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Abstract

This is a study of the economie behavior of vendors of service in competition. A simple
model with two competing exponential servers and Poisson arrivals is considered. Each
sorver is free to choose his own service rate at a cost (per time unit) that is strictly
convex and increasing. There is a fixed reward to a server for each customer that he
serves. The model is designed to study one specific aspect of competition. Namely.
competition in speed of service as a means for capturing a larger market share in order
to maximize long run expected profit per time unit. A two person strategic game 1s
formulated and its solutions are characterized. Depending on the revenue per customer
served and on the cost of maintaining scrvice rates, the following three situations may
arise. (1) a unique symmetric strategic (Nash) equilibrium in which expected waiting
time is infinite: (i) a unique symmetric strategic equilibrium in which expected walting
time is finite: and (iii) several. non symimetric strategic equilibria with infinite expected
waiting time. An explicit expression for the market share of cach server as a function
of the service rates of the two servers 1s also given.



1 Introduction

Our objective is to study the consequences of competition on service speed. We consider
a population of potential customers each of which may, at any time, need service. There
arc two firms (servers) in the market able to provide it. Service times are random and
cach firm is free to choose independently its mean service time. The optimal choice of
mean service time, in the presence of a competitor, is the subject addressed.

Problems of finding optimal (static) policies for choosing service rates are not new.
They fall within the general arca of optimal design and control of queueing systems
and are classified as optimal design problems (Crabill, Gross and Magazine [2]}. For a
more recent review of the subject see Teghem [6]. In these problems there is usually a
choice among several options regarding the structure of the system, given data on the
service environment. The choice could be between different service rates, number of
servers, queue disciplines, different rules for allocating customers to servers ete. Under
a specified cost structure the designer has to choose, int an optimal manner, among the
available options.

However, in studying the economics of service facilities, issues of incentives and
competition also enter (customer’s incentives to join a queue and competition among
servers). Customer’s incentives and their implications on social welfare were studied by
Naor and his followers (see Bell and Stidham [1]). Here we study the role of competitive
incentives on serves. We do so by constructing a simple queuing and cost model in
which the competitive element is analyzed in the case of two servers .

Specifically, the system we posit behaves as follows. When a new request for service
(a new job) arrives and both servers are free, the job is dispatched to one of them at
random. If only one server is free the job is assigned to him and if no server is free the
job enters a pool (queue) of jobs awaiting service.

Under these assumptions it is clear that the server with the shorter mean service
time realizes a larger market share. The mean number of jobs (per time unit) that he
serves exceeds that of a server with a longer mean service time. Consequently, if each
job makes the same payment to his server, the faster server realizes larger revenucs.

On the other hand. faster service rates (short mean service times) are usually
associated with higher operating costs. Therefore, each server, secking to maximize
his profits, faces a tradcoff between revenues and operating costs.

Lode Li [3] was the first to address the issue of competition in the {not unrelated) context of
Inventory Theory.



For a single firm operating alone in the market, and under suitable assumptions on
costs and revenues, this trade off leads to a simple optimization problem. In fact, it will
be shown that its solution is a mean service time that is never below the mean inter-
arrival time. This is intuitively obvious since a monopolist whose service rate is the
same as the arrival rate is sure to capture the entire available market. Any service rate
exceeding the arrival rate will not increase the number of customers that he captures
but will incur additional costs. Unfortunately, at the monopolist’s service rate, the
expected waiting time is infinite, but this is of no concern to him since sooner or later
he serves as many customers as he desires. Since we are assuming no discounting of
future profits, the server will be able to maximize profits with a service rate that does
not exceed the arrival rate.

The situation is quite different in the presence of a competitor since then, a job
left waiting may be lost to the competitor. The determination of an optimal service
rate is more complicated since a server’s profit depends now not only on his own rate
but also on the competitor’s rate. Thus, we can view this situation as a two-person
(noncooperative) strategic game between the servers. Each seeks to maximize expected
profits by strategically choosing his service rate. Our objective is to solve this game,
i.e., to characterize its strategic (Nash) equilibria. A strategic equilibrium consists of a
pair of service rates having the property that each is optimal for the server who chooses
it, given that the opponent chooses the other rate (see for example Owen [4]).

The environment described above, and the mathematical problem it poses. are
designed to focus on one aspect of competition between servers, namely, speed of
service as a means to capturing a larger market share. This aspect is present in
many real competitive service environments. The areas of telecommunication and data
transmission provide examples of situations where speed of service is an important
competitive factor. For instance, long line telephone service in the United States
after deregulation involves competition among several carriers. Large customers often
subscribe to more than one carrier and use automatic controllers to dispatch telephone
calls (or transmit data) to the server who can provide switching first. Thus the faster
server realizes a larger market share.

The paper is organized as follows. In Section 2 we describe the queuing model, cost
and reward functions and define the servers’ strategic game. We also derive expressions
for the market share that each server captures as a function of the service rates of the
two competitors. Section 3 contains a complete characterization of the solutions of the
service game. The main result is summarized below.

If the cost of providing service is high then there is a unique symmetric equilibrium.
In it each server behaves as if he was a monopolist, competition has no effect and
waiting times grow beyond any bound. Here by "high cost” we mean that the marginal
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cost of providing service, at half the arrival rate, exceeds the reward from serving a

customer.

There is also a unique equilibrium, which is symmetric, when the cost of providing
service is low. Then, the sum of the equilibrium service rates 1s greater than the arrival
rate and the resulting queuing system is stable. Expected waiting times, in steady state,
are finite. Here by "low cost” we mean that the marginal cost of providing service, at
half the arrival rate, is smaller than half the reward from serving a customer.

The remaining itermediary case 1s when the marginal cost of providing service, at a
rate equal to half the arrival rate, is between half the reward from serving a customer
and the reward itself. Here we have a multiplicity of solutions. Equilibrium service
rates need not be the same but their sum must equal the arrival rate. Consequently
the resulting queuing system is not stable and expected waiting time is again infinite.
Note that only in this case may the market shares of the two competitors not be the

saime.

In Section 4 we describe the effect of changes in A on the equilibrium service rates
and discuss some possible generalizations of the present model.

2 The Mathematical Model

We consider a queuing system with two servers and unlimited waiting space. New
jobs arrive according to a Poisson process of rate A and service rates are pt; and g, for
Servers 1 and Server 2, respectively. When there are jobs waiting and a server becomes
free, one of the jobs proceeds to that server. A job that arrives when both servers are
idle is assigned randomly to a server. Finally, if a job arrives when one server is idle
and the other is busy, it goes to the idle server. The following results about this system
can be found in Rubinovitch [5].

When p; + g2 > A the system has a steady state distribution. Define the following
steady state probabilities.

P, : the probability that there are n customers in the system;
Pyo : the probability that server 1 is busy and server 2 is idle;

Py : the probability that server 2 1s busy and server 1 is idle.



Then,

P Lop
0 =
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where p = X\/(j; + y2) is the system’s load. Also, P, = P+ Py and forn = 2.3,...
P, =p"'P.

Now we want to compute the expected value, in steady state, of the fraction of jobs
served by server i. Let a;(uy, pt2) be this number. For this, consider first the mean
number of jobs per time unit that are served by server z. This is the same as the mean
number of jobs per time unit that enter service with this server which equals

P
A7O+)\P01+,111(P3+P4+)

Dividing by the expected number of arrivals per time umt (A) and substituting
according to the formulae above we obtain

Au? + papig(pn + p2)
M+ p2)? 4+ 2pa (i + 2 — A)

This is the expression for the market share of each server as it depends on his service

o pr) =

rate and his opponent’s service rate.

Our cost and revenue assumptions are as follows. We assume that the cost of
achieving service rate u (regardless of actual use) is the same for both servers and
equals ¢(;t) dollars per time unit. The function ¢(x) is assumed to be nonnegative,
increasing. strictly convex and continuously differentiable. Also, each server receives
R dollars per job processed.

Next we want to compute each server’s expected (long run) profit per time unit.
When g + pi2 > A our simple queuing system is stable and server 1’s long run expected
profit per time unit is RAa(pry,pr2) — clpi). I ju + pz < A the queuing system 1s
not stable and the number of jobs awaiting service eventually exceeds any bound with
probability one. However, the mean number of customers per time unit that are served
by server 7 does converge and, in the limit, as ’time’ goes to infinity, equals his service
rate. Thus, in this case, scrver i's expected profit per time unit is Ru; — c(pi). It
follows that the long run expected profit per time unit is

mil gty piz) = RAa(py, i) — elpss) i py +p2 > A
(1 pa Ry — (i) if g+ 2 <A



As already mentioned, server i’s average profit depends on his choice of service rate
as well as the opponent’s service rate choice. We wish to characterize the solutions of
the game that this profit function define, i.c., to find the strategic (Nash) equilibria of
the game. Specifically, we seek the pairs of service rates (ji;, jiz) that satisfy

m(fisfiz) 2 mi(pjip) forall py =0,
malitr, fiz) > mo(fia, p2) for all py > 0.

This is done in the next section.

3 Solution of the Service Game

Before proceeding to the solution of the game let us look briefly at the monopolistic
case in which there is only one server in the market. Here the optimization problem
is straightforward. It 1s obvious that the optimal g < A since the server will not serve
any more customers if he increases his rate above A but will have to bear the cost.
Formally let 1t be the unique solution of ¢/(u) = R. If ytg < A then the optimal service
rate 1s yigp and if jig > A then the optimal service rate is A. Notice that this outcome
may be socially undesirable, as customers’ expected waiting time is infinite. We now
proceed to the game.

Lemma 1 For iy > 0, pt2 > 0, A > 0 such that py + po > A we have

(0) dar(u, p2) _ sl + p2)? 4 2A ] _
Ay [Alpr + 2)? + 21 pra(pen + o — AP
(ii) 0261(#1-}12) <0

oy

Proof: The proof of (¢) 1s straightforward and is omitted. For the proof of (i) let
A(yt1) be the numerator of the right side of (7) and B(;) be the term inside the square
brackets of the denominator. So

_AGn)
1(:[ 154 2) - [B(!ll)]z

and B(u,) > 0 when ji; + 1o < A. Hence,
a4y, 412) A’(ﬂl)[B(lll)P — 24 ) B(p1 )B'(411)

oui [B(p1)]*
AG) B ) — 2A(1) B ()
[B(yn)]?
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_ 2022 + A) + 30 (203 + 3 g + A) + p3(2us + A3 + p2 — M)
Ay + p12)? + 2pp12(piy + 2 — AP '
For cach A > 0 and gy > 0 the numerator is positive at least for yq > (A — p2)/3 and

the denominator is positive at least for y; > A — 5. Since the latter is a subset of the

former, (i1) follows.

Lemma 2 For cach fized A > 0 and 2 > 0 the function 7(py, pr2) 18 continuous and
strictly concave 1 j1y.

Proof: Let A > 0 be given. When u, > A then m(u;, y2) has only its upper branch
and continuity follows since ¢(p) and a1 {1, it2) are both continuous. Concavity follows
from the convexity of ¢(y) and from (77) of Lemma 1. Next, suppose that 0 < pg < A.
Here it 1s enough to show that gross profit

Tty piy) = RAay(py,p2) gy > A — py
T, (2 ) = R/"l if,“‘l S /\_#2

is continuous and concave in y;. Continuity is verifiable by checking that
Ao (A — pg, pta) = A — pa.
For concavity it 1s cnough to show that the derivative from the right,

: Ada Y
= hn] ._M S
H1=A—y2 w1l A—pz a/.ll

Alevy (juy+, j12)
din

But from (7) of Lemma 1,

A0 (pa+, pe2)
diy

1A 2] g

H1=A—pip A3

and by differentiation it can be checked that f(u;) is increasing in [0, A\] and attains
its maximal value of 1 when p; = A. Hence, the desired result.

Theorem: The following characterize the strategic equilibria of the service game.

Case a: When ¢'(A/2) > R (the marginal cost of serving one-half the customers exceeds
the revenue per customer) let j be the unique service rate satisfving ¢’(u) = R. Then
(4, 4£) 1s the unique strategic equilibrium of the game. As p < A/2, the long run
expected waiting time is infinite and the pool of waiting customers increases beyond
any bound with probability one.



Case b: When ¢/(A/2) < R/2 (the marginal cost of serving onec-half the customers is
less than one-half the revenue per customer) let ;¢ be the unique service rate satisfying

B R)?
C2u(2p 4+ A\
Then (u, pt) is the unique strategic equilibrium of the game. Here y > A/2, the resulting

queueing system is a simple M/N /2 queue and the long run expected waiting time is
finite. It equals [u(1 + p)(1 — p)]~! where p = A/2u.

()

Case c: When R/2 < (A/2) < R, we have asymmetric solutions and (g, p2) 1s a
strategic equilibrium if and only if the following three conditions hold.

(1) i+ 2 = XA
(22) c(s) > R(XA — s)*(\ + 2s)/ A%
(zi7) {6 <R
Here s = min(u;,j2) and { = max(p;, po). In this borderline case, the long run ex-

pected waiting time is infinite again but the pool of waiting customers will be repeatedly
empty with probability one.

Proof:

Case a: Let g be the solution of ¢/(x) = R. Then g < A/2 and we are in the
noncompetitive case. Thus, each server maximizes unilaterally and (u, p) is an equilib-
rium. Conversely, if (g, f2) is an equilibrium, then ¢/(1;) < R for 1 = 1,2. Therefore,
under Case a, ji; < A/2, we are in the noncompetitive case, each player maximizes
unilaterally and thus both gu;’s must satisfy ¢/(¢) = R.

Case b: If ¢/(u) = RA?/2u(2p + )), then under Case b, g > A/2. Thus, with (y, x)

we are in the competitive case and

Ay (jy+, 1) RA% (40 + 20p) n
LA SRII o) - .
0,“1 H1=it [4,”3 + 2/\#2]2 H
RA?
= 55 T =0

202+ A)
A similar condition holds for 3 and, thus, (pu, ¢) 1s an equilibrium.
Now assume that (g, ) is an equilibrium. If yy; + g2 < A then ¢'(p;) = R for

t = 1,2. So pty = po = p < A/2. But then ¢/(A/2) > R, which contradicts case b. If
t1 + gtz = A then

> A0 (i +, p2) _R/\aﬂl(#ﬁ«,ﬂz)
- 6;11 {1 =\—pip alll u1=A—py

0 = — (A = p2)

Rpd(A 200 —m2))
= 2 33 20— ).

|



Therefore,

, RN — )2 (A +2 R A
) > ( le\s( f) _ (; at g1 :;)
Similarly,
(A — ) A+ 2p
) > 1 uz/)\B( + 2p2)

Since R(A — p:)2 (X + 2u;:)/ A3 is a decreasing function in [0, A] assuming the value R/2
at A/2, we must have g; > A/2 under Case b, which contradicts the assumption that

p1 2 = A

So assuming that j + gy > A, we first show that p; = pp. Since we are in the

steady state case

R}\aﬂ’l(l‘h,“ﬂ _ C’(Ill) —0= R/\aﬂ‘z(ﬂhﬂz)

di Oty —clpa)

or

day(yn, jr2)  Daglyn, ja)
/\ -
I ( di Oty

Substituting and subtracting. we obtain

) +¢(p2) = () = 0.

A — )+ ) 4 20 s = 23 iy
(200013 + 243 g + M} 4+ Apid)?

RA + () — (1) =0

or
R o (42 — s+ pa ¥+ 21 pho]
O Rpg g A 2pd e+ A+ M pd)?

If 41y # p then both terms in the last expression are strictly negative or both are

+[c(p2) = ()] = 0.

strictly positive, depending on which of the u;’s is larger. They cannot sum to zero
unless ji; = p5. It follows that gy = iy = j > A /2. We must have now

)\001(/11./1) y

R £ - c(p) =0,
or
RN pp(4p® +22p) )
(413 + 22p2)? o
or

Case c: Suppose (. fi2) satisfies conditions (z), (¢}, and (221), and assume with-
out loss of generality that p; < py. We want to show that Omy(p—, pe)/0u1 > 0,
Oma(pt1+. pt2)/0pr < 0 and similarly for =;. Thus, for Server 1,

O (11—, ()

=R-¢ .
A c ()



but yry < A/2s0 ¢(;1) < Rand R—'(p) > 0. Also

8771(,“1'{‘7/12) _ R/\ Aﬂ%(/\z ‘i‘ 2)\/11)
O [2Apapez + Mg + Mgl

E — (1)

Rui(\+2
= —@%“d(ﬁl)go

by Condition (i7). For Server 2,

Omy(p1, p12—) ,
_— - —C > O

2 R— () >
by Condition (211) . Also

Oma(prs piat)  Rud(A + 215)
8[12 N Al

= c'(p2)

and
RO =) (A4 2p1) | RON — )2 (X + 2p,)
p2) 2 ) > SY — > 213 =
with the first and third inequality following from g, > gy and the sccond inequality
from Condition (7¢). So, Oma(p. pta+) /07 < 0.

Now assume that (1, ) 1s an cquilibrium. If p; + pp, < A then we are in the
noncompetitive case and hence R = '(¢1). Also, R = ¢/(s) with s = min(yuy, yi3) so
¢(A/2) > R, which contradicts Case ¢. If gy + s > A then we are at the competitive
case. By the argument already made in the proof of Case b, y; = yy = i > A/2. Hence

/\301(,111,#)

R
aﬂl Hi=p

= c'(p),
or
RA?
2u(2i 4+ A)
So, A*/1(2u + X) > 1 or yr < A/2, a contradiction. It follows that u; + Ha = A, le.,
condition (z) holds.

=c(p) > R/2.

Now assume, without loss of generality, that s = min(u;. 3) = yp and ¢ =
max(1;. t2) = ji1. As Server 2 optimizes at y, it follows that

Oma( i1, pra+)

<0
(7;12

p1tpz=A

or
A — A+ 2u
R ;12/)\3( + 2pt9) < ).

i.c., Condition (i) is satisfied. Similarly, as Server 1 maximizes at p,

Imi( = pi2)
duy

or R—c'(p11) > 0, i.e.. Condition (7:7) is satisfied. This completes the proof.
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4 Some Comments

Let us see how the equilibrium service rates change when demand for service changes,
l.e. when A changes. Suppose than ¢ and R are fixed, let Ag be the solution of

¢'(A/2) = R/2 and let A; be the solution of ¢/(A/2) = R.

When A < Ay we are in Case b (Figure 1), we have a unique symmetric equilibrium

\< R A% 2u(2u+d) “—c(H,)

Equilibrium

R/2

0 M2 A2 AR

Figure I+ A < Xp (Case b)
and a stable M/AI/2 quening system. In this range of A values any increase in demand
for service will cause and increase in the equilibrium service rate, since the function

RA?/24(2p + A) increases with A. The equilibrium service rate may assume any value
larger than A/2 since the same function never vanishes for finite .

R.IL.S of Condition (ii) c'()

f—

i T T

Equilibrium |

0
10/2 llfl KO

Figure 2: A = Ag (Case ¢)

As X increases and cquals Ay we are in Case ¢ but Condition (i) is satisfied only
when s = Ap/2 (Figure 2). Hence the set of all service rates that satisfy conditions
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(2), (22) and (2i¢) shrinks to the point (Ag/2, Ag/2), which is the unique cquilibrium.
For larger values of A in Casc ¢, i.e. for Ay < A < Ay, the set of u values that satisfy
the three conditions is of positive length (Figure 3) and its midpoint is always equal

Condition (iii) is satisfied

R/2

c'(s)

0 KOIZ
Figure 3: Ay < A < Ay (Case ¢)

to A/2. Total service capacity is equal to A and this obviously increases with A. When
A = Ay this set shrinks again to one point, (A;/2,X,/2), since A;/2 is the only A valuce
that satisfics Condition (i77). We again have a unique symmetric equilibrium.

When A > A; we are in Case a (Figure 4) and the unique equilibriumis (A; /2, A1 /2).

c'(H] )
Equilibrium

0 A2 A2 w2 A

Figure 4: A > Ay (Case a)

This remains the unique equilibrium for any value of A exceeding A;.
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In summary, so long as demand does not exceed A; the total equilibrium service
capacity mcreases as demand for service increases. Past this point we are in the a
noncompetitive situation and the cquilibrium service rates are totally insensitive to
changes in demand. Similar sensitivity analyses, e.g. for the effect of changes in R
when A and ¢ are fixed, can be carried out with no difficulty.

There are two new concepts in this paper. One is the the competitive game of
servers and the other is the market share of a server in a multiserver facility. Our
model brings out the fact that a monopolist, secking maximal profits only, will not
provide fast service. Also, the fact that even when there is competition, speed of
service may be poor if costs of providing service is high relative to the reward the
servers receive, or if demand for service is high. The model used to present these
concepts is simple and may be extended in several directions to answer a variety of
interesting questions. Some of these are next listed in brief.

In reality infinite mean waiting times are not common. Vendors may, on their own
Initiative, increase service rates so as to keep customer’s satisfaction above a minimal
level, or they may be regulated by society. Alternatively, customers may simply refuse
to join long waiting lines and prefer not to obtain the service at all. These issues
are not incorporated in our model. It would be of interest to study models that take
them into account. For instance, our basic model can be extended by assuming that
customers also participate in the game. They arc rewarded by a 'prize’ if they obtain
the service and they suffer a loss for time spent waiting. They can decide whether or
not to join the queue.

Another interesting issue regards the number of servers that will operate in the
market. Suppose that there is a monopolist that operates at a rate g < A but other
vendors of service can also enter the market. The question is whether they will indeed
do so, and if so, how many will enter the market if there is a cost associated with the
act of entry. A related question is what is the optimal number of servers in the market

from society’s point of view.

We believe that the concept of market share of a server in an environment with sev-
cral servers is important, irrespective of whether or not the servers actually compete.
This may be of interest in the context of communication where servers are computer
hardware, and of production management, where servers are work stations in a pro-
duction facility. The 'market share’ is then the share of work carried by each server.
There are some interesting questions here. For example in the production context,
what is the reward that each server is entitled to as a work incentive? This depends
on the share of work that he carries, namely, on the ‘market share’ in the above sense.

In the present model we made the most simple assumptions regarding arrival and
service times. Relaxing these assumptions (e.g. assuming that service times, inter-
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arrival times, or both, are not exponential) will give rise to challenging mathematical
problems in computing market shares and answering some of the questions listed above.

It 1s hoped that answers to some of these questions, as well as others that are not
listed here, will be available soon.
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