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Abstract

"The Strength of a Little Perfection”

by Ehud Kalai and Alejandro Nene

The paper deals with three related issues.

1. It introduces a measure of partial subgame perfection for
equilibria of repeated games.

2. It illustrates that the folk-theorem discontinuity generated by
small compiexity costs, as exhibited by Abreu and Rubinstein disappears in
the presence of any level of perfection.

3. It shows that reactive strategy equilibria, such as tit-for-tat,
cannot be subgame perfect, even partially so. As a corollary, this shows a
need to use full automata rather than exact automata when studying

complexity and perfection in repeated games.
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The contributions in this paper can be divided into three related

parts. The first consists of the introduction of a measure of subganme
erfection for equilibrium strategies of extensive form games. The second
part deals with the effects of complexity costs on the set of partially-
nerfect equilibrium outcomes of repeated games. The third part illustrates
that, generically, for repeated games, partially-perfect equilibria using
reactive strategies do not exist. As a corollary, the last statement
illustrates that when studying repeated games and perfection, the use of
exact automata imposes a serious restriction.

Our measure of perfection ranks every Nash equilibrium in an extensive
form game as being p-subgame perfect with p = ¢,1,2,...,0. O-subgame
perfect equilibria are precisely Nash equilibria, and «o-subgame perfect
strategies are the subgame perfect equilibria in the original sense of
Selten (1975). Equilibria that are p-subgame perfect can be considered as
partially perfect. It seems that, in some games, partial perfection is a
more reasonable requirement than full perfection or no perfection. 1In this
sense we are taking an approach opposite to Harsanyi and Selten (1988) who
push the rationality assumption to its limits. Rather, we follow an
approach similar to Aumann (1988) of relaxing the rationality assumption in
an effort to allow theoretical predictions that better fit common sense
predictions.

The idea behind partial perfection is to break away from the convention

that all histories should be treated the same. Under existing game theory,

when optimizing, one only distinguishes between two classes of histories:



those that are on the equilibrium path, when considering Nash equilibria, or
the class of all histories, when considering full subgame perfection. VYet
simple examples and recent new ideas in game theory regarding bounded
rationality and forward induction (see, for example, Selten, 1978;
Rosenthal, 1981; Kohlberg and Mertens, 1986; and Aumann, 1988; and see
Binmore, 1987, for a general discussion and additional references), seenm to
indicate that past behavior is important for considerations of future
behavior. 1In particular, in this paper we want to allow a weakening the
requirement of full rationality (i.e., subgame perfection) after histories
containing a large number of deviations from the eguilibrium play path. Our
notion is related to, yet different from, Marschak and Selten's (1978)
notion of paraperfection.

In the following section we discuss and give examples that illustrate
and motivate our notion of partial perfection. 1In Section 3 we give a
formal definition of the measure of perfection for infinitely repeated games
and show how it relates to the usual folk theorems for such games. (See
Aumann and Shapley (1976), Rubinstein (1979), Fudenberg and Maskin (1986),
and Ben-Porath and Peleg (1987).) An extension of partial subgame
perfection to partial sequential equilibria as defined by Kreps and Wilson
(1982) would be of interest. However, one would have to deal with a
comparison of the likeliboods of several histories that lead to an
information set before deciding on relaxing the assumption that agents who
follow the information set must be maximizers.

The second part of this paper deals with issues of complexity in
infinitely repeated games. Aumann's (1981) suggestion of using automata to

deal with the complexity of repeated game strategies has been receiving
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considerable attention over the last several years (see, for example,
Neyman, 1985; Ben-Porath, 1986; Kalai and Stanford, 1988; see also Kalai
1989, and Sorin, 1988, for surveys of these results). In Rubinstein (1986)
and Abreu and Rubinstein (1989), the definition of the game was modified to
incorporate complexity costs into the payoffs of the players. They obtained
striking results, showing that even if the complexity costs are minimal,
i.e., considered as secondary to utility in a lexicographic ordering, the
equilibria of the game are drastically changed. For example, in the
prisoners' dilemma game, the set of payoffs of the equilibrium outcomes
described by the folk theorems shrinks to a one-dimensional set consisting
of two straight line segments.

We find, however, that it is the lack of perfection of the Abreu-
Rubinstein players that brings about this discontinuity. Players who are
first concerned with their payoffs after deviations from the equilibrium
path and only then with minimizing their complexity costs, do generate the
full folk theorems. We show that even a minimal degree of perfection
(defined using our new measure of perfection) on the part of the players
fully recovers the folk theorems in the prisoners' dilemma game. Thus, the
discontinuity discussed by Abreu and Rubinstein exists, but it occurs as one
moves from no perfection to a minimal level of perfection. These results
are discussed in Section 5.

Another situation where a minimal level of perfection drastically
affects the outcomes of the game is when the players are restricted to use
only reactive strategies (see Aumann, 1981; Stanford, 1986; and Kalai-Samet-
Stanford, 1988). A strategy of a player is reactive if, after any two

histories that are identical in the actions of his opponents (his own may
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differ), he "reacts" with the same action. For example, the famous tit-for-
tat strategy in repeated prisoner's dilemma games is of this type. These
strategies are of special interest now because of the increasing attention
paid to playing games through exact automata, i.e., automata whose input
consists only of the actions of the opponents. The results discussed in
Section 6 show that, generically, in the presence of a minimal level of
perfection, the restriction to reactive strategies is very limiting. In the
infinitely repeated prisoners' dilemma game, for example, they must yield

the noncooperative action repeatedly.

2. Examples of Partial Perfection

We consider first the following one shot two-person game.

Nash Middle Safe
| | | !
Nash | 6,6 | 6,0 | 0,5 |
| ! | I
f | ! !
Middle | 0,6 | 0,0 q 6,5 |
! ! ! |
l [ | {

Safe | 5,0 ] 5,6 | 5,5
! f f l

Notice that the only pure strategy Nash equilibrium of this game is the
pair (Nash,Nash), yielding the payoffs (6,6). The safe strategy guarantees
each player a payoff of 5, and the middle strategy is risky. Consider now
the above game being repeated 200 times with the standard information
structure where, prior to every stage, each player is told all the previous

actions of both players. Since the only (pure) strategy Nash equilibrium of
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the one shot game is the pair of actions (Nash,Nash), it is easily deduced
by backwards induction that the only full subgame perfect equilibrium of the
repeated game prescribes playing the pair of actions (Nash,Nash) after every
history of action combinations.

Consider, however, a hypothetical history of length 100 along which
player one took many different actions yet player two kept repeating her safe
action. Consider now the forthcoming 10ist play. The subgame
perfectionist's assumption that both players will follow with the pair of
actions (Nash,Nash) seems too strong. Player one will be concerned with
having to assume that player two will play Nash and player two, even if she
planned to play Nash, would be concerned with player one backing up from the
Nash play because of his concern about her. It seems that the large number
of earlier deviations from the equilibrium actions would give justification
to the possibility of players breaking away from the (Nash,Nash) combination
imposed on them by subgame perfection. Partially perfect equilibria for this
game can be constructed where the players play Nash along the equilibrium
path but play safe after a specified number of deviations were observed.

A multiperson example in which the number of deviations from the
equilibrium path is important is described by the following game of mutual
effort. Assume n players standing in a line. A hat is passed to the first
player and he is offered the options of putting $1 into it, or not. The hat
is then passed to the next player, who has the same two options. The hat
continues to be passed down the line in this way. Each player, knowing the
choices of all his predecessors, has to choose between the same two options.
After the last player has made his choice, the following payoffs

materialize. If all n players participated, they each receive $2, making a
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net profit of $1. Otherwise, nobody receives any money--i.e., the
participating players lose a dollar and the other players break even.

It is easy to see by backwards induction that the only subgame perfect
equilibrium is for all plavers to participate. But if n > 2, then a
complete constant nonparticipation strategy (every player does not
participate after every history) is also a Nash (not subgame perfect)
equilibrium. Moreover, when n is large this nonparticipation equilibrium
seems intuitively reasonable. The subgame perfectionists' challenge of this
nonparticipation equilibrium rests on the irrationality of the last player
after considering a hypothetical chain of n - 1 earlier deviations from
nonparticipation. Thus, as n gets larger, more hypothetical deviations must
be considered before the last player should consider changing his constant
nonparticipation strategy. Also this large number of necessary deviations
is of concern to earlier players. Their rationale in changing to
participation depends crucially on later players' participation. Thus, not
only should the last plaver consider earlier deviations, but earlier players
considering participation should be concerned that the later players do not
ignore hypothetical long chains of deviations and trust their followers to
do so, and so on.

It seems that for large n, a small amount of irrationality in a sense
similar to that of Aumann {1988) would make nonparticipation very rational
and break the appealing rationale of subgame perfection. This irrationality
will be placed on the common knowledge assumption that players consider
arbitrarily long chains of deviations when testing the validity of a
strategy.

The measure of subgame perfection suggested in this paper supplies some
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useful terminrology for a discussion of the equilibria in the above examples.
Given a strategy combination f we classify the histories of the games into
classes HO c Hl cC H2 . . . described as follows. Hp contains all the
histories during which there was a total of p or less deviations from f when
adding up across all players and all periods. A strategy combination is
defined to be p-subgame perfect if the players maximize their payoffs, i.e.,
play a Nash equilibrium, in all subgames following histories h in Hp but are
not necessarily assumed to maximize after histories outside Hp. It is easy
to see in our first example that if we allow strategies that are p-subgame
perfect, with p < 100, then action combinations other than (Nash,Nash) are
allowed after the history with many deviations described there. 1In the game
of mutual effort the nonparticipation equilibrium can be seen to be (n - 2)
subgame perfect. And, indeed, as n gets larger this strategy becomes more
intuitively appealing as well as more subgame perfect.

Our notion of partial perfection is similar to Marschak and Selten's
{1978) notion of paraperfection. Their notion relaxes the assumption that
an individual player is a maximizer after he has defected once from the
equilibrium play path. With p-subgame perfection we allow p-deviations
before the maximization assumption is disposed of. However, after observing
the specified number of deviations, we dispose of the entire maximization
assumption without targeting only the deviating players. In this sense,
being 1-SPE is a weaker requirement than being paraperfect and results using
an assumption of minimal perfection (1-SPE), as is done in Sections 5 and 6
of this paper, are stronger than their paraperfect counterparts. Other ways
of discriminating among histories should be studied. One could discriminate

according to the percentage of deviations in histories and could also take
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into consideration the seriousness (in utility loss) of deviations. Again,
our measure of 1-SPE as a way to measure a minimal level of perfection is
weaker than the minimal perfection that one would get with these other
measures.

An example of a different nature where partial perfection predicts
"reasonable"” equilibria is the well-known chain store paradox of Selten
(1978). Here there is one nmajor player, the chain store denoted by M, and
20 other players, i = 1,2,...,20, who are potential entrants to markets
currently controlled by M. In each of 20 periods, t = 1,2,...,20, the chain
store faces the player j = t as a potential entrant. The two players' ganme

between them is the following:

0,3

1,4

-1,-4

The story is that the j'th player decides whether to enter (e) the
market or refrain (r) from entering. 1If he enters, the chain store has to
decide whether to fight him (f) or cooperate with him (c). After this stage
game is completed with payoffs to j and M as indicated in the above figure,
an identical game is played between j + 1 and M. In each stage there is
perfect information about all the choices made by all previous players.

As was argued by Selten, the only subgame perfect equilibrium has all
opponents j = 1,2,...,20 entering the market, and the chain store
cooperating with all of them. However, as Selten pointed out, outcomes with

the chain store fighting early entrants, no entry in the middle periods, and



entry and cooperation toward the end, seem reasonable. Partially perfect
equilibria can indeed generate such outcomes. We can define p-perfect
equilibria in which entry does not occur for the first 20 - p periods
because the chain store will fight such early entrants, and only in the last
p-periods opponents enter and the chain store cooperates. These strategies
are defined as follows:

1. After every history containing a cooperating move by the chain
store, opponents enter and the chain store cooperates.

2. After histories containing g entries that are all fought back by
the chain store, the new opponents refrain from entry until the last p - ¢
periods. During these last p - q periods, opponents enter and the chain
store cooperates.

A straightforward induction argument shows that the above strategies

constitute p-subgame perfect equilibria.

3. Notations and Conventions

Let G = (A,u) be an n-person game, where Ai’ the set of actions of

plaver 1, is a nonempty set and A = X?zl Ai; u = (ul,...,uN) is a vector of

utility functions with each u,: A - R,
We first review the terminology and notations needed to describe the
repeated game G with the average payoff criterion, @m, and the discounted
-0 o2 mn . s
repeated game, Ga' Let H = Um:0 H" be the set of all histories where
m

H = Ax ... %x A, the m~fold Cartesian product of A, is the set of all

higstories of length m, and H® - {e} is a singleton set consisting of the

empty history. For both games, a strategy for player i is a function

f.: H- Ai' Let Fi be the set of all individual strategies of player i, and

h
=< LY
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F o= X§=1 Fi be the set of strategy vectors. A path is a sequence
p = (p(1),p(2),...,p(t),...), where p(t) € A, t = 1,2,.... Given a strategy

vector f € ¥, we define the path of f as follows:

where p(f)(1) = f(e) and P(f)(t)= £(P(£Y(1),...,p(f)(t - 1)). With the

above construction we define the utility function for the game éw(A,u):

. T
u (f) = limy - 1/T Lo w, (p(f)(¥)).
When the above limit does not exist we can use the lim sup, lim inf, or
Banach limits. In the cases of interest to us, the limit always exists and
all these concepts coincide.
e
For the game Ga (0 << 1):

Ge) = (1 - @ 55, @ e (n(6) (1)

for i = 1,...,N, and for all strategy vectors f € F.

In everything that follows, we will use the notation G” in a statement
whenever the statement holds for both G and G:. Similarly, ui(f) will be
used for both Gi and u? in their respective games.

For two histories hl and bz, of length m1 and mz, respectively, we
write hlh2 to denote their concatenation, i.e., the history of length
m1 + m2 starting with the elements of h1 followed by those of h2. We make

the convention that eh = he = h for every history h.
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Given an individual strategy fi of ¢ and a history h we let filh

denote the strategy induced by fi after the history h,,

Similarly for a strategy vector f, fih = (f1|h,,,,,fN|h), A strategy vector

f is a Nash equilibrium if for every i, fi is a best response to f—i' i.e.,

u.(f) 2 u,(g.:

; 5 (84 f—i) with (gi: f“i) denoting the strategy obtained from f by

replacing fi by g;- f is a subgame perfect equilibrium if for every i, fi

is a perfect response to f_j, i.e., for every history h, filh is a best
response to £ . |h. We define the complexity (see Kalai and Stanford, 1988)
of a strategy fi’ comp fi’ to be the cardinality (number of states) of the

set {f,(h: h € H}. We need to underline that the cardinality of the

smallest automaton implementing fi is comp (fj).

4, A Measure of Perfection

Given a strategy f € F, we denote by Hp(f) the set of all histories

that have no more than p deviations from f, i.e

L)

1 m

Hp(f) = {h=(h",...,h) e H: T Dt < p} with

+ + B

=1
-1

;
D (B,f) = #{i: £ (b',...,n" ") # h?} for t < length(h).

Definition 1: A strategy f = (f1""’fN) € F is a p-subgame perfect

equilibrium, p-SPE (p a nonnegative integer), of the game Gm(A,u) if for all

i, fi is a p-perfect response to f, i.e., fiih is the best response to f_ilh

for all h € Hp(f).
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We let u(p - SPE), u(NE), u(SPE) denote the sets of payoffs
corresponding to the respective equilibrium concepts in the game ém, and the
equivalent concepts with ua, denote these sets in the game GZ.
Properties: Let 6" be an infinitely repeated game.
1. f is a Nash equilibrium if and only if it is 0-SPE;
2. If £ is p-SPE, then it is (p - 1)-SPE for p = 1,2,,

3. f is a SPE if and only if it is a p-SPE for p = 0,1,2,.

4, for G, u(p-SPE) = u(SPE) for p = 0,1,2,...;
-] o4 (0.4
» i —_ 3 = 11i N =
5. for G_, lim , U (p—SPE) lim , U (SPE) for p 0,1,2,..

Properties 1, 2 and 3 follow immediately from the definitions.
Property 4 follows from the average payoff folk theorems (see Aumann and
Shapley, 1976, and Rubinstein, 1979). Property 5 follows from the folk
theorem with discounting (see Fudenberg and Maskin, 1986, and Ben-Porath and
Peleg, 1987). Fudenberg and Maskin (1987) showed that the coincidence of
ua(SPE) and ua(NE) occurs from some & on with & < 1. Thus, the same

L : o4
coincidence occurs with all u™(

p-SPE). Also, for a special case of the

prisoners' dilemma ganme, ua(NE) = ua(SPE) for all o« and therefore they must

el
(

also equal ua(p—SPE) for all p. In general, however, we can have u (p-SPE)

2 uW*((p + 1)-SPE).

Abreu (1988) defined a concept of simple strategy and proved that, in
the discounting case, every perfect equilibrium path is the outcome of some
perfect simple strategies. It is easy to see that the structure of these

strategies imply that together, Abreu's simplicity and 1-subgame perfection,

are sufficient conditions for full subgame perfection.
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We now define the width of a strategy vector, w(f), a notion that is
closely related to its degree of subgame perfection. This measure also
captures a notion of simplicity closely related to Abreu's.

] i =
Recalling that Up20 Hp(f) H, we let

w(f) = min{j: {f|h: h € Hj} = {f|h: h € H}}

with the convention that w(f) = e if the set of j's above is empty. In
other words, the width of f answers the gquestion of how many deviations from
the path of f must be considered in order to discover all the strategy
vectors induced by f. It is easy to see that any constant strategy has
width 0. But also any strategy vector that "uses only one path" has zero
width. Strategy vectors consisting of Abreu's simple strategies all have
width one. For example, any strategy vector that plays along a fixed path
in the prisoners’ dilemma game and trigger to the constant noncooperative
strategy under any deviation has width one. But also strategies that
trigger to different induced strategies, depending, for example, on when

deviations occur, have width one.

Property 6: If f is of width w and it is a w-SPE, then it is SPE.
This property follows immediately from the definitions and shows, for
example, that to check for full subgame perfection in an Abreu-type strategy

vector, it suffices to check for 1-subgame perfection.

5. Perfection and Complexity Costs

In order to study the effects of complexity costs on the outcome of a
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repeated game, Rubinstein (1986) and Abreu and Rubinstein (1989)
incorporated those costs into the payoffs of the game and compared the new
set of outcomes with the ones of the original unmodified game. O0Of a special
interest to them was the case where the complexity costs are small relative
to the overall payoff of the game. In order to do so they constructed
lexicographic preferences for players who consider their payoffs first, but
would prefer to attain any payoff using the least complex strategy. For the
prisoners' dilemma game, they showed that even this minimal lexicographic
modification of preferences has severe reduction in the set of equilibrium
payoffs. It changes from the full set of feasible individually rational
payoffs to a one-dimensional subset of it consisting of one or two straight
line segments.

Abreu and Rubinstein restricted their players to use finite complexity
strategies. Neme and Quintas (1988) showed that without this restriction
the discontinuity disappears.

Our purpose in this section is to shed some additional light on this
discontinuity phenomenon. Our players, unlike those of Abreu-Rubinstein,
would incorporate the possibilities of deviations, or mistakes, into their
lexicographic preferences, and would place the complexity costs further down
the line in the consideration. More specifically, a player would prefer

strategy f; to fi as a reply to f . if fi vields him a higher payoff after

gvery history of the game (with at least one strict inequality), or if fi

and fi vield exactly the same payoffs after all histories, but the
complexity of fi is strictly smaller. 1In other words, these playvers are
first concerned with the payoffs they receive, in general or even after

deviations, and only after that with saving on complexity costs. We will
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show that for these types of players, the full folk theorems are recovered.

One may be concerned that we are going to an extreme opposite the one
of Abreu-Rubinstein's who did not have their players guard their payoffs
after deviations at all. 1t may be reasonable to be concerned with one's
payoffs after a small number of deviations. However, to consider any
unbounded number of deviations before bringing the complexity costs down may
be unreasonable. The partial perfection concept defined in the previous
section enables us to deal with this issue. We will show that players who
put primary importance on their payoffs at equilibrium or after a small
number of deviations (even one) and only lexicographic secondary importance
on their complexity costs will generate the full set of equilibria described

by the folk theorem.

) is a simplified p-subgame perfect

Definition 2: A strategy f = (fl,...fN

equilibrium (simplified p-SPE) of Gm(A,u) if it is p-SPE and

comp f, < comp g. for all g. such that g,|h is best response to f ,|h for
i i i i ~1!

every h € Hp(f).

Properties: Let G” be an infinitely repeated game.
i. The set of simplified 0-SPE coincide with the Nash equilibria of
the lexicographic preferences defined by Abreu and Rubinstein.
ii. If £ is a simplified p-SPE and it is also (p + 1)-SPE then it is a
simplified (p + 1)-SPE.
However, unlike the sets of p-SPE, there is no monotonicity in p of the sets

of (simplified p-SPE).

Let P be the prisoners' dilemma game, represented by the following
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bimatrix:

N

Figure 1

il

such that a < 0 and d > 1. We let Aj = {C,N}, A A, X A2 be the set of

1

<

action combinations, and u,: A = R be the utility functions.

We define the following sets of payoff vectors:

U = {u(a): a € A},
V¥ = {(X: X = Zp r.x x,. €U, r, €Q i=1,...,p Zp r. = 1}
J—_l j j’ J y J +1 ’ ’ L J:1 J

where Q+ denotes the set of nonnegative rational numbers.

vV =vV*¥nN Ri+ is the set of individually rational feasible payoff
combinations with rational coefficients. While the Abreu-Rubinstein results
show that limo:_*1 ua(simplified 0-SPE) is a very small subset of V, the
following theorem shows that for p = 1,2,...,:, limOL_’1 ua(simplified p-

SPE) = V.

Theorem 1: Consider the repeated prisoners' dilemma game with discounting,

P:. For all x € V there exists a strategy f = (fl’fz) and ¢ < 1 such that:
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. . o. . 6. g _ . R .
(i) llmaﬁl ui(f) = X;, 1= 1,2; (ii) for p 1,2,... ifoa<a< 1, f is a

simplified p~SPE; (iii) comp fi < o, and with width(fi) =1, i =1.2....

Proof: Because x € V we can find nonnegative integers 31,32,33,54 and b
such that
X = 24 s.v./b with b = 24 s, >0
3=1 73] j=1 73

and (yl,yz,yS,y4) = ((1,1),(0,0),(a,d),(d,a)). We describe the strategy

vector f = (f,,f ) required for the proof of the theorem by a pair of (full)

1’72

automata (see Kalai and Stanford, 1988). Since the automata corresponding
to f1 and f2 have the same number of states and identical tramsition
functions, we describe them in one graph.

The graph should be interpreted as follows. Circles correspond to
states of automata. The pairs of actions written in the circles represent,
respectively, the actions that players one and two take at their
corresponding states. Thus, if we cover all the second coordinates inside
the circles we obtain the automaton description of the strategy fl'
Similarly, covering the first coordinates will describe fz. Arrows in the
graph represent the transition rules of the two automata. A labeled arrow
coming out of the state represents the next state the automata move to if
the labeled pair of actions were taken. The unlabeled arrows coming out of
a state represents the transition rules following all action combinations
that were not covered by labeled ones. Notice that all of our labeled

arrows correspond to paths produced by states where the unlabeled arrows

represent deviations. So fl’ for example, prescribes the following actions
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i9
to player one. Starting at the top left state it prescribes cooperation.
Then if it observes a pair of cooperative actions it moves down to a similar
cooperating state. However, if it observed any deviation from (C,C), by
either player, it moves to the right to play the induced strategy g. In g
it starts by a state recommending noncooperation to player one and moving
down when (N,N) is observed but back to itself otherwise.

Motice that the play path of f yields in the limit (as o - 1) the

il
—
o

payoff x, and that the complexity of fi < o and width (f{) = 1 for i
Thus we only have to prove that f is a simplified p-SPE for p = 1,2,....
(The strategy q, is of the type used by Abreu and Rubinstein (1989) in their

constructions.)

v
—

¢

We choose Y to satisfy ¥ > d, ¥ > 2b, Xi > ui(C,C)/V + 1, and T 2

Thus, for sufficiently large o, u?(qz) < u?(q

Observation 1: For a sufficiently large <, starting at any combination of

states of the path of f (the circles directly under g yields both players

1)
a higher payoff than starting at any other combination of states (not

directly under g Also for sufficiently large o, starting on any circle

1)'
on the path of 4 yvields every player a higher payoff than starting on the

circles of qz before entering dg- The circles of qa, before aq yield

decreasing payoffs as we move down.

From Observation 1 we obtain:

Observation 2: For sufficiently large o, f is a SPE and therefore a p-SPE

for p == 0,1,2,..
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If follows from Observation 2 and the second property of a simplified
p-SPE that it suffices to show that f is a simplified 1-SPE. Because of the
symmetry of the players it now suffices to show that if fl is a best
response to f2 after all histories h € Hl(f) then comp (fl) > comp (fl)'

Notice that any of the circles in Figure 2 can be reached after histories in

Hl(f). Thus, the following claim will complete the proof.

Claim: If a strategy fl satisfies u(f1|h,f2|h) = u(fih) for all h € H (f),
then for any two histories h,h' £ H1(f) leading to different circle in

Figure 2, fl[h 2z fl(h'.

Notice that the path of (fl|h,f21h) and f|h agree for all h € Hl(f).
Suppose that fllh = f1lh'. Because the paths of f|h,flh' are

different, we can find a nonnegative integer number t  and a history

0
h = (hl,...,ht ) such that:
0
£ i -~ h = (F 1
( 1,f2)(h) hl (‘1’f2)(h )
(fl,fz)(h(hl,...,hto_l) - hto - (fl,fz)(h'(hl,...,hto_l))

fz(hH) # fz(h'ﬁ).

Clearly the claim holds for pairs h,h' both leading to different circles in
the path of q,

Consider now the case when one history, say h, lead to a circle in ql,
and the other one, h', leads to a circle in dy-

Since h = ﬁ(f(h'ﬁ)) has one deviation for f|h, then we have that f|hh
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starts in the first circle in d,. The history h does not have deviations
for £ih', hence h'h leads to a circle in qa, which is different from the

first.

Because hh, h'h € Hl(f) and lead to different circles in q, we have

~

that fljhh # flth‘h. So f, lh=f

1 LA

The remaining case is when h,h' lead to a different circles in q - in
this case, f|hh starts in a circle in q, and f|b'h does it in q, - But this

case was already analyzed. {1

We now move to the case of the repeated prisoners' dilemma game but
with the average payoff criterion, P” and show again the folk theorem with

simplified equilbria.

Theorem 2: Consider the repeated prisoners' dilemma game with the average
payoff criterion, P”, For all x € V there exists a strategy vector

f = (f ) satisfying: (i) u(f) = x; (ii) for p =1,2,... f is a

f‘.‘
1’72
simplified p-SPE; and (iii) comp fi < o, and width(fi) =1, 1= 1,2,

Proof: We construct the pair of equilibrium strategies f described by the
following diagram. The proof is very similar to that of Theorem 1.

The graph is interpreted as in Theorem 1. Notice that the primary path
of q1 yields the payoff x, the complexity of fi < oo, and the width (fi) =1
for i = 1,2.

Choosing ¥ sufficiently large, we have ui(qs) < ui(qz) < ui(ql).
Clearly, f is a SPE and therefore p-SPE for p = 0,1,2,.

By using an argument similar to that of Theorem 1, it suffices to show
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that if fl is a best response to f_  after all histories h € Hl(f) then

comp £, > comp fl' For such a strategy the folilowing observations hold.

1

Observation 1: Let h € Hl(f) be a history leading f to a circle in g, or

aq Then the path of f|h and (f1!h,f2]h) are the same.

2°

Observation 2: Because the payoff u(f|(C,N) = u(fll(C,N),le(C,N)) = 0,
there exists a history h* such that the path of (flgh*,fgih*) is (N,N) for

ever. The following claim will complete the proof.

Claim: Let fl be a strategy satisfying u(f, |h,f_|h) = u(f|h) for all

1 2

h € H1(f): (i) for any history h € H1(f) such that flh starts in the same

circle on g, or ¢,; then f1|h # flih*; and (ii) for any two histories

2

h,h' € Hl(f) leading to a different circle in 4y,9, fllh #* fllh'.

(i) Suppose that f1|h = f1|h*. Since f1(h) = N the strategy f|h does

not start in qi. If f|lh starts in qz, there exist h = ((N,N),...,(N,N))
such that (?1,f9)(hﬁ) = (C,C). By Observation 2, f1}h #* ?lgh*. Suppose
that h leads to a circle in _;, then there exists h = ((N,N),...,(N,N)) such

that hh € H1(f) and f!hﬁ starts in a circle in qz. So, by Observation 2,

(ii) Suppose that flgh = flih'. By the same argument used in the
proof of Theorem 1, we can assume, without loss of generality, that
fz(h) % fg(h'). Clearly, the claim holds for pairs h,h', both leading to a

different circle in the path of g!, or both in the path of qz, or when one
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history, h, leads to a circle in q;, and the other one, h', leads to a

circle in q,-

Consider now when the history h leads to a circle in qé and h' leads to

a circle in - The action (f ,f.)(h') is a deviation for flh, then

1’72
f!h(fl,fz)(h') starts in the first circle in 4, and flh'(fl,fz)(h') starts

in 5 but in a different circle. The histories

h(f ,fz)(h’),h'(fl,fz)(h ) € Hl(f)’ then fllh # fllh'.

1

The remaining cases are when the history h € Hl(f) leads to a circle in
qi and the other one h' € Hl(f) leads to a different circle in q;, or a

circle in qi.

The action (fl,fz)(h') is a deviation for f{h. Then the history

h(fl,fz)(h‘) leads to a circle in dy,- On the other hand, the history

h'(fl,fz)(h') leads to a circle in qi or q;, because the action (fl,fz)(h')

is not a deviation for f|h'. So, by the above cases, f1§h ES fllh'. [1

6. Exact Automata, Full Automata, and Reactive Strategies

Two types of automata have been sued in studies of strategic complexity

in repeated games (see Kalai, 1987). The first type, exact automata, were

suggested by Aumann (1981). Full automata, on the other hand, were

introduced by Xalai-Stanford (1988). The difference between the two is that
the input for an exact automaton of player i consists of action combinations
of i's opponents, excluding his own actions. On the other hand, the input
to a full automaton, consists of the action combinations of all players,
including i himself. This difference, which may seem minor at first, turns

out to be important when we study issues of subgame perfection. This is the



topic of this section.

To illustrate the two types of automata, we use the following examples
from the infinitely repeated prisoners' dilemma game. The "cooperate and
then tit-for-tat your opponent"” strategy for player one, c-tft, is described

by the following exact automaton:

Here there are two states (of mind) of player 1, represented by the two
circles. 1In the first and starting state he cooperates, while in the second
he defects, as illustrated by the letters inside the circles. The letters
along the arcs represent the actions of pilayer 2; the arcs themselves
represent the transitions of player 1 among his states. It is easy to see
that this automaton, when it starts at the cooperative state, would play the
c-tft strategy. ©Notice that if we start this automaton at the other state
it would play a d-tft strategy.

For games with the average payoff criterion and for almost all discount
parameters (with the exception of at most one, see Kalai-Samet-Stanford,
1988), a pair of c-tft strategies is not subgame perfect. The strategies
that are used to exhibit subgame perfect equilibria are often the grim-
trigger ones. Under such a strategy a player, say playver 1, starts by

cooperating and continues to do so after all histories which are fully
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cooperative. If any defection from cooperation by any player (including
himself) is observed anywhere along the history, then player 1 defects.
Since player one's actions may depend on his own previous action, we must
have both players' actions as input to his (full) automaton. A full
automaton describing his grim-trigger strategies is given by the following

figure.

Notice that only when both players cooperate does plaver 1 stay in the
cooperative state: all other action combinations move him to the defecting
state, which is absorbing.

One may think of exact automata as ones that assume that their own
prescriptions are always followed and that deviations from them are
impossible. Full automata, on the other hand, acknowledge the possibility
of deviations and their input includes the information about such
deviations. Full automata also allow for studying subgame perfection.

It turns out, however, that for the usual notion of Nash equilibria,
the distinction between exact and full automata is irrelevant. Starting
with an exact automaton of a player, we canr define a complete strategy on
the entire set of histories that extends the prescriptions of the automaton

in a natural way. Given a history of action combinations, we let the
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automaton follow the history, transiting through its states as if its
recommendations were followed (even if they were not) and in effect ignoring
the part of the input describing the player's own actions. After it reads
the last action combination and it makes its transition, the player adopts
the action prescribed by the last state of the automaton.
It is easy to see that his procedure yields strategies which we call

(1988). More formally, they are defined as follows.

Definition: A strategy of player i, £, ig reactive if for any two

4

2 m

. . 1 —m
histories, h = h"h™...h

and h = ﬁlﬁz...h', fi(h) = fi(ﬁ) whenever hE{ = h»i
for t = 1,2,...,m, i.e., whenever the two histories coincide on the actions

of the players other than i,

Ary non-artificial extension of the prescriptions of an exact automaton
to a full strategy vields a reactive strategy. So in order to study the
scope of what can be attained by exact automata in a repeated game, we
switch now to a discussion of what can be attained when we restrict
ourselves to reactive strategies. We first show that for Nash eguilibria
(0-subgame perfect equilibria), the restriction does not matter. We

consider any two-person infinitely repeated game.

Proposition 1: The payoff set of reactive (simplified) Nash equilibria

coincides with the payoff set of (resp. simplified) Nash equilibria.

Proof: Let F be the set of all strategies and R be the subset of reactive
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strategies of the infinitely repeated game. We only have to show that the
payoffs obtained by equilibria using any strategies can be obtained by

equilibria using reactive strategies. Let ¥.. ¥ - R with

5.

e (£ (b, ... 0%) = £ (0, ..., B") where ' = (£.(e),h’,)
JEomt NS Je)n ),

e N =~ 2 roe PP rn-1 n

B2 - (e, (Bh 0% ), BT - e BB ).

For all £, e &F, i = 1,2:

Y(t) = P(w, (£,), wz(fz))(t) for ail t (recall that
p(f) is the path resulting from f).
Consider f = (fl'fz) a Nash equilibrium and assume that (wl(fl),wz(fz))

is not a Nash equilibrium. Thenr for some g, € F,

u.(g.,¥ f(f ) > ui(w (£.)). But then, by property (ii),

(e, f L) > o, €40, £, j is ract i e e
u (gl f_l) ul(f1 2) SO (wl( 1) wz(fz)) is a reactive strategy Nash
equilibrium yielding the same payoffs as f. Now consider a simplified Nash

equilibrium f and suppose that Y(f) = ¢1(f1),¢2(f2)) is not a simplified

Nash equilibrium. Since W(f) is a Nash equilibrium, there is a g, with

ui(gi’wwi(f—i)) = ui(w(f)) and comp (gi) < comp (wi(fi)). But then, by

(i1), comp (g;) < comp (£,), w (v, (g,), ¥_,(f_,)) = u;(g,.f ;), yet, by (i),

ui(gi’f—i) = ui(f), so f is not simplified, a contradiction. I
The above proposition shows that all the payoffs (even the paths) that
can be attained with Nash equilibria can be attained with Nash equilibria
using only reactive strategies. And the same result holds for simplified
Nash equilibria. Thus, the analysis of efficient automata playing the
repeated game can be conduced with exact or full automata. Our next

proposition illustrates that when a minimal level of perfection is
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introduced to the discussion, the restriction to reactive strategies becomes
severe. The proposition is a straightforward generalization of the main
result in Kalai-Samet-Stanford (1988). We consider the infinitely repeated
prisoners' dilemma game with discount parameters ¢, 0 < & < 1. A pair of

strategies, f = (fl,fz) is a discount robust equilibrium if it is an

equilibrium of the game for all discount parameters 8 in some neighborhood
of ¢. Thus, a non-discount robust equilibrium is a knife-edge situation

that works only for isolated discount parameters.

Proposition 2: If f is a discount robust p-SPE using reactive strategies

for some p > 1, then the path of f consists of repeated plays of the

noncooperative action d.

Proof: The proof is essentially the same as the one for the case of full
perfection. Assuming that f satisfies the conditions of the proposition for
p = 1, then for any two histories, h and h, that coincide on the actions of,
say, player 1, f |h = fllﬁ. Therefore, by 1-SPE of f if h, h ¢ Hy, u,(£|h) =
u2(flﬁ). Since u2(f|h) is a geometric series in the discount parameter, if f
is discount robust then the equality of uz(flh) = u2(f|ﬁ) implies that the
payoffs of f|h and f|/h must agree term by term along the play path. This, in
turn, with the specific payoffs of the prisoners' dilemma game, implies that
the utilities for player 1 must agree term by term along the play paths of
flh and f|h. It follows that ul(f!h) = ul(f(ﬁ). So player 1 receives the
same induced payoff after any two histories h,h € Hl' Thus, after histories
h ¢ H0 he must be maximizing the one-~shot payoffs. Thus, he must be playing

d along the equilibrium path. {]
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