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1. Introduction.

Almost every economic problem involves the study of an agent’s optimal
choice as a function of certain parameters or state variables. For example,
demand theory is concerned with an agent’s optimal consumption as a function
of prices and income, while capital theory studies the optimal investment rule
as a function of the existing capital stock.

A central tool in the analysis of such problems is Berge's (1963)
Theorem of the Maximum. This theorem establishes the continuity of the
optimal value and the upper hemicontinuity of the optimal choice (in the
parameter or state variable). The former property is often employed in
existence and characterization theorems for dynamic programming (see, e.g.,
Denardo, 1967); the latter property is used in applying fixed point theorems
of the Kakutani variety (see, e.g., Debreu, 1959).

Berge's formulation of the maximum theorem requires that the objective
function be jointly continuous in the parameter and the choice, and that the

choice set be continuous in the parameter:

Theorem of the Maximum (Berge, 1963): Let X and A be topological spaces with

X regular, let f: X X A » R be a continuous function, and let y: A + X be a
continuous correspondence that is nonempty- and compact-valued. Then:
(i) The function M: A - R defined by M(A) = max {f(x,X): x € y(X)} is
continuous; and
(ii) the correspondence m: A - X defined by m(X) = {x € y(X):

f(x,\) = M())} is nonempty- and compact-valued and u.h.c.

Thus, Berge’s theorem is applicable for objective functions situated as in

Figure la. (For the present discussion of Figure 1, the choice y(X) will be
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taken to be the closed interval [0,1] and will be suppressed.) Depicted in
Figure la are f(e,X;) and f(e,X;), where X, and A, are nearby parameter values
and each f(e,);) is continuous in x. Berge'’s theorem establishes that the
optimal values, M(A;) and M(};), and the optimal choices, m();) and m(};), are

near each other.!

INSERT FIGURE 1 ABOUT HERE

Consider now objective functions situated as in Figure 1b. The
functions f(e,);) obviously are no longer continuous in x; furthermore, for
fixed x, f(x,e) is no longer continuous in A. Clearly, the hypotheses of
Berge's theorem are not satisfied. Nevertheless, there is no fundamental
reason why the Theorem of the Maximum should fail. Indeed, it should be
observed that the optimal values, M(X;) and M(}X;), and the optimal choices,
m(}x;) and m(}X,), are still near each other.

In a nice paper, Leininger (1984) recognized that the upper
hemicontinuity of the set of maximizers and the upper semicontinuity of the
value function could be established under conditions weaker than a continuous
objective function. For metric spaces, Leininger proved that if the choice
set is continuous, the objective function is u.s.c., and an additional
condition called "graph-continuity" is satisfied, then m(e) is u.h.c. and
M(e) is u.s.c. The contribution of our paper is to provide a more complete
generalization of the Theorem of the Maximum. First, we require the choice
set merely to be u.h.c. and we weaken the condition of graph-continuity.
Second, even under our weaker hypotheses, we conclude that the value function

must in fact be continuous. Third, we prove the generalized result for the

1S;’mce, in the examples of Figure 1, the optimal choice is single-valued, the upper hemicontinuity of
the optimal choice correspondence implies the continuity of the optimal choice.
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same general topological space setting as Berge's theorem. Finally, we
provide a version of the result which has a geometrical interpretation close
in spirit to the original Theorem of the Maximum.
Section 2 introduces the necessary concepts and proves the main
theorems. Section 3 presents the geometrically more intuitive version of the

result. Section 4 concludes with an example.

2. The Main Theorems.

Let (Y,T) be any topological space and let Py(Y) be the space of
nonempty subsets of Y. We will utilize the (upper and lower) Vietoris
topologies on Py(Y). The upper Vietoris topology on P,(Y), denoted by Ty, is
defined as the coarsest topology with the property that, for every nonempty
open subset G of Y, the set [e,6] = {U € Pe(Y): U C G} is an open set. The
lower Vietoris topology on Py(Y), denoted by Ty, is defined as the coarsest
topology with the property that, for every closed subset F of Y, the set [e, F]
is a closed set. The Vietoris topology on Py(Y), denoted by Ty, is defined as
the coarsest topology that contains both the upper and lower Vietoris
topologies. It is useful to observe that the collection {[e¢,G]: G € T) is a
basis for Ty. Meanwhile, let us define Iz = (U € Po(Y): Un G » @), for
every nonempty open subset G of Y. Then the collection {Iz: G € T) is a
subbasis for T,. The raison d'étre for these topologies is the following.
Suppose that Z is a topological space and g is a correspondence from Z to Y.
Then g is upper hemicontinuous (lower hemicontinuous, continuous) if and only
if, when viewed as a function from Z to Po(Y), g is continuous in Ty (Ty, Ty).
For a detailed reference on these and further properties, see Klein and
Thompson (1984, especially Section 1.3).

OQur initial use of the Vietoris topologies will be to state necessary

and sufficient conditions under which the value function is continuous. We
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need to define the following sets and functions. Let R** denote the extended
real numbers R U {—w) U {+=) with the topology generated by intervals of the
form [—=,a), (a,b) and (b,+»], where a,b € R. Let the "subgraph" E()) =
((x,y) € X X R: x € y()) and y < f(x,X)} be the set of all points on or below
the graph of f(e,)), i.e., the flip side of the epigraph of f(e,)). Let II(})
= {y € R: (x,y) € E()) for some x € X} be the projection of E()) onto the
second coordinate and let TI()) = cl I(X). In the following theorem, we will

view I(e) as a function from A to Py(R).

Theorem 1: Let X and A be topological spaces, f: X Xx A - R be a function,
and v: A » X be a correspondence. Define the function M: A » %™ by
M()) = sup{f(x,)): x € y(X)}. Then:
(a) M(e) is u.s.c. if and only if I: A~ Po(R) is continuous in the
upper Vietoris topology;
(b) M(e) is 1l.s.c. if and only if m: A~ Po(R) is continuous in the
lower Vietoris topology; and
(c) M(e) is continuous if and only if I: A » Py(R) is continuous in

the Vietoris topology.

Proof: (a) For any t € R, define U, = (y € R: y < t}. Observe that

(A € A: M(A) < t) = {X € A: (X)) € [+,U.]}, since the definition of each set
requires that f(e,A) < t — ¢, for some ¢ > 0. Suppose T(e) is continuous.
Since [¢,U,] is open in the upper Vietoris topology, the set {X € A: M()) < t}
= Ti([e,U,]) is open for all t, implying that M(e) is u.s.c. Conversely,
suppose M(e) is u.s.c. For any open set S C R, define t(S) =

sup(t € R"*: U, c S}. Observe, since I()) is of the form {y € R: y < r} for

every A (where r € R™), that I'!([e,S]) = T1([e,Us]). The u.s.c. of M(e)
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implies that the latter set is open, establishing the continuity of II(e).
(b) For any t € X", define V, = {y € R: y > t}. Observe that
(X € A: M(A) > t) = (X € A: m) € Ivt}. Suppose ll(e) is continuous. Since
IVt is open in the lower Vietoris topology, (A € A: M(X) > t) = ﬁﬂ(lvt) is
open for all t, implying that M(e) is l.s.c. Conversely, suppose M(e) is
l.s.c. For any open set S C R, define t’ (S) = inf {t € R: t € S}. Observe
that ﬁﬂ(ls) = ﬁﬂ(lvv(a). The 1.s.c. of M(e) implies that the latter set is

open, establishing the continuity of M(e).

(c) Follows trivially from (a) and (b). Q.E.D.

Some remarks on Theorem 1 are in order. First, part (b) of the theorem
remains true if II(e) is replaced by II(e). However, the same substitution
makes part (a) false. Second, suppose we view Ti(e) as a correspondence from A
to R. Then part (a) may be restated: M(e) is u.s.c. if and only if M(e) is
u.h.c. Parts (b) and (c) may be restated analogously.

Third, although Theorem 1 is quite straightforward, it implies the known
results of continuity of the value (Berge, 1963). 1If f(e,e) is continuous in
(x,)) and y(e) is continuous in A, then clearly II(e) is continuous in A,
establishing the continuity of M(e). Also, if f(e,e) is merely u.s.c. and
v(®) is u.h.c., it easily follows that M(e) is u.s.c. Indeed, for every t,
the inverse image n1([e,U,]) is open since its complement, {X € A: f(x,\) 2 ¢t
for some x € y(\))} is the projection of the closed set
{((x,)): f(x,)) =t} n {(x,)): x € (X)) onto the second coordinate. It can
also be shown that if f(e,e) is l.s.c. and y(e) is l.h.c., then M(e) is l.s.c.

We have so far only addressed the continuity of the value function. We
now turn to a full statement of the maximum theorem, which also concerns the

upper hemicontinuity of the maximizing correspondence m(e).
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Theorem 2: Let X be a regular topological space, A be a topological space,
and y: A » X be a u.h.c. correspondence that is nonempty- and compact-valued.
Suppose f: X X A » R is a u.s.c. function and II: A - Py(R) is continuous in
the lower Vietoris topology. Then: (a) M(e) is a continuous function; and

(b) m(e) is a u.h.c. correspondence.

Proof: The upper semicontinuity of f(e,e) and upper hemicontinuity of vy(s)
imply that Ii(e) is continuous in the upper Vietoris topology. Theorem 1 then
establishes that M(e) is continuous.

Let (Xp,An)nep be any net converging to (x,A), with x, € y(),) and
£(%,,Ap) = M(X,). Since X is regular and y(e) is u.h.c. and closed-valued,
the correspondence y(e¢) is closed (Klein and Thompson, 1984, Theorem 7.1.15),
and therefore x € y(X). By the u.s.c. of f(e,e), and the continuity of M(e),
f(x,)\) = lim f(x,,A,) = M(X). This proves that x € m()A) and, hence, that m(e)
is closed. Since m(A) = m(X) N y(X) and y(e) is u.h.c. and compact valued, we
conclude (Klein and Thompson, 1984, Theorem 7.3.10(ii)) that m(e) is u.h.c.

Q.E.D.

It should be observed that Theorem 2 does not require f(e,e) to be
l.s.c. nor y(e) to be 1.h.c. 1Instead, we replace these hypotheses with the
condition that II(e) is continuous in the lower Vietoris topology. We do,
however, maintain the assumption that f(e,e) is u.s.c., assuring that the
supremum of f(e,6\) is attained.

It is instructive to compare part (b) of Theorem 2 with Leininger’s
(1984) theorem. For metric spaces X and A, Leininger showed the upper
hemicontinuity of m(e) when f(e,e) is u.s.c., y(e) is continuous, and a

condition he called "graph-continuity" is satisfied. The latter condition may
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be restated: for every X € A, x € y(A) and ¢ > 0, there exists a neighborhood
0 of XA with the property that X\’ € O implies the existence of x' € y(X’) such
that |f(x’',A') — £(x,))]| < €. In contrast, we establish the maximum theorem
for topological spaces and only require that y(e) be u.h.c. We replace
"graph-continuity" with the hypothesis that II(e) is continuous in the lower
Vietoris topology, which may equivalently be stated: for every A € A, x €
v()) and ¢ > 0, there exists a neighborhood O of X with the property that A’ €
0 implies the existence of x' € y()') such that f£(x',x") > f(x,\) — €.
Obviously, then, graph-continuity implies continuity of II(e) in the lower

Vietoris topology, but not the reverse.

3. A Geometrical Version of the Theorem.

The main hypothesis of the traditional Theorem of the Maximum, that
f(e,e) is jointly continuous, may be reinterpreted as requiring that f(e,X)
have a continuous graph and that the graph of f(e,)) change continuously in A.
(See, for example, Figure la.) As we have seen in the previous section, it is
unnecessary that f(e,\) have a continuous graph for the conclusions of the
maximum theorem to hold. In this section, we will establish a precise sense
in which it is sufficient to show that the graph? of f(e,)) changes
continuously in A. Theorem 3 will, for example, make it obvious on casual
inspection that the objective function depicted in Figure 1b exhibits the
desired continuity of the optimal value and upper hemicontinuity of the
optimal choice.

Suppose that f: X X A » R is u.s.c. in x at all X € A. Let R* denote

the half-extended real numbers R U {—») with the topology generated by

20]:, more precisely, the closure of the graph, then convexified in the direction of the range.
This is defined as G(e), below.
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intervals of the form [—=,a) and (a,b), where a,b € R. Let
G()) = {(x,f(x,A)): x € y()))} denote the graph of f(e,)) restricted to y(X).
Let G(X) be the closure of G(X) in the space X X R* and let E(A) = {(x,y):
there exist y’,y” € R* satisfying y” <y <y, (x,y’) € G(}) and
(x,y”) € G()\)}. Observe that, under the hypotheses of Theorem 3, E(A) is
closed. Indeed, E(A) is the smallest u.h.c., convex-valued correspondence
that contains G()). Alternatively, E(A) can be interpreted as the (upper)

boundary of the subgraph E(X). We may now state our result:

Theorem 3: Let X be a regular topological space, A be a topological space,
and v: A » X be a nonempty- and compact-valued correspondence. Suppose

f: X x A » R is a u.s.c. function of x, for every X € A, and suppose

G: A~ Py(X X R*) is continuous in the Vietoris topology. Then:

(a) M(e) is a continuous function; and (b) m(e) is a u.h.c. correspondence.

Proof: We will demonstrate that the hypotheses of Theorem 2 are satisfied.
Define the functions m;: X X R* - X and m,: X x R" » R" to be the projections
onto the first and second coordinates, respectively.

Since vy(e) is closed, observe that y = mn; o G. The composition of two
continuous correspondences is continuous (Klein and Thompson, 1984, Theorem
7.3.11), implying that y(e) is a continuous correspondence.

Similarly, B8 = n, o C is continuous in the Vietoris topology of Py(R").
Let V, = {y € R: y > t}, Ivt= {Ue Py(R): Un V, = @), and I‘;t=
(U € Py(R"): UNnV, # @g). To demonstrate that T(e) is continuous in the lower
Vietoris topology of Py(R), it is sufficient to show (as in the proof of
Theorem 1(b)) that inverse images of sets IV are open. But observe that

t

M(A) = {y € R: y <y’ for some y’' € B())}, implying that ﬁ‘l(lv) - ,3'1(1"] ),
t t



which is open from the continuity of 8.

Finally, we will show that, on the graph of ~y(e), f(e,e) is u.s.c.
jointly in x and X. For every A € A, X € ¥()\), and € > 0, define F, =
(z € y(A): f(z,)) = £(x,X) + €¢}. By the u.s.c. of f(e,)) in x, F, is closed.
Since x € F, and X is regular, there exist disjoint open sets O, and 0. such
that F, c 0, and x € 0,. Define W, = (y € ®": y = f(x,X) + €} and
K, = (X\O,) X W,. Note that K, is the product of two closed sets and hence is
closed. Finally, define L, = (X X R*)\K,. By construction, L, is open and
contains 6()). Then [¢,L,] is a neighborhood of E(A) in the upper Vietoris
topology. Let (X,,A,)nep be any net converging to (x,X). By the continuity of
6(0), there exists Ni € D such that E(An) € [o,L,] for every n = Nz. Since O]
is open, there exists Nf € D such that x, € 0, C X\O, for every n = N?. Hence,
(X,,Yq) € E(An) implies that y, ¢ W,, whenever n > N: and n > Nf. This shows,
for every € > 0, that f(x,,);) < f(x,X) + ¢, and hence that

lim f(x,,A,) < f(x,)), establishing u.s.c. Q.E.D.

Suppose, additionally, that X is a metric space and f(e,e) is uniformly
bounded below. Since the familiar Haussdorff topology is now defined on
Py(X X R) and a(k) is now compact, continuity of 6(0) in the Vietoris topology
is equivalent to continuity of E(O) in the Haussdorff topology. This enables
us to provide the most vivid interpretation of the hypothesis of Theorem 3.
For any S € Py(X x R), define the e-fattening of S as S + ¢ = {z' € X X R:
d(z,z') < € for some z € S}. Continuity of 6(0) may now be restated: for
every A € A and ¢ > 0, there exists a neighborhood O of A such that X' € 0
implies E(A') C a(k) + ¢ and E(A) C a(k’) + €. In other words, every point
on the closed, convexified graph of f(e,)’) lies within ¢ of a point on the

closed, convexified graph of f(e,)), and vice-versa. This is the precise



10

sense in which the graph of f(e,)) is required to vary continuously in the
parameter.

It is useful to compare our notion of "nearness" of functions with that
used in the traditional Theorem of the Maximum. Two functions g(e) and h(e)
are close to one another in the uniform topology if the graph of g(e) can be
carried onto the graph of h(e) by a (uniformly) small perturbation in the
direction of the range. (Again see Figure la.) In contrast, we also permit a
(uniformly) small deformation of the domain. More precisely, if X is a metric
space,? f and g are close in the sense of Theorem 3 if sup,e | £(x) - g(r(x))]|
< ¢, where 7(e) is a uniformly small perturbation of the identity on X, i.e.,
SUPyex “r(x) - x“ < €.

This is illustrated by the example from which Figure 1lb was drawn. For

x,A € [0,1], define:

x+ X, ifx=<2x
£1(x,2) = o
-x + X, if x>
Then lim v . SUP 011 |£,(x,A") = £1(x,A)] = 2Xx, but the Haussdorff
-+ x )

distance between G(A') and G()) converges to zero as A’ - A. Since f,(e,2) 1is
also u.s.c. in x, it satisfies the hypotheses of Theorem 3; indeed, M(X) = 2
and m()\) = )\ are continuous in the parameter.

In the previous example, we exploited the fact that if G(e) is
continuous in A, then so is 6(0). The reverse implication often does not

hold. Indeed, suppose that f(e,e) and y(e) satisfy Theorem 3, Ay © A, and

3This same idea may be stated more generally for uniform spaces. For a general reference on uniform
spaces, see Kelley (1855).
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G(),) = G". Then it may be the case that G" » G()\); in fact, G" need not be
the closure of the graph of any function. This is illustrated by the next
example.

For x,Ax € [-1,1], define:

.
max{0, 1 = |x/A|} , if A= 0
fZ(X,A) = 1
Xw}(x) , if A =0,
where x(oy denotes the indicator function of the set {0}. Observe that G*

consists of all the points on the horizontal axis from -1 to +1 and all the
points on the vertical axis from 0 to 1, while G(0) omits the interior points
of the vertical segment. However, G(A\) = G(\), for A = 0, and G(0) = G*.
Moreover, for all X, the original function may be recovered from 6(0) by
f(x,)) = max{y: (X,y) € a(k)}. It is easily checked that the latter property

holds in generality.

4. Conclusion.
Let us conclude this paper with an application of the generalized
Theorem of the Maximum. Consider the standard discounted dynamic programming

problem:

W(Xq) =  sup T o 6V(Ry,Xee1) (1)
{X¢ =0
subject to Xyy; € Y(Xy) (t = 0,1,2,...)

X, € X, given,
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where 6§ € (0,1), X is a complete metric space, vy: X =+ X is a continuous
correspondence that is nonempty and compact-valued, and V: graph(y) - R is a
real-valued function. If V(e,e) is continuous and uniformly bounded above,
then a standard application of Berge’s theorem establishes that W: X - R is a

continuous function. Furthermore, W(e) satisfies the Bellman equation:

W(X) = max ye,(x) {(V(x,y) + sW(y)} (2)

and the arg max correspondence in (2) is upper hemicontinuous.

In economic applications of the dynamic programming problem, it is often
necessary to consider one-period payoff functions, V(e,e), that are
discontinuous. For example, in dynamic multi-person games, the payoff of each
player depends on the future actions of his opponents. These actions may
depend only upper hemicontinuously on the state, rendering the effective
V(e,e) a discontinuous function. One important context where this occurs is
the two-player game of sequential bargaining with one-sided incomplete

information.*

If the seller’s and buyer’s actions are restricted to depend
continuously on the state variable, an equilibrium often does not exist.
However, if actions are permitted to be discontinuous in the state variable
(and depend on the previous period’s actions), then an equilibrium exists for

5

every distribution function. The existence theorem (Ausubel and Deneckere,

1989, Theorem 4.2) is proved using the techniques developed in this paper.

40:, equivalently, the problem of durable goods monopoly.

51n the standard terminology of the bargaining literature, a strong-Markov equilibrium need not exist,
but a weak-Markov equilibrium exists for every distribution function.



13

References

Ausubel, L. and R. Deneckere (1989), "Reputation in Bargaining and Durable

Goods Monopoly," Econometrica, 57(3), 511-531.

Berge, C. (1963), Espaces Topologiques, Dunod, Paris, Transl. E.M. Patterson,

Topological Spaces, Oliver and Boyd, Edinburgh.

Debreu, G. (1959), Theory of Value, Wiley, New York.

Denardo, E. (1967), "Contraction Mappings in the Theory Underlying Dynamic

Programming," SIAM Review, 9(2), 165-177.

Kelley, J.L. (1955), General Topology, Van Nostrand, Princeton.

Klein, E. and A.C. Thompson (1984), Theory of Correspondences, Including

Applications to Mathematical Economics, Wiley, New York.

Leininger, W. (1984), "A Generalization of the 'Maximum Theorem’," Economics

Letters, 15, 309-313.



Figure la
(X, A)
f(x, A )
—p K
f
A
»
Figure 1b

» X




