topological) space. (Axioms A4 and A5 will obviously have to be
rephrased, to express the utility "addition" in more primitive terms.)
Corresponding to Proposition 1, one may then derive a representation theorem
where both the similarity and the utility functions depend on p,H. Similar to
axiom A5, one may impose an additional axiom that will guarantee that for all

p.H, up,H(°) are identical up to a positive linear transformation.
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Yet in this context it becomes clear that there may be some interest in
a more general model, where the utility is allowed to vary with memory.
Recall that the utility is normalized so as to set u(ro) = 0. One may refer
to this value as the "aspiration level" of the decision maker: as long as
some acts have a U-value exceeding u(ro), the DM is "satisficed" and does not
attempt new choices. Thus we may view u(ro) as a behavioral definition of the
"aspiration level."

Given this interpretation, it is natural to suggest that the aspiration
level be adjusted according to past achievements. Strictly speaking, our
model (even the generalized one) does not allow for an axiomatic derivation of

such utility functions, since uy  depends only on the problems encountered—-—
y

P
H-—and not on the acts and outcomes associated with them in M. Yet one may

construct a similar model in which the utility depends only on

a(M) = max{u(r)|3 p &€ P, a €A, s.t. (p,a,r) € M}.

(For such a model, the preference order 2o H, G (M) will be defined on all
utility profiles with the same maximal utility level T(M).)
Then one may model the fact that aspirations are adjusted upwards by

setting, say

Uy H,amy (To) = TCD + 1,

where the utility difference of 1 plays the role of a "just noticeable
difference" in aspirations.

We shall not expatiate on this model here and focus on the basic model,
with memory-independent utility, or fixed aspiration level. However, for some

dynamic applications relaxing this assumption may prove a theoretical
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necessity. (See subsection 5.2 below.)

3.2 Act-Dependent Similarity

In Section 2 above we assumed that preference is given between any two
compatible utility profiles. Implicitly we therefore assumed ~hat, fixing the
set of problems encountered H, the DM has preferences on hypothetical acts
which differ from the actual ones not only in terms of the outcome but also in
terms of the act chosen. To clarify these two "levels" or counterfactuals,
consider the following example: suppose the DM prefers act a to b. We pose
to him/her two types of questions:
I. Remember the case ¢ = (p,a,r) where you chose a and got r? Well,
assume the outcome were t instead of r. Would you still prefer a
to b?

I1. Remember the case ¢ = (p,a,r) where you chose a and got r? Well,
now imagine you actually chose another act a’' and received t.
Would you still prefer a to b? How about a’ to b?

One may argue that questions of type II are too hypothetical to serve as
foundations of any "behavioral" decision theory. While the DM has no control
over the outcome r, he/she may insist that in problem p he/she would never
have tried act a’' and the preference question is meaningless.

But even if we take a less extreme position there is some theoretical
value in an axiomatic derivation of a similar model in which only answers to
questions of type I are assumed given. We outline such a model in Appendix 2.

Apart from the less stringent (implicit) rationality requirement that
such a model imposes, it also allows us to derive a similarity function which

depends on the acts. That is, for a memory M let

E=E(M) = ((p,a) e PxA|TFreR, s.t. (p,a,r) € M}.
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Then the model derives a similarity function sj ¢ which depends not only on
]

P
the problems encountered but also on the acts chosen in each.
A special case of this model (which is axiomatized in Appendix 2) is the

following: 1let s(p,q) be the similarity function as in Section 2, but assume

that each act is evaluated by its average performance:

(%) V(a) = L(q,a,rem S’ (P, U(D)
where
sip, g ; if well-defined
s'tp.q) = Liwane S0 9
0 otherwise.

Thus, for every act a the similarity coefficients s’(p,q) add up to 1
(or to zero). Notice that the similarity function here depends on E, and not
merely on H.

In general, maximization of V does not appear to be a very reasonable
description of behavior. For instance, V is discontinuous in the similarity
values. Thus, if an act a was chosen in a single case q and resulted in a
very desirable outcome, it will be chosen as long as s(p,q) > 0 but will be
considered a "new" act if s(p,q) = 0.

However, consider the special case where s(p,q) = 1 for all p,q € R.
(See Appendix 2 for an axiomatization.) In this case, V is simply the average
utility of each act.

The condition s(e,e) = 1 means that (at least as evidenced by the DM's
preferences) all problems are basically identical. In a sehse, our model

reduces to classical decision theory, where each problem is considered in
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isolation. For this case, this variant of case-based decision theory reduces
to "frequentist expected utility theory": the DM maximizes the expected
utility where the outcome distribution for each act is simply assumed to be
given by the observed frequencies. (Notice also that in this particular model

the discontinuity at s(e,e) = O disappears, since s(e.o) = 1.)

3.3 Experimentation

The model presented above, as well as the "frequentist prior" which is
implicitly gathered in the basic model (maximization of U as in (*)) tempt one
to conjecture that under certain conditions, expected utility maximization may
pop up (asymptotically) from case-based decisions.

Unfortunately, this does not seem to be the case in general. Consider
the following set-up: A = {a,b}, s(e,e) = 1. We will assume that, unbeknown
to the DM, nature chooses the outcomes for each act by given distributions in
an independent fashion. That is, there are two random variables Ra,Rb such
that whenever the DM chooses a(b), the outcome is chosen according to a
realization of R, (R,), independently of past choices and realizations.

Further assume the following distributions:

First consider a U-maximizer DM. At the beginning, both a and b have
identical (empty) histories, and the decision is arbitrary. Suppose that the
DM chooses a with probability .5, and that R, results in +1. From then on our
DM will choose a as long as the random walk generated by these choices is
positive. However, given that .6 > .4 this happens with positive probability.

Next consider a V-maximizer DM. Suppose that (s)he chose b, which

resulted in the outcome (-2). From now on this DM will always choose a.
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In both cases we find that there is a positive probability that our DX
will not maximize the "real" expected utility even in cases where there exists
an "objective" process which defines these "real" probabilities. Even the
frequentist EU maximization does not have to converge to the "objective" EU
maximization with ("objective") probability 1.

These examples naturally suggest yvet another generalization of the
model: the introduction of conscious, intentional experimentation. For
either U- or V-maximizers one may alter the decision rule so that every acct
will be chosen every so often regardless of its U/V value. It seems
reasonable that with sufficiently frequent experimentation, frequentist EU
maximization will boil down, asymptotically, to EU maximization with
probability close to 1 as desired. However, we do not pursue this track in

this paper.

3.4 Similar Acts

There are applications in which it is natural to assume that the DM has
some information regarding an act without having tried it in the past. For
instance, one may consider buying a house in a neighborhood one has lived in
before. Thus some information about this act may be gleaned from other acts
which have been attempted and are "similar" to it in some sense.

Some of these applications may be embedded in our model by redefining
the act (say, "buy a house in this neighbhorhood" rather than "buy this
house") and/or by appropriately defining the similarity over the problems.
(See also comment 7.3 in Section 7 below.) However, these may not suffice if
we would like our DM to be able to compare acts which were actually tried to
acts which are only similar to them. Thus one may consider a generalization
of the model in which the DM has two similarity functions: sp: P2 - [0,1] on

problems and sg: A% - [0,1] on acts. Given these, one may redefine the
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evaluation functional to be

U'(a) = 2iq,b,r)em Sp(P D)spla,biu(r).

Discussions, axiomatizations and applications of this model are bevond

the scope of this paper,1

4 . The Structure of Similarity

In the model we present here, the decision problems are some abstract
set P, on which the similarity measure is derived axiomatically. Yet much
insight into specific problems may be gained from analyzing the structure of sa
"decision problem” and the corresponding structure of the similarity function.
We do not purport to develop here a general theory of similarity, partly
because (at least to a large extent) such theories do exist in the
psychological literature on analogies. (See Gick and Holyoak (1980, 1983),
Falkenhainer, Forbus and Gentner (1989), and others.) However, we would like
to draw the reader’'s attention to some possibilities of specific modeling
which, in particular, will also show that case-based decision theory is more
general than may seem at first.

4.1 Collective Memory

Thus far it was implicitly assumed that the memory consists of cases in

T1¢ appears that a preference order over acts does not contain enough
information for an axiomatic derivation of unique or even meaningful
similarity functions sp and s,. These functions leave too much freedom, and
the theory that the DM maximizes U’ for some sp,s, may not say much beyond the
claim that the DM's preference over acts is a weak order (this would depend,
of course, on the specifics of the model). However, one may assume as a
primitive a "more similar than" relation, defined on pairs of acts (i.e., a
subset of A4) on top of the preference relation on acts, and axiomatize a
representation of preferences by U’ with a function s, which also represents
the act-similarity relation.
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which our DM made similar decisions. However, some cases recalled by the DM
may involve other decision makers as the "protagonists" of the problems.
Especially when it comes to weighty decisions——such as, say, buying a car—-—one
is more likely to learn from other people’s experience, which is typically
shared among many decision makers, rather than count solely on first-hand
experience. Moreover, there are some decisions which, by their temporal
nature, can only be made based on others’ experience. One's (first) career
choice and (first) marriage have no similar cases in one's personal memory,
yet are important enough to seek the advice of more experienced DM's.

One would expect that, should a problem p € P have a "protagonist" as a
formal component of it, the similarity of p to q will be higher (other things
being equal) if they have the same protagonist than otherwise. Moreover, some
measure of proximity between protagonists may be a factor in the similarity of
two problems, where one’'s friend has a higher proximity level than a stranger,

yvet lower than the self.

4.2 Hypothetical Cases

Suppose you have to drive to the airport in one of two ways. When you
get there safely you learn that the other road was closed for construction. A
week later you are faced with the same choice. Regardless of your aspiration
level u(ro), it seems obvious that you will choose the same road again. (Road
constructions, at least in psychologically-plausible models, never end.)

In other words, the cases recalled from memory may well contain some
hypothetical, counterfactual ones. ("Had I taken the other way, I would never
have made it.")

As in the case of protagonists, other (counterfactual) "possible worlds"
need not be lumped together when similarity is concerned. One may quantify

some "degree of belief" in a counterfactual statement as above (with, say, 1



19

designating an actual case) and let it play a role in the similarity function.

Hypothetical cases may endow a case-based decision maker with reasoning
abilities he/she would otherwise lack. It seems that any knowledge the DM
possesses and any conclusions he/she deduces from it can, inasmuch as they are
relevant to the decision at hand, be reflected by hypothetical cases.

Indeed, one may actually "simulate" an expected-utility maximizer by a
case-based decision maker whose memory contains sufficiently rich hypothetical
cases: given a set of states of the world  and a set of consequences R, let
the set of acts be A = R = {a: Q@ » R}. Further assume that the DM has a
utility function u: R - R and a probability measure p on I (which is some
measurable space. For simplicity it may be assumed finite.) The
corresponding case-based decision maker would have a hypothetical case for

each pair of state of the world w and act a:

M= {((w,a),a,a(w))|w € Q, a € A)

By setting the similarity of the problem at hand to the "problem" (w,a)
to equal p(w), U-maximization reduces to expected utility maximization.
(Naturally, if Q or R are infinite one would have to allow for infinite memory
M as well.)

Thus, EUT may be mathematically embedded in CBDT. However, we do not
find this construction very appealing and we believe that the more interesting
applications of CBDT will be those in which hypothetical cases are restricted

to be psychologically plausible. (See Section 5 below.)

4.3 Parameterized Problems

It will often occur that some specific numerical data will be part of

the "story" of a problem. For instance, all problems occur at a given time;
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purchasing decisions involve prices and quantities, interest rates and so
forth. It seems natural to use these data as part of the description of the
problem, i.e., to parameterize it. Thus "Should I buy this car at price p?"
may be a parameterized problem, and one may have several such cases—for
possibly different values of p—in memory.

Once a parameter is given, it makes sense to consider similarity
functions which explicitly depend on this parameter. Thus, the buying problem

at price p may be similar to the same one at price q to the extent

e-9lP-ql

for some 8 > O.

Similarly, an analogous decay function for the time parameter may
reflect the fact that the older data are deemed less relevant, and maybe also
have a lower probability of being recalled. (Recall that our model does not
distinguish between the probability of recall and the conscious similarity
judgment. The similarity function summarizes both.) However, one may
consider more general functions, which allow for primacy as well as recency

effects.

4.4 History—-Dependent Problems

There are cases, such as repeated games, in which the description of a
single decision already contains history of its own. For instance, the
decision on a one-shot move in a repeated game may generate a sequence of
problems py, each of which has a (t - 1)-long history of the play.

In such cases the similarity function may depend on some features of
this history. For instance, for every history one may compute the relative

frequencies with which each of the opponent’s move was chosen, and the
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similarity of two problems may depend on the values of these summary
statistics. Alternatively, a finite-recall strategy will (implicitly) judge
two cases to be similar if their most recent histories are identical. In a
sense, every type of repeated-game strategy which uses less information than
the complete history implicitly defines some notion of similarity on such

histories.

4.5 Rule—Based Decisions

Many decisions seem to be taken in an almost automated way. People
often operate using "rules of thumb" such as "Do not invest in totalitarian
states," "Keep all receipts," "Do not incur a debt exceeding ten percent of
the worth of your assets," and so forth.

Such rules may be viewed as summarizing many cases. (Indeed, this is
probably the way most of them came into existence.) Thus one may incorporate
them in our framework in (at least) two ways: first, they may be "translated"
to many cases, probably those from which they originated, to yield an
equivalent decision rule. Alternatively, one may introduce a rule as a single
case, where the similarity that is born to it by any relevant decision problem
by far exceeds the similarity to "regular" cases. (See also the discussion of

"ossified cases" in Riesbeck and Schank (1989).)

In this section we attempted to describe some of the possible directions
one may choose when analyzing the concept of "similarity." Of course, none of
them is fully explored, let alone axiomatically justified. At this point we
would merely like to emphasize the wide applicability of case-based decision

theory.
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5. Applications

This section is devoted to economic applications of case—-based decision
theory. All we could hope to provide here are some sketchy illustrations,
which certainly fall short of complete models. Our goal is merely to convince
the skeptical reader that CBDT may have drastically different implications

than EUT, and that it may be able to explain some phenomena better.

5.1 A Market for a Single Good

Consider a market for a single good, in which buyers and sellers meet <o
trade up to one unit each. Assume that the possible prices at which
transactions may take place are (1,...,2N = 1) for some N > 1. (The choice of
an odd integer is only a matter of notational convenience in the sequel.)

For simplicity of exposition we will assume that there are 2N - 1 buyers
and 2N - 1 sellers whose reservation prices form linear supply and demand
curves. Formally, let B be a set of buyers and 3 be a set of sellers, with
(B = (8] = 2N -1, say B =¢(1,...,2N -1) 5§ = (2N +1,...,4N - 1}). For i e B
let r; = i, to be interpreted as buyer i's evaluation of a unit of the good.

i
Similarly, for j € 5 let ry = j = 2N be seller j's valuation.

Trade takes place in stages. At each stage, each agent (seller or
buyer) chooses an act out of (a subset of) A = {1,...,2N - 1}, which is
interpreted as an offer (an asking price) or a bid, accordingly.

It will be convenient to assume that buyer i is restricted to choose

prices from

and seller j—from



23

al = (j - 2N,...,2N - 1)

These "messages" are assumed to be submitted to a market mechanism, which
matches buyers and sellers and attaches to each pair a price which is
acceptble to both. Matched pairs leave the market and the process continues
to the next stage.

Formally for (stage) £ > 0 let B, € B and S, ¢ § denote the buyers/
sellers which are still in the marketplace at stage £. (By = E, So = 3). A

market mechanism g is a function, which maps quadruples of the form

(B,S,(bj)iep (ay)ycs)

~——where B ¢ B, S ¢ ¥ and bi,aj € A— to subsets

TCBXS XA

such that
(1) If ty = (i4,34.,Py), tp = (i5,i5,Pp) € T and ty # t,, then i, # i,
and jy = jo;

(ii) For all (i,j,p) € T

(iii) If i e B\TB and j € S\TS (where TB and TS stand for the

projections of T on B and S, respectively), then
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(Note that condition (iii) means that T is a maximal transaction set
satisfying (i) and (ii) with respect to set inclusion. We do not necessarily
assume that T is maximial in cardinality.)

Thus, if at stage j the buyers make bids (by),y and the sellers—

offers (a;) e, —we define

B‘+‘| = B.\TB

Seg+1 = S\Tg

for T = w(B,, S5, (by) 18, (a,)j,_.,') .

We finally turn to describe the behavior of agents in this model. It
will hardly be a surprise that we assume them to be case-based decision
makers. However, we do not assume that they have actually traded in this
market before. Rather, we equip them with a little knowledge of the world and
with some hopes. Specifically, for each agent there will be a range of prices
for which he/she has a "hypothetical case" in mind, reflecting the fact that
the agent knows that, if trade occurs, he/she will get at least as good a
price as he/she chooses to declare, that is, that trade is voluntary. The
range of prices for which hypothetical cases are assumed is bounded by the
agent’'s reservation price on the one hand, and his/her "aspiration level" on
the other.

Formally, for all i € B (j € §) we assume an (integer) aspiration level
h; (hj) as given. Suppose that 0 < h; < r. and 0 < hj <2N -1 -1r,. At

i i i ]

stage 0, buyer i’'s (seller’s j) memory is

Mg = {(bhp,P>ri - pliry - hy

IA
gel
IA
a
-

(M? - {(shp,p,p - rj)|rj <p<=<r. + h;))
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(The elements bhp,shp denote some abstract "hypothetical problems".)
Note that the outcomes (ry — p;p - rj) are given in terms of net
surplus, with no reference to the aspiration levels. The latter, however, are
reflected in the definition of the utility functions:
uj (x) = x - hi

(uj(x) =X - hj)

for x € R.

Thus the aspiration level of each agent could be implicitly defined by
the memory M; (Mj): the set of cases the agent has imagined, or hoped for,
contains all prices from his/her reservation value down (up) to a certain
"best" price, which we take to be the aspiration level on the price scale. Ve
therefore normalize the utility function so that it be zero for a transaction
made at this price. (Similarly, the reservation prices rj (rj) can also be
implicitly defined by Mg (M?).)

Finally, we have to describe the agents’ similarity functions. We will

assume that all hypothetical cases are only remotely similar to the real ones,

and set

si(l,bhp) =¢ Vi 2,p

(sj(l,shp) -¢ VYV j, L p)

where sj (Sj) is the similarity function of buyer i (seller j) £ stands for
the f-th stage problem and ¢ € (0,1/2N).
Real cases, on the other hand, are similar to each other more than they

are to the hypothetical ones:
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s{(£,2') =1 V i,24

(sj(E,E') =1 Vv j,2,2').

For simplicity we assume that each agent’s memory is supplemented only
by this agent’s own experience. In particular, whenever the agent has made a

bid (offer) of p at some stage £, but failed to trade, a case

(2,p,0)

will be added to Mi(Mj)' That 1is

MUY = MU U ((2,p,0))

(4T =M U P00
For brevity's sake, we omit some obvious formal definitions. However,
we will freely refer to a "decision rule" (or a "strategy") for the agents, to
the "process" defined by such rules and a market mechanism u, and so forth.

We can now formulate the following.

Proposition 3: Let ug be any market mechanism. The unique (stagewise)

U-maximizing decision rule for buyer i is the following: start at

and, as long as no trade occurs (i.e., for £ such that i € B,),

b{ = (r; - hy) + [£(mod hy + 1)]
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Correspondingly, the unique U-maximizing decision rule for seller j is:

al

j -«

j ot hj) - [£(mod hj + 1)]
for all £ s.t. j € S,.
With these decision rules, no trade occurs after stage 4LN2. (I.e.,
B, = B,e and S, = S» for all £ > 4N2 )
Furthermore, there is no more possible trade at this point, that is, for

all iEB‘Na and jes‘ﬂx,

(The proofs of all propositions appear in Appendix 1.)

It is worth noting that the market mechanism does not assure us that the
outcome is Pareto-efficient. It is easy to see that if, say, different buyers
have different aspiration levels, those who end up with the good may not be

those with the highest reservation prices.

5.2 A Repeated Market for a Single Good

The analysis presented above, and especially the sub-optimality of the
market mechanism, naturally call for repetition of the market game, with each
round’s successful buyers in the role of the successive round sellers.

However, the exercise we choose to do here is slightly different: we
will assume that the whole "market game" of sub-section 5.1 is repeated, with
the same agents in the same roles, and attempt to study the trading price
behavior over time. 1In particular, we would like to see if these converge to
the equilibrium price, and if so—how fast.

There are many ways to model the agents’ learning from one stage to
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another; each agent may recall his/her own transactions, as well as those of
other agents. Furthermore, each agent’'s aspiration level may change over time
as a function of both his/her and others’ past performance. To simplify
matters, we will assume that the only information that is transferred from one
round to the next is the average price of the deals struck in the previous
round, and that this price is reflected only in the agents’ aspiration levels.

To minimize indices, we omit some of the obvious formal definitions. e
assume that the game described in sub-section 5.1 is played repeatedly and
denote a generic round by t = 0. Recall that each round consists of 4N2
stages, in each of which the market mechanism p is operated once.

At stage t = 0 the aspiration levels hi'hj are arbitrarily given as
above. For t 2 0 let p, be the average of the prices at which the good was
traded in round t, rounded off to a closest integer. (This quantity is well-
defined by Proposition 3.) Then for i € B the aspiration level at round t + 1

is

h; = max{0,r; - py!

and for j € §,

hj - max{O,pt - r:)
Thus, each agent adjusts his/her aspiration level, as if under the
assumption that he/she can do just as well as the average buyer/seller.

The following result characterizes the price behavior:

Propostion 4: Let u be any market mechanism and consider the process defined

by u, the U-maximizing decision rules (at each stage of each round) and the
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aspiration levels defined above. Then the following hold:

(1)
(ii)

(iii)

Remarks

a.

If py = N then py = pyyy 2 N, and if py < N then p;y < pyyy = N.

For t 2 1, let K= [N - p, ,|. Then at round t there are (N - K)
transactions at stage O and price py_,, and then there follow from
K to 2K additional stages, at each of which there is one more
transaction at consecutively decreasing (if py_ 4y > N) or
increasing (if py_y < N) prices.

Let K = |[N - p,|. Then after at most N rounds p, is fixed at a

price p such that

o - N <yF+T

Furthermore, from that point on no round has more than

(2yN+ 1 + 1) stages of trade.

As will be clear from the proof, the number of rounds after which

py is fixed can be more tightly bounded. (For instance, [N/2] + 1 is also a

bound.)

b.

One may claim that it is not entirely realistic that the bids and

offers are updated by 1 unit at each stage. Indeed, combining suggestions

from subsections 3.4 and 4.3 above, we may consider a similarity function over

acts, such that offering a price p will be similar to offering a price q to an

extent

e'elp'ql

(For some 6§ > 0.)
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In such a model, a failure to trade at a price p will decrease the
U-value of "similar" (close) prices as well, leading to a faster convergence
to an almost—equilibrium price.

c. The model presented here may be extended to continuous prices as
well. The "unit" by which the agents change their bids/offers should then be
thought of as a "just noticeable difference."

d. As will be clear from the proofs, neither Proposition 3 nor 4
depend on the market mechanism u being deterministic. That is, one may
consider any random choice of buyer—seller matchings whose realizations
satisfy the conditions defining market mechanisms, and the results would scill
hold.

e. Finally, note that the market behavior described by Proposition 4
appears to be in agreement with experimental results (see Plott (1982)). In
particular, the nature and rate of convergence to equilibrium price may be
better explained by this model than by traditional Bayesian equilibrium

analysis with expected-utility-maximizing agents.

5.3 To Buv or Not to Buy

Consider a firm which is about to introduce a sequence of new products
{l,...,n}) into a market. For simplicity let us assume that all consumers are
identical. With the introduction of product i, they face a decision problem

p;. with two possible acts {a,b} where "b" stands for buying the product and

nan

a" for abstaining from purchase. To simplify matters even further, we assume
that the prices are fixed (i.e., not considered a decision variable of the
firm), and so are the quantities. For instance, (1l,...,n) may be food
products. A consumer’'s decision to "buy" product i, say, a cereal or a soup,

implies consumption on a regular basis in quantities which are (literally)

naturally given.



31

Further assume that the representative consumer has already decided to
buy product 0 by the same firm. For each pair i,j € (0,1,...,n) a similaricy
function s(i,j) = s(pi,pj) is given, which presumably reflects the perceived
similarity between the products.

It is interesting to note that the order in which the products are
introduced may make a difference. For instance, let n = 2 with the following

similarity matrix:

s(i,j)

j 0 1 2
i
0 1 5 0
1 5 1 5
2 0 5 1

For simplicity, assume that each consumer will derive a utility level 1
(with certainty) from each product consumed. Then if the firm introduces
product 1 and then product 2, both will be purchased. However, if product 2
precedes 1, when it is introduced nothing which resembles it exists in memory.
Thus the consumers’ decision between a and b will be arbitrary and with (say)
probability .5 it will not be consumed.

In this set-up it is quite obvious that an optimal policy for the firm
will be the following: consider a directed graph whose nodes are the
products, and each arc (i,j) has a weight s(i,j). Find any (Hamiltonian) path

in the graph which does not use zero-similarity arcs, and introduce the
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products in this order.

More generally, however, it is not obvious what will an optimal policy
look like—where each product has a potentially different distribution over
utility levels and, more importantly, where competition with other firms is

also present.

5.4 Reputation

Case-based consumer decisions give rise to aspects of reputation quite
naturally. Consider a similar model to the one outlined above, but let us now
assume that any two purchasing decisions are similar to a positive degree in
the consumer’s mind. On the other hand, let us now assume that in a given
("traditional") market of product 1 only firm A is operating. Product 2, by
contrast, is a new product and both firms A and B are competing in it. Other
things being equal, firm A will have an edge in market 2 if it satisfies
consumers' expectations in market 1 (i.e., U(A) > 0). Thus one would expect
successful firms to enter new markets even if the technology needed in them is
completely different from that used in the traditional ones.

Expected utility theory can, of course, also explain the role of
reputation in the context of equilibrium between the firms. We find, however,
that CBDT makes much weaker rationality assumptions in explaining this

phenomenon.

5.5 Introductory Offers

Another phenomenon which is close in nature is the introduction of new
products at discounted rates. Again, one may explain the optimality of such
marketing policies with "fully rational" expected utility consumers. For
instance, if there is some cost to experimentation and/or risk aversion, a

fully rational consumer may tend to buy the product at the regular price after
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having bought it at the introductory (lower) price. Yet with case-based
decision makers (as consumers) the formation of habits is a natural feature of

the model.

6. CBDT and EUT

We devote this section to a few comments on the comparison between

expected utility and case-based decision theories.

6.1 It seems worthwhile to emphasize that we do not consider cased-
based decision theory (CBDT) "better" than or a substitute for expected
utility theory (EUT). We simply view them as complementary theories. In
problems involving probabilities, for instance, it is neither realistic nor
recommended to ignore them. Similarly, in case "states of the world" are
naturally defined, it is likely (and certainly desirable) that they be used in
a decision maker’s reasoning process, even if a (single, additive) prior
cannot be easily formed.

However, when neither probabilities nor states of the world are salient
features of the problem, we believe that CBDT may capture some aspects EUT
tends to ignore.

We may thus refine Knight's distinction between "risk" and "uncertainty"
by introducing a new category of "ignorance": ‘“risk" refers to situations
where both states of the world and probabilities on them are given;
"uncertainty"—to situations in which states are naturally defined, but
probabilities are not. Finally, "decision under ignorance" refers to decision
problems for which states are not defined, let alone probabilities. EUT is
appropriate for decision making under risk. In face of uncertainty one may
still use generalizations of EUT such as non-additive probabilities

(Schmeidler (1989)) and multiple-priors (Gilboa-Schmeidler (1989) and Bewley
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(1986)). However, in cases of ignorance CBDT is a viable alternative to the

EUT paradigm.

6.2 The mathematical similarity between the theories——the fact that
CBDT may be viewed as a paraphrase of EUT—is also reflected in the
ontological status of the terms employed. "Similarity" in CBDT plays a
similar role to "probability" in subjective EUT. Both are in principle
measurable, though in practice evasive. But both play an important role in
capturing some essential features of the decision making process, and can,

with a certain amount of arbitrariness, be used in applications.

6.3 The classical derivation of EUT, as well as the derivation of CBDT
in this paper, are behavioral in that the theoretical constructs in these
models are induced by (in-principle) observable choices. Yet the scope of
applicability of these theories may be more accurately delineated if we
attempt to judge the psychological plausibilty of the various constructs (at
least by direct introspection).

Attempting to do so, one may try to classify decision problems according
to their novelty and the amount of reasoning they require. On one hand there
are almost automated decisions, such as saying "Hi" to a person when (s)he
enters the room. On the other extreme one may consider weighty decision in
unfamiliar situations, ::ch as getting married or investing in a politically
unstable country. Somewhere in between these extremes one finds decisions
which do require some deliberation, but for which historical data do exist,
such as "solid" investments.

We would like to suggest a tentative classification, according to which
CBDT is useful at the extremes of this scale and EUT in the middle: automated

decisions are done by CBDT in the guise of "rules"; when deliberation is
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required, but enough data exists for the formulation of a prior or, at least,
states—of-the—world model, EUT (and its generalizations) seem both appropriate
and realistic; finally, when none of those exist, as is often the case in
novel situations, CBDT is again a more accurate description of decision

making, as well as a more realistic "rationality goal" to aspire to.

6.4 Another distinction between EUT and CBDT, which is related to the
previous point, is the following: in EUT, as in decision theory at large, the
unit of analysis is typically a single decision problem. That is, a problem
which is considered in isolation. In CBDT, by contrast, the decision problem
is studied against the background of other problems. The preference order, as
well as the whole analysis, is history-/memory-/context-dependent.

We find that a decision problem under uncertainty may indeed by studied
"in isolation" if it has been repeatedly encountered in the past in very much
the same form. Past experience with the game problem allows one to define
states of the world and perhaps even a prior. However, when the problem is
"new" to the DM, there is not enough data to formulate all the relevant states
of the world, let alone to form a prior over them. (See also the following
comment ., )

Relating this point to our discussion of experimentation in subsection
3.3 above, one may contend that if a problem repeats itself——i.e., if
s{(e,e) = 1——a "rational" DM, that is, one who is aware of this fact, may wish
to exXperiment intentionally, and EUT may be a better description of the DM's
behavior that CBDT. However, if there is no repetition, or if the DM is only
boundedly rational (and is not aware of the long—run benefits of

experimentation), CBDT may prove more realistic than EUT.

6.5 The classical EUT maintains that no loss of generality is involved
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in assuming that the states of the world are known. Indeed, one may always
define the states of the world to be all the functions from all conceivable
acts to all conceivable outcomes. Such a definition is tautological and makes
no implicit assumptions about the "reality" modeled.

This view is theoretically very appealing, but suffers from several

drawbacks:

(i) the set of conceivable acts (which are all the functions from
states to outcomes) is much larger than the actual ones the DM can
choose from. 1Indeed, assume one starts from a set of acts A and &
set of outcomes X. The states of the world are XA, i.e., all the
functions from acts to outcomes. The set of conceivable acts will
be A = X**®  that is, all functions from states of the world to
outcomes. Hence the cardinality of the conceivable acts A is by
two orders of magnitude larger than that of the actual sets A.

Yet using a model such as Savage’s, one needs to assume a

(complete) preference order on A, while in principle only a

preference order on A is given. Differently put, such a
"canonical construction” of the states of the world gives rise to
preferences which are intrinsically hypothetical and is a far cry
from the behavioral foundations of Savage's original model;

(ii) even if one uses a "canonical" set of states of the world, there
is no "canonical" way to attach a prior to such a set. Thus it is
far from clear that the (mostly hypothetical) preference relation
over acts in A will satisfy axioms such as Savage’s. Nor is it
obvious how should one construct a prior on this set for normative
applications of the theory;

(iii) finally, as mentioned in the Introduction, the humongous model

which results from such a construction can be hardly claimed to be
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pscyhologically plausible or practically implementable.

6.6 As mentioned above, EUT and CBDT may be viewed as purely
behavioral theories; that is, they may describe a DM's choices without
claiming that the DM is aware of the decision process or the primitives of the
model (such as states of the world or cases, probabilities or similarities
etc.). Yet when viewed as normative theories, or when judged for
psychological plausibility as descriptive ones, one has to assume that the DM
actually thinks in terms of these models.

From this viewpoint there is a crucial difference between the two:

CBDT, as opposed to EUT, does not require the DM to think in hypothetical or
counterfactual terms. In EUT, whether explicitly or implicitly, the DM
considers states of the world and reasons in propositions of the form "If the
state of the world were w and I choose a then r would result." In CBDT, by
contrast, the (implicit) conditional statement takes the form "If I choose a,
r results.” That is, the conditional statement depends only on the DM's
choices and not on the counterfactual choice of "Nature."?

Similarly, there is a difference between EUT and CBDT in terms of the
informational requirements they entail: to "implement" EUT, one needs to
"know" the utility function u, i.e., its values for all consequences which may
result from some acts. For CBDT, on the other hand, it suffices to know the

u-values of those outcomes which were actually experienced.

2Indeed, the axiomatic derivations of both EUT and CBDT require
"hypothetical choices." In CBDT, however, these are only assumed on the
modeler’s part, not the DM’'s. That is to say, the DM will be asked
hypothetical questions only when the modeler tries to elicit the similarity
and utility functions from "observed" choices. 1If these functions are assumed
as primitives, or if enough historical data exists, these hypothetical
questions need not be asked. In EUT, on the other hand, the very definition
of an "act" a la Savage is a list of hypothetical conditional statements, and
thus the DM has to reason in counterfactuals.
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7. Concluding Remarks

7.1 A few words on the normative interpretation of CBDT are in order.
It seems undeniable that CBDT does not have the same normative appeal that EUT
has. A CB decision maker (CBDM) does not "consider" all choices, does not
“attempt" to "maximize utility" and so forth.

Yet we would like to suggest a defense of CBDT as a "second-best
normative theory." 1In cases where EUT’'s recommendations are blatantly
impractical, its normative appeal is also tainted. And then there is also

room, normatively speaking, for other, less idealized theories.

7.2 We will not dwell here on potential normative implications of
CBDT. Let us only briefly mention that, if we accept CBDT as a second-best
theory then perhaps the second-best may be improved. For instance, one may
try to change one's similarity function so that it be symmetric, ignore
primacy effects and so forth. It may even be argued that it is more useful to
train professionals (doctors, managers, etc.) to make efficient and probably
less biased CB decisions rather than to teach them very rational but
impractical EUT.

However, we decline to make any such claim here (or elsewhere), and it

is given merely as an illustration of possible implications.

7.3 It may seem that our CBDM's are extremely conservative and boring
creatures: whenever an act achieves their aspiration level, they would stick
to it. A CBDM, it would seem, is an animal which always eats the same food at
the same place, chooses the same form of entertainment (if at all) and so
forth.

Although this is true at some level of description, it does not have to

be literally true: as most entities in theoretical models, "acts" are
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language dependent. Thus an act——which is, say, chosen over and over again—-
need not be "Have lunch at X"; it may also be "Have lunch at a place I did not
visit this week." Repetition in *his level of description will obviously be

translated to an extremely diverse lunch pattern.

7.4 In a more general model, one may try to capture manipulations of
the similarity function. In phenomena as diverse as advertising and legal
argumentation, people try to influence other peoples’ perceived similarity of
cases. Along similar lines, the similarity and/or the utility functions for
existing memory may change due to new information. Learning new facts may,
for instance, make the DM aware of some similar or distinguishing features of
past cases, or change the evaluation of past results. These research

directions are, however, beyond the scope of this paper.

7.5 It goes without saying that CBDT, especially in its descriptive
interpretation, may greatly benefit from additional psychological insights
into the structure of memory and the evolution of aspiration levels. For
instance, one may hypothesize that the "satisficing" nature of decision making
is revealed not only in a dynamic context, but also within each decision:
rather than computing the U-value of all possible acts, it may be more
realistic to suggest that the DM stops at the first act which obtains a
positive U-value. There are, however, several ways in which "first" could be
defined. For example, the DM may ask him/herself, "When did I choose this
act?", and only after the evaluation of a given act will the next one be
considered. Alternatively, the DM may focus on the problem and ask "When was
I in similar situation?", and as the cases are retrieved from memory one by
one, the function U is updated for all acts—until one act exceeds the

aspiration level. Since these two crude models already induce different
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decision rules, it is obvious that CBDT may be refined and improved by
incorporating empirical findings regarding the recollection process.
Similarly, the process by which the aspiration level u(ry) is adjusted

(as mentioned in subsection 3.1 above) calls for further study.

7.6 The model we present here should be taken merely as a "first
approximation." Especially in view of some descriptive failures of the
monumental expected utility theory, case based decision theory could hardly be
expected to fare any better. Thus it makes sense that for some applications
CBDT will have to be generalized to allow for semi-orders (see Luce (1956)),
non—-additive measures on the space of cases (see Schmeidler (1989)) and so
forth.

Our main goal in this paper was to explore the possibility of a formal,
axiomatically-based decision theory which uses a different, less "rational”
but at times more realistic paradigm than EUT. We believe that case-based

decision theory may be such an alternative.
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Appendix 1: Proof of Propositions

1. Proposition 1

Fix p,H and denote » = » W.l.0.g. assume H »# @. First note the

p,H-
following.

Observation: If » satisfies Al and A4, then:
(1) For all x,y € X with x*y = O,
X ¥y <=>-y r -X.
(ii) For all x,y,z,w € X with x*y = 0, (x + z)*(y + w) = 0 and z ~ w,

X 2y <=>(x+2z) 2 (y +w).

Proof: (i) Assume x » y. Consider z = w = —(x + y) and use A4 (where z > w
follows from Al).
(1ii) Under the provisions of the claim, z » w and A4 implies
X 2y =>(x+2) 2 (y+ w).
As for the converse, define z' = -z, w' = -w. By (i), -z = -w and

A4 can be used again to conclude x : y. |

We now turn to the proof of Proposition 1. Define ' ¢ X X X by

X y<=>x-y=2x0

for all x,y € R" = X,

We state without proof the following facts:

Fact 1: For x,y € X with x*y = 0,

X ry <=>x2'y.
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Fact 2: x' is complete, i.e., for all x,y € X x ' y or y »' x.

Fact 3: r’' is transitive.

Fact &4: ' is monotone, i.e., for all x,y € X, x 2 y implies x 2' y.
Fact 5: *' is continuous, i.e., for all x € X the sets

tyly =" x), {ylx 2" y)

are closed in R". (In view of the above, this is equivalent to
the sets
(yly »" %}, {ylx »" y)
being open.)
Fact 6: r' satisfies the following separability condition: for all

x,y,z,w € X, if x »' y and z »' w then (x + z) 2’ (y + w).

Fact 7: If x ' y, then
x ' (L/2)(x +y) 2" vy.
Furthermore, if x >’ y, then

X > (1/2)(x + y) »" y.

Fact 8§: For every y € X, the sets
{x|x »" y), {x]|x 2 y)
{xly »" x}), (x]y &' x)

are convex.

Fact 9: Define
A= {x|x &' 0)
B = {x|0 » x)
(where 0 denotes the zero vector in RM).
Then A is closed and convex, B is open and convex, A N B = @ and

AuUB=1"
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Fact 10: If B = g, the function s(e) = 0 satisfies the representation
condition. 1If, however, B = &, there exist a linear functional
S: R" - R such that
S(x) =2 0 for all x € A
S(x) < 0 for all x € B.
The function s: H - R defined by it is nonnegative (by Fact 4) and

satisfies the desired representation for >’ on R".

Note that Facts 1 and 10 complete the proof. [ |

Notice that additional standard results would also hold here: (1)
Proposition 1 can be strengthened to be an "iff" statement; (2) under some
appropriate non-triviality conditions, the similarity function is unique up to
a multiplicative positive constant and the utility function (here implicitly

assumed to be the identity) is unique up to a positive linear transformation.

2. Proposition 2

It follows from Proposition 1 that the function s H - R, defines,

p,H
for each q;,q, € H with sp,H(qz) > 0 a unique relation

8, 4(Q)
8 qlay, @) = B2 2
P Sp,n{@)
in the sense that any other similarity function would give rise to the same
ratio 5p p both in terms of its domain and in terms of its values.
3
It is easy to see that A5 implies that this ratio is independent of H.

That is, as long as Hy,H, C P satisfy 44,9, € Hy,H, and p € H;,H, we obtain

69,5‘(Q11 Q;) = 69';;:“21' q;) = &p(qll Q3) .
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Moreover, notice that whenever p, q; and g, are three distinct problems,
there are subsets H ¢ P such that q,,9, € H, p € HC.

We now turn to define the similarity function s. Fix p € P. 1If for all
H ¢ P\{p) and all q € H, sp’H(q) - 0, set s(p,®) = 0. Otherwise, choose q € H

such that sp,H(q) > 0 and set

s(p,q) = 1.

For any other q' # p define

s(p,q’') = 5p(q' ,q) .

(Notice that under A5 ép(q’,q) is well-defined for all q’.)
We need to show that for every ¢ P\(p) there exists a constant a > 0

such that
s(p,q') = asy y(q') for q' € H.

Applying A5 with q4 = q, = q' we conclude that both sides of the
equality vanish together. (This concludes the proof for the case |H| = 1.)

First consider H such that q € H. It follows from our construction (and
from AS5) that a = [sp,H(q)]'1 will do.

Next assume that q € H. Considering q',q" € H, we need to show that

s(p,q) _ Bpxld)
s, @ sy pla”

whenever these are well-defined.

By definition of ¢,
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'
8p.8(q) _ 8, (al a" .

sp,E(q//)

On the other hand,

a(p, g _ GP(Q’IQ)
s, g s la" @’

Consider Hy = H U {q}. Using the definition of § we may write

Sp.5, (@

, S5 (@)
9,5 (Q)

4 -=
8,(q”. Q) 8,5 (@

8, (¢, @) =

Hence,

3,(d @ _ Spxtd’
8.(d”. @) 3,4 (2"

- 8,(a" q.

Finally, since P is finite we may normalize the function s such that it

takes values in [0,1]. This concludes the proof of Proposition 2. |

We note that it is straightforward to check that A5 is also a necessary

condition for the conclusion of Proposition 2.

3. Proposition 3

First consider the optimal (i.e., U-maximizing) strategies. Consider a

buyer who has reservation value r; and aspiration level a; (the proof for a

seller is symmetric.) At stage 0, an act p, r;

i is evaluated by

U(P) = (ry - p - hy)e

whence the maximizer is p = r; - h;.
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Assuming no trade was made, at stage 1 this act is evaluated by
U(p) = (ri - P - hi)f - hi = —hi
where for p = r; — h; + 1 the value is

- (r.

U(r, i

i~ hi + 1) = [r - hi + 1) - hi]e -

1
= —€ > —hl

and it becomes the next maximizer. Proceeding in this fashion, one proves
that all acts will be tried once, and after they all failed once the problem
is identical (up to a shift in h; units) to the original one.

To complete the proof of the proposition it suffices to show the

"furthermore" part, i.e., that after stage 4N2, r; < rj for all i € B, and

j € 5,. Suppose that this were not the case, and r; 2 Iy for some i € B,
j €35,. 1's bids cycle along (r; — hy,r; — h; +1,...,r;) while j's offers
cvele along (rj + hj,rj + hj - l,...,rj). At stages of the form k(h;y + 1) -1

(for some k > 0), i is bidding ry. At stages of the form m(hj + 1) - 1 (for

some m > 0), j is offering r Thus at stage (hi + l)(hj + 1) -1, if not

j «
sooner, i and j can be matched. Since they were not matched in the first

4Ne > (hi + l)(hj + 1) stages, we arrive at a contradiction. [ |

4 . Proposition 4

Let us first prove (ii). Let Pt.y = N + K and assume, w.l.0.g. that
K > 0. (The case K = 0 is trivial, while K < 0 is symmetric.)
The buyers (1,...,N + K - 1) have zero aspiration levels, and they will

be bidding their reservation prices at all stages. Similarly, the sellers
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{3N + K+ 1,...,4N - 1) have zero aspiration levels, and they will be offering
their reservation values. (As opposed to the zero-aspiration buyers, however,
all these sellers will not trade.)

(N - K) buyers, i.e. (N+ K,N+ K + 1,...,2N - 1) bid Pt.q = N + K,
while N + K sellers, namely {2N + 1,...,3N + K}, offer N + K. Thus any
mechanism g will match the (N - K) buyers with (N - K) sellers. Let L be the
set of matched sellers.

Note that after stage O the buyers cease to be an interesting partner:
only zero-aspiration buyers are left, and they keep bidding their reservation
values. The sellers, on the other hand, all decrease their offers by 1 (apart
for 3N + K, who is already at his/her reservation price.) Thus at stage 1 one
more transaction will take place, this time at price N + K — 1.

The process continues in this fashion until all sellers have offered
their reservation prices at least once. (A seller who has gone into a second
cycle will not trade any more since all bids are below his/her reservation
price.) The number of the trade stages depends on the choice of sellers by

the mechanism u: suppose, for instance that

L= {(3N+1,...,3N + K)

i.e., that the sellers who get to trade at stage 0 were all with reservation
prices above the equilibrium price N. Thus, the "cheap" sellers are still in
the market and the process may continue even below the equilibrium price.
However, the maximal number of stages is 2K + 1: after stage 2K the total

number of units traded is

(N-K) + 2K =N+ K =p;_,
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i.e., it is equal to the total supply at price py_y. (Recall that the sellers
{3N + K+ 1,...,4N - 1) will never offer the good at a price lower than
3N+ K+ 1.)

On the other hand, the minimal number of stages will be obtained by a
mechanism which "uses up" the "cheap" sellers as soon as possible, and, in

particular, sets
L¢ (2N + 1,...,3N}
However, since there are N sellers who are willing to trade at price N,
at least K stages of trade will occur. This concludes the proof of (ii).
It is now quite simple to verify that (i) holds: assume, again, that

Py = N + K and (w.l.0.g.) K2 0. Suppose that u determines J + 1 stages of

trade, where K < J < 2K. Then
Pror = [N = K)pg + oy (py = DI/ION = K) + J]
Obviously, py,q < py. To verify that p,,; = N, notice that, since J =< ZK,
(1/3) T{oy Py = 1) = N
Finally, we turn to prove (iii). Again consider Py = N+ Kwith K = 0.
Notice that the upper bound on py,; is obtained if trade occurs in precisely
J =K + 1 stages. Then it is readily verified that the average price is

N + K — (K2 + K)/2N

Thus py,,; which is the (rounded-off) price will be strictly smaller than
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p, as long as
(K2 + K)/2N > 1
or

ky AN=T -1
2

Hence the price will be fixed only if
K< 1@2[3%1_:_1 < JN+1

It follows from part (ii) that the maximal number of trade stages is

2K + 1, hence it is bounded by

2yN+1+1

Finally, let us address the question of convergence. Assume that

Po = N+ K (K2 0). From the foregoing analysis it is clear that
Pr+y S Py — 1

at least as long as
lp, - 1| > yN+ 1T

Hence, in view of (i), at most N rounds are needed for Py to

converge, |
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Remark: It is easy to see that one can find better bounds. For instance,

defining a, by

Py = N+aN 0O=<a, =1

the upper bound on py,y yields

appq S at(l - at/Z)

Thus, if Po = 2N, py 1s bounded by (N + N/2), Po is bounded by
(N + 3N/8) and so forth. Correspondingly, one may prove that the number of

rounds (before the price becomes fixed) is bounded by any of the following:

N

N/2 + 1
3N/8 + 2
39N/128 + 3

and so forth
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Appendix 2: An Alternative Model

In this appendix we outline the axiomatic derivation of case-based
decision theory with act-dependent similarity function. We also show that
V-maximization can be axiomatically derived.

We assume that the set P, A, R, C and M are defined and interpreted as

in Section 2. Given a problem p € P and memory M ¢ C we define

E=EM) = {(q,a)|]3 r €R, (q,a,r) € M)

H=HM) = (g€ P|3aca, (q,a) € E)
and

B=BM)~{acAl3 qeP, (q,a) € E).

For each a € B denote H, = {q € H|(q,a) € E} and let F, be the set of

hypothetical acts

F, = {x: H - R).

(Again, we identify the set of outcomes R with the real line and
implicitly assume it is measured in "utiles.")
We will assume |B| 2 2 and define
F - UaEB Fa-
For every p,E (with |B| =2 2) we will assume that X E C FxFisa

binary relation satisfying the following axioms. For simplicity of notation,

the subscripts "p,E" will be dropped whenever possible.
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Al’ Order: » is reflexive and transitive, and for every a,b € B, a = b

’

xe F,and y € Fy, x » y or y » X.

A2' Continuity and Archimedianity: For every a,b € B, a # b and every x € Fa'

the sets

{y € Fply » x}, {y € Fyix > y)

are non—empty and open (in Fb, endowed with the standard topology).

A3’ Monotonicity: For every a,b € B, a = b, x,z € Fa, y € Fb,
if x 2 z then
z >y implies x > y
and

y * x implies y > z.

A4' Separability: For every a,b € B, a = b, x,z € F,, y,w € F, if z ~ w then

(x 2 y) <=> (X +2) » (y + w).

Proposition A2.1: = satisfies Al’'-A4’ iff there exists a function s: H - R,

with E:wm s(@) >0 ¥V a € B such that for all a » b, x € F,, y € F

xry<e> ) o s@x(@ 2 Y . s(@y(@.

Notice that Al’ requires that » be transitive, which implies that acts
belonging to the same space F, be comparable. However, if [B| = 3 one may
start out by assuming that transitivity holds only if all pairs compared

belong to different spaces, and then consider the transitive closure of the
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original relation.

Proof (Outline): Fix a € B and consider the restriction of » to Fa. It is

easy to see that on Fa > is complete (hence a weak order), continuous and
monotone (in the weak sense, i.e., x =2 z implies x » z).

Finally, if x,y,z € Fa, we get
x »y iff (x +2z) » (y + 2).

We therefore conclude that for every a € B there is s;: H, - R, such

that for all x,y € F,

xXzy<=> Eqm s, x(g) 2 wa s (dyla).
Furthermore, by A2, » is non-trivial on each F,, whence for some q € H,,
s,(q) > 0.

Next, let 1a denote the element of F, consisting of 1’'s only (la(q) =

1). Fix a € B and for each b € B let §, satisfy
1, ~ 6ply.
Define s: H » R, by
s(@) = [8, 3 ep Sal@) ] sp(@)
for all q € Hy.

Finally, it is straightforward to see that this similarity function

satisfies the desired representation condition and that the axioms are also
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necessary. ]

To obtain the representation by the functional V in (**), consider the

following axiom.

A6 (Experience Invariance): For all a,b € B, la ~ 1b'

Without judging its reasonability, let us note that A6 means that the

"quality" of the experience is all that matters, rather than its "quantity."

Finally, one may further demand that the following be satisfied.

A7 (Constant Similarity): For every a,b € B a # b, q,q’' € Ha, X € Fb,

lq * x iff lq. * X

where 1q,1q, stand for the corresponding unit vectors in F,.

Obviously, Al'-A4', A6 and A7 will give rise to frequentist expected

utility.





