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Abstract

In a stochastic game of dividing a cake by majority, the simplest
equilibria are the Baron-Ferejohn (1989) ones. The formal definition of
simplicity and the computational methods of the equilibria make use of an

automaton measure of complexity adopted for stochastic games.



1. Introduction

This paper applies complexity analysis to select and compute simple
equilibria in a political stochastic game that has an infinite number of
subgame perfect Nash equilibria. The game involves dividing a cake by
majority rule, and Baron and Ferejohn (1989) have shown that all divisions
can be supported as subgame perfect Nash equilibria if there are at least
five players and the discount factor is sufficiently high. The equilibrium
strategies that support these divisions, however, can be quite complex, so
it is natural to ask if there is a focal point for the set of equilibria. A
focal peint is an outcome to which all players naturally can direct their
attention. One focal concept is simplicity, since if players understand
that there are an infinite number of equilibria, it seems natural for them
to begin by contemplating simple rather than complex ones. If there is a
unigque simplest equilibrium, then it has a natural appeal as a focal point.

This paper demonstrates that there is a unique (in payoffs)} simplest
equilibrium for the game of dividing a cake by majority, where "simplest” is
defined in terms of the number of states of the automaton required to play
the game.

Our approach to selecting simple equilibria differs from that
proposed by Rubinstein (1986) and Abreu-Rubinstein (1988). Their approach
led to the selection of an equilibrium which is as simple as possible from
the point of view of an individual player, taking as given the behavior of
the other playvers. This will be referred to as individual complexity. Our
approach assumes that players facing a set of equilibria, many of which are

appealing, will select the equilibrium that is simplest. Thus, we develop a
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concept of equilibrium complexity that applies to the equilibrium itself
rathep than to the strategies of an individual player taking the strategies
of the other players as given. Equilibrium complexity then can be used to
characterize the simplest equilibria, and those serve as a focal point (see
Schelling (1960)} for players to choose their strategies. Those strategies
then will themselves be simple. By serving as a focal point, equilibrium
simplicity then selects certain equilibria from the set of equilibria, and
for the game of dividing a cake by majority, the equilibrium selected is
unique.

We see evidence of the use of simple focal points in many examples, the
most familiar of which is perhaps the repeated prisoners' dilemma game.

When one is first introduced to this game, one tries the constant-cooperate
and constant-defect strategies, which are the simplest strategies for this
repeated game. After discovering that these solutions are not satisfactory
(total cooperation is not at equilibrium and total defection is not Pareto
efficient), one searches for the next simplest equilibrium strategies:
tit-for-tat and trigger strategies. Often the analysis stops here, since
these are sufficient to achieve the best outcome and there is thus no need
to look for more complicated ones.

To illustrate the difference between the approach proposed here and the
one of Abreu-Rubinstein, consider the repeated play of a two-person, pure
coordination game (both players are paid 1 if the combinations top (T)-left
(L) or bottom (B)-right (R) are played, and O otherwise). The game is
played at discrete times, t = 1,2,3,..., and let T denote an infinite set of
fairly irregular times. For example, suppose T is the set of times which

are prime-number integers. Consider the following equilibrium strategies.



3
At times t € T, the players play (T,L) and at times t € T they play (B,R).
It isveasy to see that this is an equilibrium strategy in which each player
chooses the simplest possible best response strategy, given the choice of
his opponent (these are actually unique best responses). Thus, this
equilibrium satisfies the individual complexity criterion of
Abreu-Rubinstein for players with low complexity costs (lexicographically
considering complexity costs after "real" payoffs).

However, in the above example, it is difficult to imagine that the
players will choose such a complex equilibrium. It seems most likely that
they will settle on always playing (T,L) or always playing (B,R). These
strategies also yield Pareto optimal payoffs, but they are much less
complex. Our concept of equilibrium complexity identifies these two
equilbiria as the simplest of the set of equilibria.

Of course, if the payoffs of (T,L) and (B,R) were not symmetric, then a
further restriction on the criterion could be used, which may yield a focal
point. For example, in the battle of the sexes game, the players may select
an equilibrium alternating between (T,L} and (B,R), which is the simplest
among the symmetric Pareto efficient ones. This then serves as a natural
focal point.

We apply the approach of equilibrium simplicity to a game of dividing a
cake by majority. The specific measure of complexity (simplicity) we use
is that defined by finite automata as suggested by Aumann (1981), and used
by Ben-Porath (1986), Neyman (1985), Rubinsetin (1986), and others (see
Kalai (1987} and Sorin (1988) for surveys of this literature). However, in
order to allow for subgame perfection, we use the modified notion of

automata as defined by Kalai-Stanford (1988). These automata allow as part
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of the input the actions of the automaton user himself so that subgame
perfeqtion can be addressed. Also, unlike the above mentioned papers, the
automata discussed in this paper play a stochastic game (see Shapley (1953})
rather than a repeated game (see Kalai-Samet-Stanford (1986) for automata
playing stochastic games).

The principal results of the analysis are that the simplest equilibria
are unique up to which players constitute the majority and that these
equilibria are the ones suggested by Baron and Ferejohn {1989), which seem
natural from a number of intuitive considerations.

A by-product of this analysis is a demonstration of how complexity
analysis can be used in computing equilibria of infinite games. While
backwards induction cannot be used for infinite games, finite complexity can
replace it by reducing the problem to one of solving a system with a finite
number of equalities and inequalities. This approach combined with
simplicity is equivalent to Baron and Ferejohn's approach to characterizing
stationary eguilibria. As in Baron-Ferejohn, we use the concept of subgame
perfect Nash equilibrium refined to exclude the use of dominated strategies

in any stage game.

2. The Game and Equilibrium

Our game consists of n playvers wishing to divide a unit cake.
It takes a "majority" of s players, 0 < s < n, to force a division and the
rules of the division game are as follows. In the first stage, nature
selects one of the n players at random as a proposer. The proposer,
whose identity is made public, chooses a proposed division

r = (rl.r ..rn) consisting of n nonnegative rational numbers summing to

R



5

no more than one, where I'y represents the proposed share for players

i =1,2,...,n, respectively., After r is made public, simultaneously each
player votes yves (Y) or no (N) on the proposed division. If at least s
players vote Y the game ends, and the payoffs are r. If fewer than s people
vote Y, then a new, identical stage game is started with a new independent
draw of a propocser, and so on. The division game therefore either ends with
some division r or goes on forever without reaching an agreement.

If the game ended by an acceptance of a proposal r, the overall payoffs
of the game are given by the vector r, or if the game goes on forever, the
payoffs are the vector (¢,0,...,0). Discounting could be used in the
evaluation of payoffs but the analysis would be the same except for added
non-enlightening symbols and computations.

In this game we allow the use of behavioral (mixed) strategies. Thus,
a player's strategy consists of a probability distribution over his pure
choices following every feasible history of past pure actions. When
behavioral strategies are used, payoffs are evaluated by their expected
values.

As Baron and Ferejohn have shown, this game has an infinite number of
subgame perfect Nash equilibria. Indeed, if the number of players is at
least five and the discount factor is sufficiently high, all divisions of
the cake are subgame perfect Nash equilibria. Some of the equilibria are
very non—-intuitive, such as the one in which each proposer in each stage
proposes that player 1 receive the whole cake and everyone votes for that
division in every stage. This equilibrium is supported by infinitely-nested
punishment strategies with the property that no player prefers to deviate

from equitibrium play because that player will be punished by receiving zero
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in the subsequent play of the game, both on and off the equilibrium path.
To avoid peculiar equilibria allowed by majority voting, we will

restrict our attention to stage undominated equilibria, i.e., those with the

property that at any induced stage game none of the players use dominated
voting strategies. More precisely, starting with a strategy configuration
f, we consider stage games as described above, and with payoffs assigned to
each terminal node according to the expected payoff in the subgame following
the terminal node of the stage game under consideration. Thus, if a stage
game ends with a majority "yes" vote, the induced payoff in the stage game
is the division just accepted. If a stage game ends without a final
division, the associated payoffs will be the expected payoffs in the
original game following that node when the strategies of f are followed. We

say that f is an equilibrium with stage undominated strategies if the

strategies it induces in every stage game are not dominated.

3. Automata and Complexity of Strategies

An automaton describing a strategy of a player is a triple

((M.mo),B.T). M is a set of states of mind of the player with m, €M

denoting the initial state. The behavior function B chooses a probability

distribution over actions, B{(m), for every state of mind, m. In this case,
actions consist of proposed divisions, Y and N votes, or rest (no action;

because it is the time for another plaver to act). The transition function

T chooses a new state of mind, T(m,g). for each previous state of mind m and
an input message o. Input messages here can consist of the names of
selected proposers, proposed vectors of divisions., or vectors consisting of

Y or N votes.
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We restrict ourselves to automata that play coherently, i.e., generate
"legal actions" upon receiving "legal messages." Thus, the automata "know"
and "follow"” the rules of the game. To illustrate the representation by an
automaton, Figure 1 presents an automaton description of a certain prima
donna strategy for player one in a three player division game. In this
figure, the circles represent states, and the entries inside the circles
describe the distributions over actions chosen by the player at the
corresponding states. Lines with arrows describe the transition function,
and rest corresponds to when another player has a move as proposer, or when
nature moves.

Player 1 is a prima donna because he is insulted forever (moves into
the boxed area) if player 3 were ever chosen to propose or if player 2 were
to offer him less than 90 percent of the cake. In the boxed area, he votes
N with probability 1 and if called upon to propose, he proposes that he take
everything. Before entering this absorbing mood, this player will vote
almost surely Y (probability .99) on proposals giving him at least 90
percent and on any of his own proposals. His own proposals will give him
either 100 or 90 percent, sometimes offering 10 percent of the cake to
player 2.

Following an argument similar to the one in Kalai-Stanford (1988) (see
also Kalai-Samet-Stanford (1986)), we know that every strategy can be
described by an automaton (possibly one with infinitely many states). We

define the complexity of a strategy to be the minimal number of states of an

automaton describing it. Our objective now is to characterize the simplest
equilibria--more precisely, the equilibria in which the complexity of the

most complex player is minimal.
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We will first describe the familyv of Baron-Ferejohn equilibria. These
are subgame perfect equilibria with stage undominated strategies in which
each player uses strategies of complexity four. Then we will show that
every subgame perfect equilibrium with stage undominated strategies in which
each player uses strategies of complexity four or less is from this family.
Thus. these are exactly the simplest subgame perfect equilibria with stage

undominated strategies.

4, The Baron-Ferejohn Equilibria

We first define a Baron-Ferejohn (BF) strategy for player i by an

automaton as in Figure 2.

The collection (dl.pl) . consists of a finite set of pairs.
q-q q€Q
Each d; is a proposed division in which s -~ 1 players other than i are
offered 1/n, i is offer [n - (s - 1)]/n, and all other players are offered
0. P; is the probability that i will propose the vector d; and thus } i
qeqQ
1.

Pi =
q

Notice that at a BF strategy a plaver selected to propose chooses at
random a minimal winning coalition (which includes himself). He offers each
member of the coalition the average amount 1/n, and he proposes that he take
the rest.

A vector (fl,fz.....fn) of BF strategies is said to be balanced if all
the players have equal probability of being included in minimal winning
coalitions when added up over all proposing players (recall that all the

proposers are chosen with equal probabilities). It is easy to check the

following.
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Figure 2

Each d; consists of s - 1 players receiving 1/n and i receiving

{n - s + 1)/n. P; is the probability that i propose d;. Thus,

X ,Pj=1.
kqeq" 9
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Observation: A balanced vector of BF strategies is a subgame prefect

equilibrium with stage undominated strategies.

From now on we will refer to a balanced vector of BF strategies as

BF-equilibrum.

5. Computation of the Simplest Equilibria

Theorem: f is a simplest subgame perfect equilibrium with stage undominated

strategies if and only if f is a BF-equilibrium.

Proof: We have already discussed in the previous section that BF-
equilibria are subgame prefect equilibria with stage undominated strategies.
‘Since in these equilibria each player uses a strategy of complexity four, we
conclude that: at a simplest subgame perfect equilibrium with stage
undominated strategies each player must use a strategy of complexity four or

less.

So we assume for the rest of this section that f is a fixed simplest
subgame perfect equilibrium with stage undominated strategies. Thus,
complexity of fi <4 for i =1.,2,...,n. We will show that f must be a
BF-equilibrium.

Each automaton for fi must have at most 4 states with one state in
which it rests, one state to make proposals, and one state for voting. If

the automaton had two resting states, then its behavior in all other states
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is fixed and one can combine the two resting states into one te obtain an
equivalent 3 state automaton. So we assume without loss of generality that
each player has exactly one resting state.

It follows that at the beginning of every stage game (when nature draws
a proposer at random), all n players are in their unique resting state.
Thus, the induced strategies of all the players are the same at every
subgame starting with nature's move. We therefore make the following

claims.

Claim A: There exists a fixed vector eof "continuation values"”

(Vv

2....,Vn). with Vi > 0 and E?—l V. £ 1, representing the expected

1

payoffs to the n players at the beginning of each stage game (starting with

nature's move),

Claim B: In every stage game, if a proposal d is being voted on, then
player i votes Y with prcobability one if di > Vi' and N with probability one

if dj < vi'

Claim B follows immediately from the fact that the equilibrium

strategies are not dominated in every stage game.

Claim C: Vi >0 for i = 1.2....n.

If Vi = 0, then there are players jl'j2""'js—1' all distinct and
distinct from i with Vi + ¥ Vj < 1. Thus, when player i is selected to
r
propose he can guarantee himself (given the strategies of his opponents) a

positive amount by giving each player jr strictly more than V giving

K

r
himself more than zero and have all s players voting Y. Since he has a
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positive probability of being selected. his expected payoff must be

positive.

Claim D: Every proposer proposes to a "least expensive” coalition of size

s -1, i.e.. to a set of players jl'jz""'js—1 with minimal sum of

continuation values (% Vj }. In such a coalition he proposes Vj to each
r r
participating member and the rest, 1 - } Vj . to himself.
r
This follows from Claim B since it imples that he can guarantee himself

1 - m1'n{j } by Vj - ¢ for all €. Thus, since he is best responding he must
r

r
pay himself at least 1 - } Vj - ¢ for every € > 0, i.e., at least

1-TV Since the only wa§ for him to obtain this payoff is by having
j

his propgsal accepted, it must be of the type described. and
Claim E: Every stage game ends with an accepted proposal and [ Vi = 1.

im F: V, 6 = = ... = = .
Claim 1 V2 Vn 1/n
Suppose the above equalities do not hold. Then, without loss of

generality, by rearranging the names of the players. we can assume that for

some j,

Case 1. s < j.

In this case, player n is never proposed any positive amount by any
player other than himself. Since his probability of proposing is 1/n and 1
is an upper bound on what he can get when he proposes, 1/n is an upper bound

on Vn. But this contradicts the fact that he has the largest Vi and not all
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Vi's are equal.
Case 2. s 2 j.

In this case. every proposer must propose at least V. to player one.

1
Moreover, when player one proposes, he receives strictly more than Vl.
Thus, we obtain that V1 > Vl‘ a contradiction. Hence, from Cases 1 and 2,

Vi = 1/n for all i.

Since each player's Vi = 1/n, he must accept proposals giving him more
than 1/n and reject any giving him less than 1/n. Therefore, every player
must have two states for voting, one for resting, and one for proposing.

Moreover, he must accept proposals giving him exactly 1/n, since
otherwise his Vi would be strictly smaller than 1/n. Also, each player
proposes 1/n to all the members of a randomly selected coalition of s - 1
players with the remaining [n - (s - 1)]/n to himself. Thus, each player
uses a BF strategy.

Since under the strategies described above all Vi's egual 1/n only if

the proposals are balanced, we conclude that the players must be playing a

BF-equilibrium.
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