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Abstract:

This paper presents a dynamic formalization of the behavior of creditor banks in the prescnce
of the sccondary market for debts. We formulate the problem as an infinite horizon game with two
banks as players where each bank decides in every period cither to scll its loan exposure to the
debtor country at the present sccondary market price, or to wait and keep its exposure to the next
period. We show that there exist three types of subgame perfect equilibria with the property called
the time continuation. We consider the relationships between our equilibria and those of the
Kancko-Prokop (1991) one-period approach to the same problem and show that their onc-period
approach does not lose much of the dynamic nature of the problem. In every equilibrium, cach
bank waits in every period with high probability, and the probability is close to 1 when the interest
rate is small. If the price function of debt is approximated by some homogeneous function for large
values of debt, then the central equilibrium probability becomes stationary in the long run. The
stationary probability is rclatively high as long as the interest rate is low. These results are inter-

preted as a tendency for the problem of debt overhang to remain almost unchanged.
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1. Introduction

The international debt overhang is a situation of a sovereign country who has borrowed money
from foreign banks and has been unable to fulfill the scheduled repayments. The debt overhang
is a serious problem for the debtor country, which keeps the country in a bad economic situation
and prevents from growing. To understand the problem of debt overhang, Kancko and Prokop
(1991) give a game theoretical model of debt overhang where lender banks are players and decide
whether or not to sell their loan exposures to the debtor country at the discounted price on the
secondary market. Their analysis shows that there is a great tendency for the present situation of

cbt overhang to remain unchanged. They focus on the decision making of lender banks in a short
period and formulate the situation as a one-shot game. However, the problem of debt overhang
is dynamic in nature. In this paper we cxamine whether their approach captures the dynamics,
considering a dynamic formulation of their model and its equitibria.

The secondary market for debts is an important element which accompanies the problem of
debt overhang. The appearance of the secondary market for debts has been caused by the country’s
mnability to repay the debts in full. On this market, loan exposures are traded at a discounted
price.’ The existence of the secondary market creates a possibility for the debtor country to buy
back its debts at a discounted price. Ilowever, there has been some tendencey for the debt overhang
to persist even in the presence of the secondary market. As in Kancko and Prokop (19913, we as-
sume that the secondary market is represented as a price function.

We formulate the problem as an infinite horizon game with two banks as players. Since the
modelling of the dynamics of debt overhang with many banks is too complex, we consider the two
bank case. The game is played as follows. In every period of the game each bank decides either
to scll its loan exposure to the debtor country at the current sccondary market price or to wait and
postpone this decision to the next period. If both banks wait in a period, then they face the same
decision problem in the following period.  When a bank sells its loan exposure to the debtor
country at the current sccondary market price, it receives a payoff according to the current sec-
ondary market price and leaves the game. After both banks scll their exposures to the debtor

country, the game ends.

I Seec. for example, Sachs and Huizinga (1987), and Hajivassiliou (1989).



In our game, there are three types of subgame perfect equilibria with the time continuation
property. By the time continuation property we mean that the game of the present period can be
viewed as the result of the game of some previous period so that the extensions of the equilibria
of the present game give a positive realization probabilities to the present game. The three tvpes
of cquilibria are called central, alternating and mutating, respectively.  Each equilibrium is very
stmilar to the unique central cquilibrium in the sense that the probabilities of a bank waiting are
determined by similar formulas and take similar values. Therefore, the average attainable payofls
arc almost uniquely determined.

We can compare the equilibria of our dynamic game and the one-period game of Kancko and
Prokop (1991). To make this comparison, we construct a sequence consisting of the mixed strategy
cquilibria for the one-period games describing the situation of banks in the sequence of the re-
spective periods. This sequence of equilibria coincides with the central equilibrium of our game.?
That 15, we have a decomposition property of the dynamic game into the games of one period.
Since all cquilibria of the dynamic game are similar to the unique central equilibrium. Thus the
one-period approach of Kancko-Prokop (1991) does not lose much of the dvnamic nature of the
problem.

Our game may be regarded as a repeated game with a constituent game of the onc-period ap-
proach. As long as no bank sells its loan exposure until period ¢, a similar one-period game is
played in period ¢ + 1. However, the Folk Theorem? that almost all payoffs of the one-period game
are attainable by an equilibrium of the repeated game, does not hold in our game, since one plaver’s
deviation necessarily implies its exit from the game and does not permit a punishment by the other
bank. On the contrary to the Folk Theorem, the average attainable payoffs are almost uniquely

determined in our game.

2 In Kancko and Prokop (1991), there are also two pure strategy Nash equilibria in the two bank case.

The sequences consisting of them become subgame perfect cquilibria in our approach. We, however,

eliminate them by the time continuation property.

¥ See. for example. Aumann (1982).



We describe some observations on the behavior of banks over time following from our char-
acterization of equilibria. In any equilibrium ecach bank waits with relatively high probability in
every period. and when the interest rate is small, the probability of a bank waiting s close to 1.
This can be interpreted as a tendency for the situation of debt overhang to remain almost un-
changed.

We also investigate the strategics of the banks when the time passes. We show that if the price
function is approximated by some homogenous function for large values of debt, then the proba-
bility of waiting in a period in the central equilibrium becomes a stationary probability in the long
run. The stationary probability of a bank waiting in every period is relatively high as long as the
interest rate is low. This suggests a difficulty of a resolution of the debt overhang solely through
the sccondary market transactions.

The paper 1s organized as follows. In Section 2 we formulate the model called the dynamic
endurance game. In Section 3 we present the structure of equilibria. The comparative dynamics
(statics) and limit results are given in Section 4. In Section 3, we give the proof of the main theo-

rem. Section 6 contains conclusions.

2. Dynamic Endurance Game

We consider the following dynamic situation: a country has debt obligations D, >0 and
D: >0 to forcign banks 1 and 2, respectively. The country has fallen behind with service payments
for some periods. and the current situation of the country does not allow for full repayments. The
existence of the secondary market for debts is assumed, where the country is ready to buy its debts
at the secondary market price. We assume that the price of debt on the secondary market depends
upon the current total outstanding debts. This price is expressed by the function P(): R, — R.

with the property:
(2.1) P(D) 1s a decreasing function of the total outstanding debt D and P(D) — 0 as D — co.

This P(D) is country-specific and also depends upon the choice of the present period.
We will focus our attention on the decisions of banks over time. The present period is called
0. Inevery period each bank has two possible choices either to sell its exposure or to wait and keep

it to the next period. Each bank’s strategies in every period are s and w, where s denotes selling the



loan exposure to the debtor country at the current secondary market price, and w denotes waiting
and postponing the decision to the next period.
Lach bank discounts the future revenues by the interest rate (r>0). We denote the interest

factor 1 +1 by . We assume that
(2.2) B0, <D fori=1,2,

where D° = D, + D,. This assumption says that the distribution of loan exposures of banks is rel-
atively equal and the interest rate is relatively small so that the size of one bank’s loan exposure
with compounded interests from two periods is smaller than the initial debt of the country.

If bank ¢ keeps its loan exposure D, until period t (1 > 0), then its exposure mgereases by the
accrued mterests to f7,. The total outstanding debt D¢ in period t becomes D), if the other bank
has already sold, or ‘D otherwise. The secondary market price in period ¢ is given as P(D9). If

bank 1 seils in period ¢, then the present value of repayment is given as

# BDP(DY) = DL,
If bank i and the other bank wait in period t, then bank 1 does not get any payoff in this period.

but it will face the same decision problem in the next period.

We assume that

(2.3)  after one bank sells its loan exposure, the other bank sells its exposure unmediately

in the next period.

It is possible that while one bank sclis its exposure in some period, the other bank keeps its expo-
sure for several peniods after that. In this case, however, keeping the loan exposure for several pe-
riods is not an optimal behavior. Indeed, if the bank postpones selling its exposure, the secondary
market price of debt will decrease because of the accrued interest, Suppose bank j sells its exposure
in penod t and bank i does not. Then the secondary market price in period t+ 1 is P(p*-'D), and
the present value of loan exposure is DP(f D). If bunk i keeps its loan exposure to period t+ 2,
then the price falls to P(B7-2D) and the present value is D.P(F-2D). The optimal behavior of bank

115 to sell the exposure in period t-+ 1. Thus we can assume (2.3).



There are two cases in which the game terminates. The first case is that both banks wait until
period £ — 1 and both scll in period . The second case is that both banks wait until period ¢ — 1
and one bank sells its loan exposure in period ¢, and the other bank waits in period ¢ and sells its
exposure in period ¢+ 1. The payoff to bank i (i= 1, 2} in the game (0, D% is defined by

D.P(f'DY if both banks wait until period 1 — 1 and bank ¢ sells

in period ¢,
24

DP(B D) if both banks wait until period ¢ — 1 and bank j (j # i)
sells in period ¢ and bank / waits in period ¢.

Our game I'(0, D°) is described in Figure 1. In the game tree, the payoffs to the banks are given
in three branches. In the first branch both banks sell their exposures in period 0. In the second,

bank 1 sells in period 1 and bank 2 sells in period 2. The third case is that bank 2 sells its exposure

in period 2 and bank 1 sells its exposure in period 3.

D, P(DY
D P(D%

(s,w) (w,w)

D\P(BD?)

D:P(BD:) r@ g0y

D\P(g3D,)

|
I
I
|
|
: D;P(ﬂzoo)
|

Figure 1.



We atlow each bank to use behavior strategies. Since each bank's decision is made in period
t only when both banks have waited until period t by assumption (2.3), a behavior strategy of bank
i=1.21n the game ['(0, D) is represented as a sequence ° = (p”, pt, ...), where pf is a probability
of bank i's waiting in period ¢ (¢= 0, 1, ...} if both banks keep their foan exposures until period t.
Denote the set of all behavior strategies of bank ¢ by B?. A behavior strategy combination for the
game [0, D% 1s a vector 07 = (0, ") = (0 pits ). (527, ooty ).

The expected payolt to bank i = 1, 2 for a behavior strategy combination #° is the sum of

(1) the expected payotf from selling the exposure in period ¢ (1 =0, 1, ...) under the assumption

-1
that the other bank does not sell carlier — DD (1 — pH[ ] p*p*; and
k=0

(it) the expected payoff from selling its loan exposure in period £ + | under the assumption

-

1
that the other bank sells in period ¢ — DPB D)1 = p) [ 040"
k=0

Thus the expected payoft from the game (0, %) under the strategy combination &7 is aiven by

o -1 20 t=1
(2.5) (70N = EDLEDYL = p) [T pipt + X DLPE - DI)p (L — 1) T pips
- k-0 .0 £=0

t-

-1
We use the convention [Tp p* = 1.

k=0

We have described the dynamic endurance game of lender banks (0, D%, In the next section

=

we vestigate the decisions of banks in the dynamic endurance game.

3. The Structure of Iquilibria

To mvestigate the decisions of banks in the game I'(0, D?), we adopt the concept of the sub-
game pertect equilibrium point of the extensive game (Sclten (1975)). To define a subgame perfect
equilibrium, we have to consider subgames of the game T(0, D). Here cvery subtrec constitutes a
subgame.  Thus the subgame which starts at any period ¢ of the game T'(0, DY) is denoted by
(. f7D7). The strategy for the subgame T'(¢, D) induced by 5" = (p?, pt, ...) is a vector obtained
by dropping the first ¢ entries of the vector b7, 1.e. b = (n/, pf* 1, ... Let B be the set of all induced
behavior strategies of bank 1 for the subgame (e, f7D").

Denote by 717(8) the expected payoff to bank 7 from the subgame (¢, /D% under the induced

behavior strategy combination b = (b7, hy').



A A A
A behavior strategy combination b= (", 5% is a Nash cquilibrium of the subgame

¢ Py ifffori=1, 2,
(3.1) HoAbY = 1bby) for all breBy,

where bA"//)J denotes a strategy combination bt with the replacement of [}(’ by b A subgame perfect
equilibrium of the game T(0,D% is a behavior strategy combination b = ([:1”, f;{‘) which induces a
Nash equilibrium on every subgame of the game (0, D).

In addition to the subgame perfection, we require the equilibrium to have the time continua-

tion property. To define the time continuation property, we introduce a retrospective extension

of the game T'(0, DY as a game T'(r, 7D for t = —1, =2, ..., so that the game ['(0), 1"} is a subgame

of the game I'(¢, #D%). A subgame perfect equlibrium 4? is said to have the time continuation

property iff for anv r=—1, =2, ... there is a subgame perfect equilibrium bt in the retrospective
extension I'(¢, D% of T'(0, D" such that b induces 40 and the realization probability of the sub-
game (0, D7) 1s positive.

The time continuation property states that the present game situation results as a continuation
of the past history. The game T(0. D" is a result of previous decisions of banks. Therefore the
present vame 1s a subcame of the game of any preceding period.  If the realization probability of
the game (0, D7) is zero in an equilibrivm for T¢e, f7D7) then the present situation would be dif-
ferent from I°(0, D). However, we assume that the game (0, D" is reached.  Therefore it is
compatible with the consideration of I'(0, D% to assume that the realization probability is
positive.?

The structure of equilibria is described by the following theorem.

Theorem 1. The endurance game of two banks has three types of subgame perfect equilibria satis-
fying the time continuation property, which are called central, alternating, and mutating. In the
unique central equilibrium = (\/:)1”, i;_w”) = (7 ol L), (% Y ), bank §owaits in cvery peniod

t (t=01,..) with probability
) PRy = Pepeps
(3.3) pi=— ! ) : (t !
’ PP -tD)y = Pty

for i, j=12and i

4 The time continuation property is a concept independent from the time consistency in the macrocconomic

literature. The time consislency property is. instead, implied by the subgame perfection.



There are two alternating cquilibria 5 = (52, b = (p" b, L), (28 Y ) in which banks

and j wait with probabilitics

- PRy = Ppe-tby

(3.4 = ‘ _ o= 1if1is even:
(>.4) 2 PGty — P and p, Iiftiseven
and

- _ ]) !‘l])' _P !71D(})
(3.5 pt=1and p' = (A ) (ﬁ —if t is odd.

PUYIDY = P DT

In a mutating equilibrium b = (/;lg, /:;“) = (PO s L), (R Pt ) banks wait in every period ¢

until some period v (r 2 —2)° with probabilitics given by (3.3), in period 7 +1 they wait with
probabilities

P20y = P DY P(F2D) — P(BT- 1D

Py gy P PUE2D) — P 3DY) + b 2L P Dy — P D]

(3.6) pt =

in period T+ 2 they wait with probabilities

PBT3DY — P(BT DY P(FT3D) — Pifr-2D7)
P Dy — PUTDY T PG Dy — Py b

(37; !_]JY‘Z — 1. ‘F)/'A'»Ee[

and 1 period ¢ (¢ = v + 3), they wait with probabilities given by (3.4) when t=1+ 3, + 5, ..., and

with probabilities given by (3.5) whent=1+ 4,1 + 6, ...

In the central equilibrium, bank 7 waits in period ¢ with probability gven by (3.3). In an al-
ternating cquilibrium banks / and j wait with probabilitics given by (3.4) in every even period, and
with probabilities given by (3.5) in every odd period. Thus cach bank alternates its strategy between
waiting for sure and waiting with probability 5 given in (3.4). In a mutating equilibrium banks
behave initially according to the central equilibrium strategies and in some future peried their cen-
tral cquilibrium strategies mutate into the alternating equilibrium strategies.  The strategies of

transitory periods in a mutating equilibrium are given by (3.6) and (3.7).

£ When = =2, 5% and 5;° are eiven by (3.7) and (3.6) is irrelevant. When 7= — 1, 2% and 2" are given

by (3.0).



The central equilibrium differs from the alternating equilibrium in that cach bank sells with
some probability in the former, and vach bank alternates between waijting for sure and selling with
some probability in the latter. Nevertheless, the central and alternating equilibria are similar in the
sense that the probabilitics of waiting in each of thein are determined by similar formulas and take
similar values as will be shown in the example below. The mutating equilibrium is a combination
of the central and the alternating equilibria.  The central equlibrium mutates into the alternating
equilibrin but not the other way around.

In every equilibrium of our dynamic game the probability of a bank waiting in cach period is
relatively high as long as the interest factor is low. This suggests that there is a tendency for the
situation of the debt overhang to remain unchanged, no matter what equilibrium strategies the
banks use.

Although we found three types of equilibria in our dynamic endurance game, the strategics of
banks in every cquilibrium are close to the strategies of the unique central equilibrium. The central
equilibrium of our dynamic game gives the local equilibrium strategies which coincide with the
equilibrium of a one-period endurance game investigated in Kancko and Prokop (1991). In other
words. the central equilibrium can be constructed as a sequence of mixed strategy equilibria of the
one-shot games of Kancko-Prokop (1951). This link butween the dvnamic and one-period for-
mulations allows us to use the one-period approach without losing much of the dynamic nature
of the problem.

The following example illustrates the claim of Theorem 1.

Example 3.1, let Dy =D, = % D= % and = 1.1. Assume that the price function is given by
()()
¥ = )
P=57

‘The central equilibrium strategy of each bank is to wait in period ¢ with probability
. 9 (LD-'4+1
Pi=TT T
It (Liy+1

The table below shows some values for the local strategics.

2t .859 ) R6E | 863 | 865 | 867 | 874

o
[¥e)
L)

896




In this example the central equilibriurn probability of a bank waiting in period ¢ is high. It increases

with the time ¢ and converges to .9 as ¢ becomes large.

The alternating cquilibrium strategy of banks i and j is to wait with probabilities
- 79 (Lhy-t+l

L=

20 Qy-te 1 p' =1 inevery even period;

S 5o 19 (LD =141 . - odd period
pr =1L p= D1 (T T+ 1 n every odd penod.
The table below shows some values for the local strategies in an alternating equilibrium

pt 718 | 725 1 131 ] T4

o' 1 p.721 b1.728 l J34) 1 746

Table 2.

In this example the alternating equilibrium probability of a bank waiting in period t is high, too.
The lower probability of waiting increases with the tume t and converges to .79 as t becomes large.

An example of a mutating equilibrium is presented in Figure 2.

P!
1

9
79 X . . . . - - -

»

v

Figure 2.
In a mutating equilibrium a bank waits in every period with probability close to .9, and from some
period on starts switching its local strategy either waiting for sure or waiting with probability close

to .79. Thus the probability of waiting in each period is high in every equilibdum. We will char-

acterize the behavior of equilibria more precisely in Section 4.
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4. The Behavior of Equilibria

The following comparative statics result is true.
Theorem 2. Let 17 = (1;;”'. .f;g'f‘) = (tj"n”,/}li, R (j\zﬂ,p;i, )} be the central equilibnum.  Then for
ij=12(#Hand alle=0,1, .., it holds

(+.D pr<pt ifandonlvif D, < .

Proof of Theorem 2. From equations given by (3.3), we have that

e LPBTIDY = P DYILPBD) ~ PUB D)
o [Py — PO — P

forj#i.

From the above equaity it follows that

A -

pr<ptitand onlvif D, <D, J1

This theorem says that in the central cquilibrium a bank with a bieger loan CXPOSULe Waits
longer m every period than the bank with a smaller one. The reasonine for Theoremn 2 is as follows.
Each bank has in every period two (pure) alternative choices: to wait or to sell. In an equilibrium
mixed local strategy, these two cholcees give the same expected pavolfs to each bank, since otherwise
a pure local strategy would be chosen. Bunk 4, evaluating its expected pavo(l from walting, takes
mto account bank j’s probability of selling and vice versa. If D, < D, then bank #'s evaluation is
more positively alfected by D, than bank j's by D, Therefore, to have the same expected values for
the two alternative choices, bank s probabiiity of waiting becomes lower than bank J’s.

The result of Theorem 2 gives the same prediction about the behavior of banks in a period as
the prediction derived from the one-period model of Kaneko and Prokop (1991). Kancko and
Prokop (1991) showed in a one-period model that a bank with a higher loan exposure has a higher
probability of waiting than the other one. Since the sequence of mixed strategy equilibria for the
one-period games coincides with the central equilibrium of the dynamic game, our Theorem 2 is
obtained immediately. The behavior of lender banks in the Bolivian buyback constitutes the best
lustration of these results. All American banks with larger loan exposures have kept their loans

but some banks with small exposures have sold theirs.
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In the previous section, we observed that the probability of a bank waiting in cach period in
cvery equilibrium is relatively high as long as the interest factor is low. Now, we consider the limit
behavior of the probability of a bank waiting when the interest factor is close to 1. If the function
P(+} is continuous at D, then from cquations (3.3)-(3.7) we obtain that in every equilibrium of the
endurance competition game the probability of a bank waiting in each period converges to 1 as f3
convergss to 1. Thus we have the following property of cach cquilibrium in the game (0, DY),
Theorem 3. Let b= (0", 57) = (6% pl, .0, (2% ), .0)) be any cquilibnum for the game
(0, D% with the interest factor . If P(+} is continuos at D", then for cach ¢ >0 pi—1 as

f— 1L

Theorem 3 means that when the interest rate 1s small (the interest factor is close to 1), cach
bank has strong incentives to wait and keep its loan exposure in every period along an cquilibnum
path for our game.

Now, we would like to characterize more precisely the changes of the probability of waiting
over time. If the price function £(+) is homogenous, i.c. P(kD) = k"P(D) where n is a negative
number, than from (3.3) the central equilibrium probability of waiting by bank / in period ¢ 1s
constant and equals to

PRDY = P(DY)
PED) — PGDTY

This observation can be generalized in the following way. If the price function P(D) is approxi-
mated by a homogenous function F(D) for the large values of D, then the central cquilibrium
probability of waiting by bank 7 in period ¢ becomes almost constant as ¢ increases. To see this,
we assume that there is a function F(D): R. - R homogenous of degree n (ic. FED) = k"F(D),

where n 1s a negative number), such that P(D)/F(D) — 1 as D — co. Then from (3.3).

. PR 1D = Py FR=1DY R DYy — PDNR - l])')i/ﬁv[.‘(ﬂ'])ﬂ)/)(ﬁr'l])‘)

PSP Dy = P DY T D D) = PR D ST B DO PR DY

Thus we obtain

L DAY = 1B FBD) — FIDY
pl— = as { — oo

D)D) =1 HBD) = Fgb)

We can summarize the above result in the following theorem.



Theorem 4. Let 67 = (% b") = (0. py', ), (20, p2, ..) be the central equilibrium for the game
P, D07y given by Theorem 1. If there exists a homogenous function 1{D) such that

PNy -1 as D — oo, then
DY = FDY
P EDY — D)

as — oo,

This theorem says that a sufficient condition for the central equilibrium probability of a bank
waiting in period t to become constant when t increases, is a homogencity of the price function for
the large values of debt. We have not succeeded in finding any interesting necessary conditions for
this tvpe of stationarity of banks” behavior to occur.

The following example fflustrates the claims of Theorems 2 and 4.

Lxample 4.1,

5
Let Dy = é— DD, = —3— Dy, D"=1, B=1.1. Let us also assume that the price function is
90
b1 —
Pp) = D+ 1
The central equilibrium local stratevies are
. g (L.Ly-t41 47 10 (Lly-14]
Wi—m——— — = =
PO Ty TRy T

As predicted by Theorem 2, pyf < py for every t, and as predicted by Theorem 4,
p ) / p ) I 3
0

p— .8 and fy‘—»—j'—) as = oo,

5. Proof of Theorem 1
For the proof we need a precise definition of expected payoffs from the subgame (¢, B2D).
An expected pavolf to bank i from the subgame (¢, £7D%) under 8" is defined analogously to (2.3)

by

)

(5.) HAb) = X (1= p)DPFDY pips + Spci = poy P =)
' T=1 k

-1

et
¢

i 13

foralli=0,1, ...
We may use the following form of the pavofl function
(520 I = (L= pADPED )+ pril = pOD PGB D) + popylly (b ),
which comes from
ALY = (1= paDPEDY + pr(1 — p DB D)

>0 -1 2% 1
+/”/’_'[ S l=p)DPBEDY 11 pips+ Y p(L=pDPE DY T /’x‘[‘z*:lv
Tor+1 k-1 T ko1

e
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5.1. The Necessary Conditions for a Subgame Perfeet Equilibrium with the Time Continuation

Property

In this section, we prove that any subcame perfect equilibrium with the time continuation
property must be either central, or alternating, or mutating given by Theorem 1.

We first prove that if in a subgame perfecet cquilibrium of (¢, #70") for some ¢ < ~1 a local
strategy combination (0, 1) is plaved in period m > 0, then the same local strategy combination is
played in period m— 1.

Lemima 1. Let ¢ and m be integers with t<—1 and m>0, and let b= CANY

={p. ) (e pr b)) be a subgame perfeet equilibrium for the game [(e. 70", Then if

(P, py = (0, i, then (p =1 po=ty = (0, 1).

By applving Lemma | repeatediy to m— 1, ..., 1. 0, the local strategy combinatien (0, 1) 1s played
in every period from ¢ = — Luntil ¢ = m. Thus if a local strategy combination (0, 1) is plaved in
some peniod m =10, then the subgame perfect cquilibrium b for a retrospective extension
[e, p2D27) of I'(0, D" gives a realization probability 0 to the game T'(0, D). It means that & induced

by &7 does not satisfy the time continuation property.

Proof of Lemma I. Without loss of generality we set i= | and j=2. Thus the expected pavolls
to banks 1 and 2 from the subgame T'(sn, £7D% under b are

Lo, gm0 (e pe =1, L) = Dy PR
(5.3) and

LA o, ), (P =y ) = Dl(B 1),
respectively.

Constder the subgame T'(/a— 1, £7-1D". In this game, we assume that the banks play

b = (b7, byy after period m. and then consider optimal behavior of the banks in period m— 1.

Thus we have one period game of period m — 1, whose pavotfs are given in the following table.



2
N, s W
1~
DPp-ton Dy P(Bm—1DY)
S
DP{p= 1D DDy
DiP(p=D)) Dy P(fpmD)
w
D P(fim -1 D:P(m D)
Table 3.

If the strategy combination 671 = ((m~ =1, b7), (7,71, &™) is a Nash equilibrium for the sub-
game ['(sn— 1, 571D, then the strategies py7 -1 and g™ =1 constitute a Nash equilibdum of the
game discribed by Table 3. We can calculate that the game of Table 3 has the unique Nash equi-

librium (p7=1, g7 =1y = (0, 1). /f

We look for necessary conditions for a behavior strategy combination to be a subgame perfect
equilibrium with the time continuation property. Consider a subgame perfeet equilibrium 47 sat-
1sfying the time continuation property. By definition, #” induces a Nash cquilibrium on every
subgame of I'(0,D%). Take subgames T(¢, /D% and I'(t+ 1, 7+ DY forany t=10, 1, ... We want
to find a relation between the equilibrium local strategy combination pf and 571, When b= is
fixed, the payofls from the subgame T(z, 20" depend only on the local strategies in period ¢, and

are shown in the following table.

2
. 5 W
1 \\
DL DY DP(pDy T
S |
DL D) D (p-10) 0]
DiP(peib) Hie oYy a——
W
DP(RDY  —(ift— I Ybh

Table 4.



If the strategy combination 5° = ({p/, =Y, (™, P Y) is a Nash equilibrium of the subgame
[(¢, p2P7, then the strategies pfand pyf constitute a Nash equilibrivm of the matrix game M(t)
discribed by Table 4.

We look for all possible equilibria in the matrix gne M(1), We have to consider the following
seven cases. The classification is made by comparing (i) pavofls for bank 1 in the second column
and (ii) payoffs for bunk 2 in the lowest row.

179 DD > M= b Y and DP(FDY) < H-'(b- ). There exists only one equilibrium
pr=0andp’=1 in the game M{t). The equilibrium payoffs from the game I'(r, f*D") are

HA(DY = DPEDY and 10 = DL D)),

20 DiP(BD) > MW br- Y and DP(BDY) > I (b 1), There exist three equilibria in the game
M(t). Two of them coincide with the equilibria of 17, and the third one is a mixed strategy equi-
libriom given by

DB =Dy — D.PFDY

- . 13 i,
O PPy I ) fori =12 (=)

The equilibrium pavolf to bank i from the gamne T°(¢, #7027 when the mixed strateeies are plaved is
q pa g s piay

by = DPED").

37Dy > Hy-ibi-y and DP(FDY) = [ -'(b- ). There exist two tvpes of equilibria in
the game M(t):

(1) mi=0and p' = I;
D.P(R D)y — DPEDY
])1[1(/;"' }1)]) — 1[1“ ’ l(b‘r - E)

(il) p-=land p'ef0,

The equilibrium pavotfs from the game [(¢, £7D7) are, respectively,
(1) )y = DD and (b = D,P(R 1Dy,

(if) () = (1= PN PR WD) + pilde (b1 and T1(b7 = DB,

42 18 DDy = T Y0 ) and DP(BDY) > L -Yb-1). ‘There exist two types of equilibria

in the game Mi(t):

16



(1) pr=land p' =0,
DB D0 = DL

' Dy "Dy — 110 1(b- D

(11) m'e[0 Jand = 1.
The cquilibrium pavotls from the game (¢, F:D7) arc, respectively,
(i) Iy = DyPpr =Dy and 1109 = DP(BTD);

(ii) I = DyPUED™Y and 1100 = (1= pYDPBE - D5) + prl L= (b)),

59 DD < 1Yy and DD = o Yb ). There exists only one type of equilibria
i the game M(t). namely

pt=Tland prel 1].
The equilibrium payoils from the game (¢, f7D") are 115 = (1 — p3DLP 1Dy + pidlr= b Y

and 10 = D P(gDY.

67 W DWP(BDY) = Hy- (b= and DyP(B'DY) = Tt Yb Y. There exist two tvpes of equilibria:
(1) pel0, 1Tand gy = 1,

(i) = land prel0, 1].

The equilibrium payoffs from the game (¢, f2D") are, respectively,

(1) Hehy = DWPEDY and (b)) = (1 — p)D:2LB D) + prdL PEDY;

(i) H(D) = (1= p) DL D) + po! Dy PUEEDY) and T(bY) = DL P(fDY),

77 DP@T) < MO ) and DL PIETDYY < [N b, There exists only one equilibrium
= land o= 1in the game M(t).
The cquilibrium  payofls  from  the game T(y, §D%  are  H/(h)=H/'-'(0*))  and

by = Hy = (b 1),

Irom the conclusions following Lemma | we know that the pairs (0, 1) and (1, 0) cannot be
local strategies of any subgame perfect equilibrium with the time continuation property for the
game F(0, D). Thus, we can immediately exclude 19 as impossible. By the same argument, we

can also exclude equilibrium (1) in 37 and 42,



We observe also that 57, and 6% cannot take place for any ¢ This is because in any of the
above cases the cquilibrium pavoffs 77759, 11y(6%) do not satisfy the conditions 57, and 6°.

We show that 79 is not possible, cither. Observe that if the payofls /1,7 -'(b=1), 71,0 (b -1
satisfy one of the conditions 17 — 67, then the cquilibrium payoffs 11,5, 11,(b% do not satisfy the
conditions 7% Thus, if the equilibdum pavofls 17,(7), [5(d) would satisfy assumptions of 72,
then the payoffs f1,7=¥(br-1), 77;7-1(b*+ ") could only satisfy the assumptions of 77. By induction,
the payvotfs 117(&7), Iy (b7) for all 7> ¢ could only satisty the assumptions of 79, But then, the
players would play an equilibrium local strategy combination (1, 1) from the time ¢ on, and it would
hold that [1'(b7) = 11,7(h7) and [1}(b7) = [1;(&7) for any = (x = ¢). However, the strategy combina-
tion &' = ((1, 1, ...), (1. 1. ..)) 1s not a Nash equilibrium for the game I'(¢, #7D%), because for « suf-
ficiently big D/P(f7-1Dy) < D P(ADY), and because [1(h7) = [1,7(h7) < IWP(F7-1D), it is better for
the player | to sell in period ¢ instead of waiting.

Summarizing, the local stratcgy combinations which could cccur in any subgame perfect
equilibrium must satisfv: 22, 32 (i), or 42 (if),

Observe the following regularities.  If the payoffs 77,7=1(h 1), 1L -!(h 1) satisfy conditions

47, then the payvolls 11759, f12(I) satisfy the conditions

DDy = DPBDY) DL ) — DuPURED™
Dl D) — [ ) DO Dy — Ty b

27 when py'e( 1, and

DPUR 1Dy — D P(Re-1D)
DPBT D) — [y oy

37 when pf o=

If the pavoffs Hy-'(bt=1), I5y -Y(b*~") satisfy conditions 32, then the cquilibrium payoffs

H\(b), 169 satisfy the conditions

DIPBT= 1D = DI DIPPT DY — DPIRDY
DRt 1Dy — 1Y) DB Dy = I )

22 when  pe( J; and

DyP(ge- Uy — DoP(ss 1D%

DL Dy — Wy

32 when pf =

If the payoffs [/y b~ t), ILy-}(b-1) satisfy conditions 22, then the equilibrium  pavoils

(b)), 1y(D7) satisty the conditions 27 as weil,



Therefore we can identify exactly three types of candidates for a subgame perfect equilibria of
the game T'(0, D) satisfying the time continuation property. The first type of candidates are strat-
egy combinations which in all games T'(¢, 207 give the pavolls satistying the conditions 22, There
is only one such strategy combination and it coincides with the central cquilibrium given by (3.3),
The sccond type of candidates are strategy combinations which in the game (s, p:D™ mve the
payoffs satisfying the assumptions of 32 when ¢ is even (odd), and the assumptions of 42 when ¢ is
odd (even). There are two such strategy combinations and they coincide with alternating equilibria
given by (3.4) and (3.5). The third type of candidates are strategy combinations which in the game
T(¢, 107 give the pavolls satisfving the assumptions of 27 for all ¢ smaller than or equal to
T+ 2(r 2 —2), and the assumptions of 32 for 1> 7+ 2 and ¢ even (0dd), and the assumptions of
4% for t>7+ 2 and ¢ odd (cven). This set of strategy combinations coincides with the set of
mutating cquilibria given by Theorem 1.

‘Thus we showed that any subgame perfect equilibrium of the game T'(0, D7) satisfyving the time

continuation property must be central, alternating or mutating,

5.2. 'The Sufficient Conditions for a Subgame Perfect Equilibrium with the Time Continuatjon
Property
It remains to show that the strategy combinations cailed central, alternating and mutating are
indeed the subgame perfect equifibria with the time continuation property.  First, we prove the
following lemmas.
Lemma 2. For any t and any b'e/7 it holds

D, b7) = DDy = [ (e b1y = DB - D] T pipt Torall 22 1
Proof. Trom (5.2) and (3.3), we have
by, f;,v") = DLPDY) = (1= paD LD + pi(L=paD LDy

+ R by = DD

= P b B — DB DY)

£ PP DL DY) — pADSPED) 4 pe DD DY — prpeD P D)

19



= [[[4: S, ];;_r- N — DR ll)f)):!rp::f)jr — P DIPEDS) = prps DL IDY — DOP(B DY)

+ p DL D)

= [y hr-t, [_’;jr— N—DPp 11)3)1;,‘:[',;.' — pDP(BDY)
P ID) = P
~PETD) = P

) (DL D) = D= DY) + prDP(B D)
=[Il: b1, [;J:- N — DB ]DD)][J,"[A’,’,
1.e., Lemima 2 is true for « = ¢ By induction, we obtain the claim of Lemma 2. i

Lemma 3. Tor any ¢, any b%.and t > ¢ it holds

D LH 1) = DL D Tt = 0 as = o
k.r
2) [ (b= = DPEDY] It — 0 as 7 — oo
k=1

Proaf. The expected payolf to bank i from the game [(z + 1, 7 'D% cannot be higher than the
pavoll when bank j sells in period =+ 1 and bank i waits in period T 4+ 1 and sells in period © + 2,
re, HeWb=h < DALY for r=0,1,.... By (2.1) P(f-2D) — 0 as T — co. Thus, since the
pavoll to bank i is nonnegative, we have I1,7- (b 1) = 0 as 1 — oo. Because IT][’J ‘m* < 1forany

LU

T=¢ and, by (2.1) P(f'D") = 0 and P(BD%) — 0 as T — oo, we have the claim of Lemma 3./

Here, we prove that the behavior strategy combination " called central is a subgame perfect
equilibrium of the game (0, D% with the time continuation property. From Lemma 2 and Lemma

3 we have that for every ¢
(5.5) 11, by = DD for any bre B,

By (5.5) [140) = D.P(FD"), thus

A

I1:(b, by < H by, B) for every t and any bre By,

20



t.e., bank i has no incentives 1o deviate from its strategy bt for every t. Thus the strategy combi-
nation 57 called central induces a Nash equilibrium on every subgame of the game T'(D, D), ie., b
is a subvame perfeet equilibrium of the game (0, D).

The central equilibrium b satisfies the time continuation property, because for every 1< —1

the strategy combination &' is a subgame perfect equilibrium of the retrospective extension

-1
[(¢, D7) of the game T(0, D) and the realization probability []p: 7 of the game T(0, D?) is pos-

T= !

itive.

The following lemmma will be used to prove that the behavior strategy combination 5 called
alternating is a subgame perfect equilibrium of the game T°(0, DY),
Lemma 4. For any b7e B2 it holds

1) forevent

L2757, 7= ) = DL D

%
2

23 -2
S [DLPEEIDYY = DD = pE Y [T pipt
k=t

s=(r~-2y2

forr=t+2,c+4, ...,
HiAb by — DPED) = o
LI (b j)j‘r' Y= DL DY) Irl/".‘p"k

(r 12 et

2s
+ S DDLU D) = DLEEDY = pE ) ] | pip
ko=t

s=r2
fort=t+11t+3, ...,

2y foroddt

L1 (073 =) = DD [t

T2 hoe 22
t X IR DY = DR DY = i T i
s=Ar - )2 k=t

‘ forr=t+1,¢+3 ...}
[1b, b7y = DD~ DY) = <

[71:(h 1, ety = DL DY i
. (r—1y 2 =t 2
+ S [DPBEDY = DLEEDYYL — )] Lpi

s (- 132 k=1t
fore=1+2t+4, ...

-1
¢ We use the convention [ pfp* = 1.
kot



Preof. 1) Let t be even. Trom (5.2) and (3.4), we have

f{,-’(b,’y 5) - ])/’(ﬁ])') = (1 —[,l)[)tp(ﬁ[)W) + ptr[}j"[{,""l([)," ], [')?1- 1) B Dl[)(ﬂf])q)
= (12 be2 b=y = DPEDY g,

Conducting further substitution by using (5.2) and (3.5) for t+ I, we have
Kb by — DPEDY =

[(1 —PODLEIDY 4 pio WL = pi )DL D) + pi e o= 32, 5}; -2y 1),p([f'1)n)][’,’ﬁ,'

= f{- J(b:’ -2 &r “Op, ﬂrpvr- !ﬁr St DPp 21)"-)[/,[7&,/![,;{‘ 1ﬁ/_: -t D}])(ﬂ! B 21)“)[’.-’[1"[’1" - ]ﬂ)rtl

+ DL DN p L= pr oty DL IDppint (L= pr ) = DD ppS

- [[/,"‘2(/)4"2, 5:'2) _ D,[’([s’”zl)f’)}) "f’,-’ﬁz“ 1[;/_:4 + DB Il)n)prlﬁ)‘f(l —pih

= (DL D) = DL 2D Bt = P+ DL 2Dp pips =\ — DD

— [[11.' - 2(11)'4"2‘ 5}1 - 2) _ ])J)(ﬁl - 21)")1[,_’:/;_1[,11" I[:Jr -1 1),[)([)” - ll)f‘)/,:rﬁl_r(l _ p;lv l"
PUR-2D) — PR

—DPg-2DY = DPG 1D 4[er','r‘l : : .
LDLB2D) — DPG 2D ])pipp, P Dy~ P

+ DPB D ppt st = DPBD Y py

_ [”!,‘3([)‘, -z [,/,,3) . Dlp(ﬂ“z])‘q):l/’.«ﬂ’[’r“ 1[1_1 U DR 1])4)}7:,1;,];(1 —pi
+ DL D pipips -t = DL DYpips

= (1032, 002 = DL 209 [pfpi= =1+ TDP(S DY) — DPE DY = pr =),

le, Lemmad)istrue forr =14 1.

Using (3.2) and (3.4} for t+ 2, we obtuin

LD bY) = DD = [0, B3y = DL DY |pifype i i 32

+ [D:l){’!))' DY — Z)J)(ﬁ;pn)ln.-ﬁ‘;(l —pieny,



ie., Lermma 4.1) is true for r = ¢+ 2. By induction, we obtain the claim of Lemma 4.1,
2) By analogous induction, we obtain the claim of Temma 4.2).

Here we prove that the behavior strategy combination b0 called alternating is a subgame perfect
equilibrium of the game T°(0, D" with the time continuation property. Tor a complete proof it 13
necessary to show that banks 1 and j do not have any incentives to deviate from their strategies in
b = (/;;’, Z;_,") fort=0,1, ... Since the proof for the bank j goes allong the same lines, we show only

that bank i docs not have any incentives to deviate from its strategy b for t=0, 1, ... .

Since p» 1= 1fors=1, 2, ..., it follows from Lemma 3 and Lemma 4 that for cven t,
(5.6) () = DD,
and for odd t,
(3.7 1[5(5’) = D.PpDY,

From Lemma 4.1) we have that for even f and any b'eBy

LA, by = DD < [ (b, Bty — DB D] Tpips fort=t+ 1,643 ..

k=1

Using Lemma 3.2) we obtain

I1(h, !‘3:’) =~ DDy <0 foreventand any bieB.
Applying (5.6) we have

by /;,-’) < [1',’(!;') for even t and any b'e B/,

i.e., bank i has no incentives to deviate from its strategy !;,’ for every even t.
In the same way, we prove that bank i has no incentives to deviate from its strategy by for every
odd t. T'rom Lemma 4.2) we have that for odd ¢ and any beBt
I1ibs [w,-’) — DL DY) < I 1(bT 1, l; N — 1),/’([6'1)”)]]"[/)“/3,“ forr=t4+1,6+3, ...
k=t

Using Temma 3.2) we obtain

I1:h, /;J’) = DL DY <0 for odd t and any bre B
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Applying (3.7) we have

14b5, by < 1A for odd t and any bre B,
i.e., bank i has no incentives to deviate from its strategy b for every odd t. Thus the strategy
combination 4 called alternating induces a Nash cquilibrium on every subgame of the game
6, D) 1.2, b is a subgame perfect equilibrium of the game (0, D).

The alternating equilibrium b satisfies the time continuation property, because for every
t < —1 the strategy combination biis a subgame perfeet cquilibrium of the retrospective extension
['(¢, pD) of the game I'(0. %) and the realization probability I—"l]ﬁﬂﬁz' of the game (0, D" is pos-

Tt
itive.

Now, we prove that a strateey combination b called mutating is a subgame perfect cquilibrium
of the game T'(D, D). By dJefinition of 5", b’ = b for t=+ +3, 1 +4, ... Since the alternating
equilibrium B is subgame perfect, the mutating equilibrium 5" induces a Nash cquilibrium on the
subgames  ['(r -3, 873D, T(x+4,p7¢D", .. It remains to consider the subgames
[0, DN, T(L DY, .., T(x + 2. fr-DY,

First, we consider the subgames I'(z + 1, 71D and (1 + 2, f* 2D, Since the local strategies
of banks in periods =+ 1 and 1 + 2 are asymmetric, we have to look at the incentives of each bank
to deviate scparately.

Consider the payoffs to bank i from the game ['(r+2, D%, T'rom {5.2) wc have
H b2 /)_Jw:) = (1= p = ODL(B2D% + pr=21 — 5= )DPB3D) + pr R LB, [;Jr*}l)_

Because [47-3(b3, !; N=1{73b3, 5."3) for all 57 3e B3, thus using (3.7) we have

122070 = (1= p )DL D) + fr= 2l (b ).
Since also 117 3(b73, 5_,"3) < M= 3(5"3) for all 773873, we have

[['r‘ 2(])“.'72' E" 2) < (1 _P,rv2)1<)r[)(/?'-‘ 2])-’]) _+_/)l-r¢ 2(1 _ﬁ}r«})[)lp(ﬁr+3l):) +p‘?~2/§'r»21],7~ 3(1).'*3)

= DLPB 2D + pr=2f = DLB2DY + DLBT2D) — i (DG D) — [ b 9N}
The term in the last square bracket 15 positive, because 1[1"3(/;"3) = D7D by (5.6) for
T+ 3, and pr-?is given by (3.7). Thus

[]l.r- 2([)‘.’»2] 5r~ :) < Dif’(ﬁ" 21)@) + 1 x| — Di[‘(}” 21)”) + D,[’( n3[)t) ~]—)_p 2 ])‘[)( P 11)') _ ”lrw({gw 3))
) 28N

(1= A DPET3D) + Fre 2l ().
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Therefore
He- b2, b2 < H2b ) for all b 2B,
i.c.. bank 1 has no incentives to deviate from its strategy 572 in the game ['(v 4+ 2, f7-2D").

Now, consider the pavoft to bank j from the game I'(z + 2, 2D, From (5.2) and (3.7) we

have

Hr=2(br 2 b3 = (1= pr ODPP D) + pr 2= (b3, b7 ).
Because F17-3b73, b Y) = /[,."3(5(*'3, b3 for all 7~ *e B3, thus using (3.7) we have
H E2) = (1= A 2D PFr=2D0) + e 21,3 ),
Substituting 11,"3(5’“ ) = D.P(B7= D7) which follows from (5.7) for = + 3, we obtain
Ho=3b 1) = DL,
Since also [{,-’”(5,"3, b=y < /= 3(!;-"3) for all b -3 B2 we have
H=2b-2, b7y < (1 — PITHDP(R2DY + pr e 3(1;"3) = D,P(fT2DY).
Therefare
1732 by = H=2(b7 ) for all b el
i.e., bank j has no incentives to deviate from its strategy 5,"2 in the game I'(z + 2, f7-21D").
Consuder the pavolt to bank i from the game T'(r + 1, f1D%. From (5.2) we have that for
any b7 le Bt
(b by = (1~ po- DDPE DY+ pr= (L — B YDLPETD) + pro g U (b2 b Y,
Because 17,3073 = (1 =P DLE D) + pr2DPB 3D, thus

=iy = (1 — P YD 1)) + pr (1 _}5)’:‘1)1)[1:([;7-2[)‘) +ﬁrf1[_,j'r'~11{'r> 2(/}'2)

= (L= p= DL DY + pr= (1 = pr HD.L(B=2D)

+ B (DL DY = B DL BD) — DG D)]

= (L= 0DLB™ DY) + i 1D P 2D)

~ BT B LD DY = DT D) + B ADLBT DY) — DT D],
Substituting (3.6) we obtain

Hr=vhe=y = DL 1D,
Stince also [f7-3(h7 -2

, i—{."z) < I3 Hforall h'eB 1 we have

H7=3h7 2, 57 < (L= pro )DL DY) + pe (1= B 0DPIFT2D) + pr= e Ul 32

to
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= (L= p = YDLEDY + pro (L= B )DL
I B IDLPTD) — B DL D) — DG D]

= (L= p)D.LB= DY + pr I DPPT D)
=P DL 2D) = DL D) + B (D.L(BT 3D — D.L(F3D)].
Substituting (3.6) into the last expression we obtain
Hr=Ybr=1,b7-1y < D.P(B DY) for all b7 te B 1.
Thus
Wb by < LYY forall by teBr !,
ie., bank i has no incentives to deviate from its strategy hr-Vin the pame I'(z + 1, g7=1D7).
Now, consider the pavoff to bank j from the game It + 1, f1D%. From {5.2) we have
7073 07 = (L= pr= Y DR D% + (1 — - DOLP(F2D,)
B bt ),
Because /7,7 4(b ) = D P(f7-2D%, thus
H B = (U= F YD DY 4 e (1= pre DD P 2D + i e D, P20
= DL ) = IO D7) — DD + e (D P 2D — D, PR D).
Substituting (3.6) we obtain
[ =Yb 1) = DP(BT 1D,
Since also /722, b3 < 1272 for all br-1el Y, we have
(b 07 ) < (L= DDPB D7) 4+ pr= (L = A= DD, LB 2D) + Fir= o - (br2)
< (L= pr )DL =D + =YL= B DB 3D,) + pr o= 1D PST 2DY)
= DL DY) = pr (DL DY) = DL 2D) + = (D, PRT=2D,) = DP(F2DY)).
Substituting (3.6) into the last expression we obtain
134 b ) < DT 1D?) for all hr-tefr-1,
Thus
b=t by < 1 (B forall b leBt,
i.e., bank J has no incentives to deviate from its strategy E,"‘ in the game I'(z + 1, B7'DY).
Consider the payolt to bank i=1, 2 from the game (¢, D7) for =0, 1, ..., 1. By definition

of &' = (0Pt P et Ly pr=pifor =001, .., 7. It follows from Lemma 2 that
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HAB by = DD = [11- (b4, Bty — DR 11)0)]}"1;),*;’1.‘».
.
Because /7 b N =DP@ DY =0, thus
1By = DL D).
Since /{7 1(h7 -1, 5,‘” N < 1 0b Y for all b7 leB -1, we also have
b by — DPBDY<0 fort=0,1, .., 7 and for all beB.
Thus we obtain
b by < i) fort=0, 1, ..., and for all bre B,
L.e., bank i has no incentives to deviate from its strategy b—,’ in the game [, D% fort=0, 1, ..., 7.
Therefore the strategy combination 87 called mutating induces a Nash equilibrium on every
subgame of the game (0, DY, f.e., A is a subgame perfect cquilibrium of the game (1), D).
A mutating equilibrium 5" satisfics the time continuation property, because for every ¢ < ~1
the strategy combination & is a subgame perfect equilibrium of the retrospective extension
-1

['(e, D7) of the game I7(0, D) and the realization probability [ of the game (0, D) is pos-

=1

itive. /!

6. Conclusions

I the present paper, we consider the problem of debt overhang, formulating the problem as
an infinite horizon game with two banks as players. We find that there exist three types of subgame
perfect equilibria with the time continuation property which are called central, alternating and
mutating, respectively (Theorem 1), However, the strategies of banks in every equilibrium do not
differ much from the strategics of the unique central equilibrium. Therefore the average attainable
pavolfs are almost uniquely determined.

Our game constitutes a dynamic version of the one-shot game of lender banks given in Kaneko
and Prokop (1991). Kancko and Prokop (1991) focused on the behavior of a larce number of
banks in a short period. Since the underlyving story is dynamic, an impertant cxtension of the
previous analvsis 15 a direct dynamic approach to the banks’ behavior. Saertficing the insight into
the behavior of a large number of banks obtained in Kancko and Prokop (1991, we investigate the
long-run behavior of banks in the presence of the secondary market for debis.

The central equilibrinm gives the local equilibrium strategics in each period which coincide

with the equilibrium of the one-periad game of Kaneko and Prokop (1991), This link between the



two formulations allows us to use the one-period approach without losing the dyvnamic nature of
the problem, 1.¢., we obtain a decomposition property of our dynamic gaume into the one-period
games. Both approaches are complementary in that the one-period model is static but enables us
to discuss the effects of a large number of banks, and the dynamic model helps us to understand
the long-run behavior of banks but it is too complex to consider the behavior of many banks.

The Polk theorem does not hold for our repeated game, since a deviation of one bank causes
its exit from the game and takes away a possibility of punishment by the other bank. In each
equilibrium of the dynamic game, the average attainable payoff is almost uniquely determined on
the contrary to the Folk Theorem.

In every cquilibrium each bank waits in every period with a relatively high probability, and
when the interest factor is close to 1, the probability of waiting is close to 1, as well (Theorem 3).
We also show that when the price function is approximated by some homogenous function for the
large values of debt, the probability of a bank waiting in period ¢ becomes constant as ¢ increases
(Theorem 4). The constant is close to | as long as the interest factor is relatively low. It sugaests
that the situation of debt overhang may remain unchanged over time.

In addition, we show that along the central equilibrium path, in every perod a bank with a

higher loan exposure hus a higher probability of waiting than the other one (Theorem 2).
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