DISCUSSION PAPER NO. 83

HYPERSPACES OF TOPOLOGICAL VECTOR SPACES: THEIR EMBEDDING IN TOPOLOGICAL VECTOR SPACES

bу

Prem Prakash and Murat R. Sertel
April 20, 1974

Also issued as No. I/74-17 in the Preprint Series of the International Institute of Management, D-1000 Berlin 33, Griegstrasse 5.

HYPERSPACES OF TOPOLOGICAL VECTOR SPACES: THEIR EMBEDDING IN TOPOLOGICAL VECTOR SPACES

bу

Prem Prakash and Murat R. Sertel

We prove the following

O. HAUPTSATZ: Let L be a real (Hausdorff) topological vector space. The space K[L] of nonempty compact subsets of L forms a (Hausdorff) topological semivector space with singleton origin when K[L] is given the uniform (equivalently, the finite) hyperspace topology determined by L. Then K[L] is locally compact iff L is so. Furthermore, KQ[L], the set of nonempty compact convex subsets of L, is the largest pointwise convex subset of K[L] and is a cancellative topological semivector space. For any nonempty compact and convex set $X \subset L$, the collection $KQ[X] \subset KQ[L]$ is nonempty compact and convex. L is iseomorphically embeddable in KQ[L] and, in turn, there is a smallest vector space L in which KQ[L] is algebraically embeddable (as a cone). Furthermore, L can be given a vector topology T such that the algebraic embedding of KQ[L] in L is an iseomorphism, while L is, respectively, locally convex/

normable accordingly as L is so; indeed, T can be so chosen that, when L is normed, the embedding of L in KQ[L] and that of KQ[L] in L are both iseometries.

REFERENCES

- 1. R. Fletcher and M.J.D. Powell, "A Rapidly Convergent Descent Method for Minimization", <u>Brit. Computer J.</u>, 6, 1963, pp. 163-168.
- 2. R. Fletcher and C.M. Reeves, "Function Minimization by Conjugate Gradients", Brit. Computer J., 7, 1964, pp. 149-154.
- 3. R. L. Fox, L.S. Lasdon, A. Tamir and M. W. Ratner, "An Efficient One-Dimensional Search Procedure", to appear in <u>Management Science</u>.
- 4. J. Kowalik and M.R. Osborne, 'Methods for Unconstrained Optimization Problems," <u>Elsevier</u>, New York, 1968.
- L.S. Lasdon, R. Fox, and M. Ratner, "An Efficient One-Dimensional Search Procedure for Barrier Functions", to appear in <u>Mathematical Programming</u>.
- L.S. Lasdon, R.L. Fox, and A. Tamir, 'Nonlinear Programming using Exterior Penalty Functions", report prepared for ONR contract number N0014-67-A-0010, Case Western Reserve University, November 1972.
- 7. F.A. Lootsma, "Penalty-Function Performance of Several Unconstrained Minimization Techniques", Phillips Res. Depts., 27, 1972, pp. 358-385.
- 8. D.G. Luenberger, "Introduction to Linear and Nonlinear Programming", Addison Wesley Publishing Co., 1973, Sections 7.2, 7.3.
- 9. J.M. Ortega and W.C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables", Academic Press, 1970.
- A. Ostrowsky, "Solution of Equations and Systems of Equations", Academic Press, New York 1966, 2nd edition.
- 11. A. Ralston, "On Differentiating Error Terms", Amer. Math. Monthly 70, (1963), pp. 187-189.
- 12. J.F. Traub, "Iterative Methods for Solution of Equations", Prentice-Hall, 1964.

1. PRELIMINARIES

R denotes the set of real numbers with the usual topology, and $R_+ = \{\lambda \in R \mid \lambda \geq 0\}$. For any set X, [X] denotes the set of nonempty subsets of X. When X is a topological space, K[X] denotes the set of compact nonempty subsets of X. When X lies in a real vector space, Q[X] denotes the set of convex nonempty subsets of X. Finally, when X lies in a real topological vector space, $KQ[X] = K[X] \cap Q[X]$.

In topologizing hyperspaces (i.e., spaces of subsets), we will use the uniform topology, regarding which we adopt Michael [1] as standard reference. Let X be a uniform space, and let $\{E_{\alpha} \subset X \times X \mid \alpha \in A\}$ be a fundamental system of symmetric entourages of X. The <u>uniform topology</u> for [X] is the topology generated by declaring $E_{\alpha}[A]$ = $\{B \in [X] \mid B \subset E_{\alpha}(A) \text{ and } A \subset E_{\alpha}(B)\}$ for each $\alpha \in A$ to be a nbd of A $\{A \in [X]\}$. By the uniform topology on a hyperspace $H[X] \subset [X]$ is meant the relative topology of H[X] when [X] carries the uniform topology.

1.0 <u>DEFINITION</u> [2]: Let (S, \oplus) be a commutative semigroup and $\Psi: R_+ \times S \rightarrow S$ a map such that, denoting $\Psi(\lambda, s) = \lambda s$,

$$\lambda(\mu s) = (\lambda . \mu) s$$
 (left action)
$$1s = s$$
 (unitariness)
$$\lambda(s \oplus t) = \lambda s \oplus \lambda t$$
 (homomorphism)

for all λ , $\mu \in R_+$ and s, t ϵ S. We call S a semivector space. When S is a Hausdorff space and the operations θ and Ψ are both continuous, we call S a topological semivector space.

Thus, real vector spaces are all semivector spaces, so that the topological vector spaces we speak of are those with Hausdorff topology.

2. SEMIVECTOR HYPERSPACES OF TOPOLOGICAL VECTOR SPACES

Let L be a real vector space, and e its identity element. Now [L] is a semivector space with identity $\{e\}$ when $A \oplus B = \{a + b \mid a \in A, b \in B\}$ and $\lambda A = \{\lambda a \mid a \in A\}$, where + stands for vector addition in L (A, B \in [L], $\lambda \in R_+$). Furthermore, $\mathcal{Q}[L] \subset [L]$ is also a semivector space and is pointwise convex, i.e., $\{A\}$ is convex for each $A \in \mathcal{Q}[L]$. In fact $\mathcal{Q}[L]$ is the largest pointwise convex subset of [L]: If $A \in [L]$ and $\lambda A \oplus \lambda' A \subset A$ for each $\lambda = (1-\lambda') \in [0,1]$, then $A \subset L$ must be convex.

From here on, L will always e a topological vector space.

Now $K[L] \subset [L]$ is a semivector subspace and KQ[L] is the largest pointwise convex semivector subspace of K[L] Also, the <u>origin</u> $O[L] = OK[L] = OQ[L] = OKQ[L] = \{\{e\}\}\}$ is singleton. N.B.: The uniform topology on K[L] coincides with the finite topology (1.1, pp. 153, and 3.3 pp. 160, of [1]).

2.1 PROPOSITION: (1) K[L] is a topological semivector

space, locally compact iff L is. (2) The map $\{: x \mapsto \{x\} \mid (x \in L) \mid \text{iseomorphically embeds} \mid L \mid \text{into} \}$ the topological semivector subspace $KQ[L] \subset K[L]$.

Proof: (ad (1)): K[L] is Hausdorff as L is (see 4.9.8, pp. 164 of [1]), and will be locally compact iff L is locally compact (see 4.9.12, pp. 1.4 of [1]). This leaves only the continuity of the operations \oplus and Ψ of K[L] to show. The continuity of vector addition $+: L \times L + L$ implies the continuity of the map $\widehat{+}: [L \times L] \to [L]$ defined by $\widehat{+}(P) = \{a + b \mid a, b \in P\}$ (Pe $[L \times L]$) (see 5.9.1, pp. 169 of [1]). Thus, the restriction of $\widehat{+}$ to the space $\mathcal{B} = \{C \times D \mid C, D \in K[L]\} \subset K[L \times L]$ of compact boxes is also continuous. Furthermore, the Cartesian product $\pi(C, D) = C \times D$ is continuous on $K[L] \times K[L] \to \mathcal{B}$ (see Theorem 3 of [3]). Now $\widehat{\oplus}$ is simply the composition $\widehat{\oplus} = \widehat{+} \circ \pi: K[L] \times K[L] \to K[L]$, and so is continuous. Similarly, the continuity of scalar multiplication $\mathbb{R}_+ \times L \to L$ implies that of scalar multiplication $\Psi: \mathbb{R}_+ \times K[L] \to K[L]$.

 $(\underline{ad}\ (2))$: From (1) it follows that the space $KQ[L] \subset K[L]$ is a topological semivector space. Now the map $\{$ is a homeomorphism (2, pp. 155 of [1]) and is easily checked to be a homomorphism. \Diamond

2.2 PROPOSITION: KQ[L] is cancellative (i.e., A \oplus B = A \oplus C \Rightarrow B = C) and A \oplus B \subset A \oplus C \Rightarrow B \subset C (A, B, C \in KQ[L]).

<u>Proof:</u> From 2.1(2) and above, KQ[L] is a pointwise convex (Hausdorff) topological semivector space with singleton origin, hence, by Theorem 2.11 of [2], cancellative. Let A, B, C $\in KQ[L]$ and A \oplus B \subset A \oplus C. Supposing b \in B\C, we have A \oplus ({b} U C) = A \oplus C and cancelling A gives {b} U C = C, a contradiction. Hence, B\C = \emptyset , implying B \subset C. \Diamond

2.3 THEOREM: If X C L is nonempty compact and convex,

then KQ[X] C KQ[L] is (nonempty) compact and convex,

or

 $x \in KQ[L] \Rightarrow KQ[x] \in KQ[KQ[L]].$

<u>Proof:</u> Let $X \subset L$ be nonempty compact and convex. The uniform topology which the (uniform space) X determines for K[X] yields K[X] compact Hausdorff, since X is compact Hausdorff (see 3.3, pp. 160, and 4.9.12, pp. 164, of [1]). Furthermore, K[X] inherits the same topology as a subspace of K[L] as it receives from X (see 5.2.3 and 5.2.3', pp. 167 of [1]), so that $K[X] \subset K[L]$ is compact Hausdorff.

Now $KQ[x] \subset K[x]$ is clearly nonempty and convex, since x is so. This leaves only to show that $KQ[x] \subset K[x]$ is closed. To that end, let F be a converging filterbase in KQ[x]. Since K[x] is compact Hausdorff, the limit point,

say Q, is unique and Q ϵ K[X]. We show that Q is also convex.

For each λ ϵ [O, 1], denote λ = (1- λ) and define the map Ω_{λ} on K[x] through $\Omega_{\lambda}(P) = \lambda P \oplus \lambda' P$ ($P \in K[x]$). By 2.1, Ω_{γ} for each $\lambda \in [0, 1]$ is continuous, so that $\Omega_{\lambda}(K[X]) \subset K[L]$; as X is convex, we actually have $\Omega_{\lambda}(K[x]) \subset K[x]$. Furthermore, for each $\lambda \in [0, 1]$, the restriction of Ω_{λ} to $\mathcal{KQ}[x]$ is nothing but the identity map of $\mathit{KQ}[x]$. Also, given a $\mathit{P} \in \mathit{K}[x]$, if $\Omega_{\lambda}(\mathit{P}) \subset \mathit{P}$ for each $\lambda \in [0, 1]$, then $P \in KQ[X]$. Take any $\lambda \in [0, 1]$. We show that $\Omega_{\lambda}(Q) = Q$. Let $V \subset K[x]$ be any nbd of $\Omega_{\lambda}(Q) \in K[X]$. As Ω_{λ} is continuous, there is a nbd $U \subset K[x]$ of $Q \in K[x]$ such that $\Omega_{\chi}(U) \subset V$. As F converges to Q, there is some $W \in \overline{F}$ with $W \subset U$. But $\mathcal{W} \subset \mathcal{KQ}[x]$, so that $\mathcal{W} = \Omega_{\lambda}(\mathcal{W}) \subset \Omega_{\lambda}(\mathcal{U}) \subset \mathcal{V}$. This shows that \underline{F} converges to $\Omega_{\lambda}(Q)$; and, the limit point being unique, $\Omega_{\lambda}(Q) = Q$. Then, $Q \in KQ[x]$, showing that KQ[x] is closed and completing the proof. \Diamond

3. EMBEDDING KQ[L] IN A TOPOLOGICAL VECTOR SPACE

A subset of the semivector space [L], to be embeddable in a vector space, must clearly be pointwise convex and cancellative. Now the largest pointwise convex set in [L] is Q[L], but clearly Q[L] fails to be cancellative and is, therefore, not embeddable in a vector space. On the other hand, we have just extended the operations of L to KQ[L] (see 2.1), and this is a topological semivector space which is both pointwise convex and cancellative (2.2). In standard fashion (see also 2.9 of [2]) we embed it in

The Real Vector Space L: Denoting $S = KQ[L] \times KQ[L]$, equip S with coordinatewise addition $(A, B) \oplus (C, D)$ = $(A \oplus C, B \oplus D)$ and define the equivalence relation $G \subseteq S$ through $(A, B) \oplus (C, D) \iff A \oplus D = B \oplus C$, so that G is a semigroup congruence and the quotient L = S/G is a group. Denote the equivalence class of (A, B) by [A, B], and define scalar multiplication $\psi \colon R \times L \to L$ by setting $\psi(\lambda, [A, B]) = [\lambda A, \lambda B]$ if $\lambda \geq 0$ and $\psi(\lambda, [A, B])$ = $[|\lambda|B, |\lambda|A]$ if $\lambda \leq 0$. Now L is a real vector space and the map g which sends each $A \in KQ[L]$ to the equivalence class $[2A, A] \in L$ is an algebraic isomorphism embedding KQ[L] into L. Evidently, L is, up to an isomorphism, the

smallest vector space in which KQ[L] may be algebraically embedded. N.B: Clearly, [A, A] = [B, B] for all A, B ϵ KQ[L], and this equivalence class is the identity element of L.

We now take a fundamental system $\,U = \{U_{\alpha} \, \big| \, \alpha \in A\}\,$ of symmetric open nbds of the identity $\,e\,$ in $\,L\,$, and for $\,L\,$ we define

The Topology T: For each $\alpha \in A$, declare $W_{\alpha} = \{[A, B] \in L \mid B \subset A \oplus U_{\alpha}, A \subset B \oplus U_{\alpha}\}$ to be an open nbd of the identity element [A, A] of L; and, for each $[P, Q] \in L$, declare $[P, Q] \oplus W_{\alpha}$ to be an open nbd of [P, Q]. (We check that, if $[A, B] \in W_{\alpha}$ and $(C, D) \in [A, B]$, then $D \subset C \oplus U_{\alpha}$ and $C \subset D \oplus U_{\alpha}$: As $(C, D) \in [A, B]$, we have $A \oplus D = B \oplus C$, while $A \oplus D \subset B \oplus D \oplus U_{\alpha}$, so that $B \oplus C \subset B \oplus D \oplus U_{\alpha}$, from which 2.2 implies $C \subset D \oplus U_{\alpha}$; similarly, $D \subset C \oplus U_{\alpha}$.)

3.1 THEOREM: (1) L equipped with the topology T is a topological vector space, and (2) g embeds KQ[L] iseomorphically in L.

<u>Proof</u>: (ad (1)): To see that the family $W = \{W_{\alpha} \mid \alpha \in A\}$ is a local base for a Hausdorff vector topology on L, we note

that each W_{α} is symmetric, and check that:

- For each pair α , β ϵ A, there is a γ ϵ A such that $W_{\gamma} \subset W_{\alpha} \cap W_{\beta}$: Choose $\gamma \in A$ such that $U_{\gamma} \subset U_{\alpha} \cap U_{\beta}$; (ii) For each $\alpha \in A$, there is a $\beta \in A$ such that $W_{\beta} \oplus W_{\beta} \subset W_{\alpha}$: Choose $\beta \in A$ such that $U_{\beta} \oplus U_{\beta} \subset U_{\alpha}$; (iii) For each α ϵ A, there is a β ϵ A such that $\lambda \textit{W}_{\beta} \subset \textit{W}_{\alpha}$ for each scalar $\lambda \in R$ with $|\lambda| \le 1$: Choose $\beta \in A$ such that $\lambda U_{R} \subset U_{\alpha}$ for each $\lambda \in R$ with $|\lambda| \le 1$; (iv) Given any $[A, B] \in L$ and $\alpha \in A$, there is a $\lambda \in R$ such that $[A, B] \in \lambda W_{\alpha}$: Taking any $b \in B$, for each $a \in A$ find $\lambda_{\alpha} \in \mathbb{R}$ such that a $\epsilon \lambda_{a} U_{\alpha} \oplus \{b\}$. Then, for each a ϵ A, a ϵ $\lambda_a U_\alpha \oplus B$, and so $\{\lambda_a U_\alpha \oplus B \mid a \in A\}$ is an open cover of A and, since A \subset L is compact, there is a finite subcover $\{\lambda_{a(i)}, U_{\alpha} \oplus B | i = 1, ..., m\}$. Defining $\lambda_{A} = Max \{\lambda_{a(1)}, ..., m\}$ $\lambda_{a(m)}$ }, now A C $\lambda_{A}^{U}_{\alpha}$ \oplus B. Finding λ_{B} in similar fashion and setting $\lambda = \text{Max} \{\lambda_{A}, \lambda_{B}\}$ we see that $[A, B] \in \lambda W_{\alpha}$. (v) $\prod_{A} w_{\alpha} = \{ [A, A] \}$ (where [A, A] is the identity element of L): $[A, A] \in \bigcap W$, since $[A, A] \in W_{\alpha}$ for each $\alpha \in A$. On the other hand, if B, C ϵ KQ[L] are distinct, then there is an $\beta \in A$ such that $B \notin C \oplus U_{\beta}$ or $C \notin B \oplus U_{\beta}$, so that [B, C] $\notin W_{\beta}$ and [B, C] $\notin \Omega_{\alpha}^{W_{\alpha}}$.
- $(\underline{ad}\ (2))$: Having already seen that g is an algebraic isomorphism, all we need to check here is that g is continuous and open. A basic open nbd of an element $P \in \mathcal{KQ}[L]$ is

of the form $U_{\alpha}(P) = \{Q \in KQ[L] | P \subset Q \oplus U_{\alpha}, Q \subset P \oplus U_{\alpha}\}$ ($\alpha \in A$). A basic open nbd of $g(P) = [2P, P] \in L$ according to the subspace topology of g(KQ[L]) determined by T is of the form $W'_{\alpha}(P) = ([2P, P] \oplus W_{\alpha}) \cap g(KQ[L])$ ($\alpha \in A$). What we actually show now is the formula $g(U_{\alpha}(P)) = W'_{\alpha}(P)$.

Let $[2Q, Q] \in g(U_{\alpha}(P))$, so that $P \subset Q \oplus U_{\alpha}$ and $Q \subset P \oplus U_{\alpha}$. Let $[A, B] = [2Q, Q] \oplus [P, 2P] = [2Q \oplus P, Q \oplus 2P]$, so that $A \oplus Q \oplus 2P = B \oplus 2Q \oplus P$, i.e., $A \oplus P = B \oplus Q$. As $A \oplus P \subset A \oplus Q \oplus U_{\alpha}$, we have $B \oplus Q \subset A \oplus Q \oplus U_{\alpha}$, and 2.2 then yields $B \subset A \oplus U_{\alpha}$. Similarly, $A \subset B \oplus U_{\alpha}$, so that $[A, B] \in W_{\alpha}$ and $[2Q, Q] = [2P, P] \oplus [A, B] \in W'_{\alpha}(P)$, i.e., $g(U_{\alpha}(P)) \subset W'_{\alpha}(P)$. Now let $[2P, P] \oplus [2A, A] = [2(P \oplus A), P \oplus A] \in W'_{\alpha}(P)$, so that $2A \subset A \oplus U_{\alpha}$ and $A \subset 2A \oplus U_{\alpha}$. Then $P \oplus 2A \subset P \oplus A \oplus U_{\alpha}$ and $P \oplus A \subset P \oplus 2A \oplus U_{\alpha}$, so that 2.2 gives $P \oplus A \subset P \oplus U_{\alpha}$ and $P \subset P \oplus A \oplus U_{\alpha}$, i.e., $P \oplus A \in U_{\alpha}(P)$ and $[2(P \oplus A), P \oplus A] \in g(U_{\alpha}(P))$. Thus, $g(U_{\alpha}(P)) \subset W'_{\alpha}(P)$, and we conclude that $g(U_{\alpha}(P)) = W_{\alpha}(P)$, completing the proof. \Diamond

3.2 THEOREM: L with the topology T is locally convex iff L is locally convex.

<u>Proof:</u> "Only if" follows from the conjunction of 2.1(2) and 3.1(2). To see "if," assume L to be locally convex. W.l.g., we may assume that, for each α ϵ A, U_{α} is convex, circled, and radial at e and that, for each nonzero λ ϵ R, λU_{α} ϵ U.

Let $\alpha \in A$. It is straightforward to check that (i) W_{α} is circled and (ii) for each nonzero $\lambda \in \mathbb{R}$, $\lambda W_{\alpha} \in W$. To check that (iii) W_{α} is convex, let [A, B], $[C, D] \in W_{\alpha}$ and $\lambda = (1-\lambda') \in [0, 1]$. Now $\lambda [A, B] \oplus \lambda' [C, D] = [\lambda A \oplus \lambda' C, \lambda B \oplus \lambda' D]$; and, since U_{α} is convex, we have $\lambda U_{\alpha} \oplus \lambda' U_{\alpha} = U_{\alpha}$. Now [A, B], $[C, D] \in W_{\alpha}$ says $A \subset B \oplus U_{\alpha}$ and $C \subset D \oplus U_{\alpha}$, so that $\lambda A \oplus \lambda' C \subset \lambda B \oplus \lambda' D \oplus \lambda U_{\alpha} \oplus \lambda' U_{\alpha}$. Similarly, $\lambda B \oplus \lambda' D \subset \lambda A \oplus \lambda' C \oplus U_{\alpha}$. Thus, $[\lambda A \oplus \lambda' C, \lambda B \oplus \lambda' D] \in W_{\alpha}$, showing that W_{α} is convex. This in conjunction with (iv) in the proof of 3.1 (1) implies that (iv) W_{α} is radial at the identity element [A, A] of L. Thus, W is a local base for a (unique) locally convex topology in L. \Diamond

3.3 THEOREM (Rådström [4]): (1) L with the topology T is normable iff L is normable, and (2) if L is normed,

L admits a norm for which f and g are isometries.

Proof: (ad (1)): "Only if" is obvious from the conjunction of 2.1(2) and 3.1(2). To see "if," assume that L is normed by a norm ρ , so that $V = \{x \in L \mid \rho(x) < 1\} = U_{\alpha}$ for some $\alpha \in A$. Thus, $W_{\alpha} = \{[A, B] \in L \mid A \subset B \oplus V, B \subset A \oplus V\} \in W$. Since V is radial at the origin, circled, convex and bounded, one easily checks (see also the proof of 3.1(1) that W_{α} has these properties too, so that (the Hausdorff space) L is normable, proving (1).

 $(\underline{ad}\ (2))$: In fact, the Minkowski functional ρ^* of W_{α} is a norm for L and, computing that $\rho^*[2P,P]$ = $\sup_{P} \rho(p)$ for each $P \in KQ[L]$, one easily sees f and g to be isometries. \Diamond

REFERENCES

- [1] Michael, Ernest: "Topologies on Spaces of Subsets,"

 Transactions of the American Mathematical Society, 71

 (1951) pp. 152-182
- [2] Prakash, Prem and Murat R. Sertel: "Topological Semivector Spaces: Convexity and Fixed Point Theory," forthcoming in Semigroup Forum
- §[3] Prakash, Prem and Murat R. Sertel: "On the Continuity of Cartesian Product and Factorisation," Preprint Series No. I/74-16, Easter 1974, International Institute of Management, West Berlin
 - [4] Rådström, Hans: "An Embedding Theorem for Spaces of Convex Sets," Proceedings of the American Mathematical Society, 3, No. 1 (Feb. 1952), pp. 165-169
- § Also issued as Discussion Paper No. 82, Center for Mathematical Studies in Economics and Management Science, Northwestern University, Evanston, Illinois, (1974)

Acknowledgement: The authors thank the International Institute of Management for inviting P.P. to West Berlin, which made it possible for them to reconvene and write this paper.