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We prove the following

O. HAUPTSATZ: Let L be a real (Hausdorff) topological

vector space. The space K[L] of nonempty compact subsets

of L forms a (Hausdorff) topological semivector space with

singleton origin when K[L] is given the uniform (egui-

valently, the ‘finite) hyperspace topology determined by L.

Then K[L] is locally compact iff L is so. Furthermore,

KQ[L], the set of nonempty compact convex subsets of L, is

the largest pointwise convex subset of K[L] and is a

cancellative topological semivector space. For any nonempty

compact and convex set X C- L, the collection KQ[X] C:KQ[L?

is nonempty compact and convex. L 1is iseomorphically

embeddable in KQ[L] and, in turn, there is a smallest

vector space L in which KQ[L] is algebraically embeddable

(as a cone). Furthermore, L can be given a vector topology

T such that the algebraic embedding of KQ[t] in L is

an iseomorphism, while L is, respectively, locally convex/




normable accordingly as L is so; indeed, T can be s

chosen that, when L is normed, the embedding of L in

KQ[L] and that of KQ[L] in L are both iseometries.
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1. PRELIMINARIES

R denotes the set of real numbers with the usual
topology, and R, = {x e Rl A 2 0}. For any set X, [X]
denotes the set of nonempty subsets of X. When X 1is a
topological space, K[X] denotes the set of compact nonempty
subsets of X. When X 1lies in a real vector space, Q[X]
denotes the set of convex nonempty subsets of X. Finally,
when X 1lies in a real topological vector space,
ko[x] = k[x] N afx].

In topologizing hyperspaces (i.e., spaces of subsets),
we will use the uniform topology, regarding which we adopt
Michael [1] as standard reference. Let X be a uniform

space, and let {Eac: X X X! a e A} be a fundamental system

of symmetric entourages of X. The uniform topology for

[X] is the topology generated by declaring Ea[A]

={Be [x]| BCE (A) and AC E_(B)} for each a e A

to be a nbd of A (A € [X]). By the uniform topology on a
hyperspace H[X](: [X] is meant the relative topology of

H[X] when [X] carries the uniform topology.

1.0 DEFINITION [2]: Let (S, ®) be a commutative semi-

group and VY: R+ X § >+ S a map such that, denoting

Y(A, s) = 1As,



X(us) = (A.u)s (left action)
ls = s (unitariness)
A(s ® t) = As & At (homomorphism)

for all A, u € R+ and s, t e S. We call S a

semivector space. When S 1is a Hausdorff space and

the operations ® and Y are both continuocus, we call

S a topological semivector space.

Thus, real vector spaces are all semivector spaces,
so that the topological vector spaces we speak of are those

with Hausdorff topology.



2. SEMIVECTOR HYPERSPACES OF TOPOLOGICAL VECTOR SPACES

Let L be a real vector space, and e 1its identity
element. Now [L] is a semivector space with identity {e}
when A ® B = {a + b| a € A, b e B} and AA ={Aa| a € A},
where + stands for vector addition in L (A, B ¢ [L],

X e R+). Furthermore, Q[L] c:[L] is also a semivector space

and is pointwise convex, i.e., {a} is convex for each

A € Q[L]. In fact Q[L] is the largest pointwise convex
subset of [L]: If A ¢ [L] and AA ® X'A c A for each
A= {1-)17) € [O, 1], then A C L must be convex.

From here on, L will always e a topological vector

space.

Now K[L]{: [L] is a semivector subspace and KQ[L]
is the largest pointwise convex semivector subspace of K[L}
Also, the origin ofrL] = ok[L] = 0Q[r] = oKQ[L] = {{e}}
is singleton. N.B.: The uniform topology on K[L] coin-
cides with the finite topology (1.1, pp. 153, and 3.3 pp.

160, of [1]).

2.1 . PROPOSITION: (1) K[L] is a topological semivector

space, locally compact iff L is. (2) The map

$: x > {x} (x ¢ L) iseomorphically embeds L into

the topological semivector suhspace KQ[L] C:K[L].




Proof: (ad (1)): K[rL] is Hausdorff as L is (see 4.9.8,
pp. 164 of [1]), and will be locally compact iff L is
locally compact (see 4.9.12, pp. 1°4 of [1]). This leaves
only the continuity of the operations @& and Y of K[L]
to show. The continuity of vector addition 4: L x L > L

- implies the continuity of the map :: [L x L] > [L] defined
by :(P) = {a + b| a, b £ p} (P ¢ [L X L]) (see 5.9.1,
Pp. 169 of [1]). Thus, the restriction of : to the space
B={cxp|lc, pe K[t]} € K[L x L] of compact boxes is
also continuous. Furthermore, the Cartesian product

mT(C, D) = C x D is continuous on K([L] x K[L] > B (see
Theorem 3 of [3]). Now ® 1is simply the composition

® = :Oﬂ: K[L] x K[L] > K[L], and so is continuous. Similarly,
the continuity of scalar multiplication R, x L >~ L implies

that of scalar multiplication V¥: R_ X K[L] > K[L].

(ad (2)): From (1) it follows that the space
KQ[L] C:K[L] is a topological semivector space. Now the
map 4 is a homeomorphism (2, pp. 155 of [1]) and is easily

checked to be a homomorphism. ¢

2.2 PROPOSITION: KQ[L] is cancellative (i.e., A @ B

= A ® C = B = C) and A ® BCc A ® C = BCC

(a, B, c ¢ KQ[L]).



Procf: From 2.1(2) and above, KQ[L] is a pointwise convex
(Hausdorff) topological semivector space with singleton
origin, hence, by Theorem 2.11 of [2], cancellative. Let
A, B, C ¢ KQ[t] and A ® Bc A ® C. Supposing b e B\C,
we have A @& ({b} UC) = A ® C and cancelling A gives
{b} UC =2cCc, a contradiction. Hence, B\C = #, implying

B CC. 0

2.3 THEOREM: If X c L 1is nonempty compact and convex,

then KQ[x] € kQ[1r]

or

i

[N
(7]

(nonempty) compact and convex,

x ¢ KQ[r] = ko[x] ¢ kqQ[ka[r]].

Proof: Let X ¢ L be nonempty compact and convex. The
uniform topology which the (uniform space) X determines
for K[x] yields K[Xx] compact Hausdorff, since X is
compact Hausdorff (see 3.3, pp. 160, and 4.9.12, pp. 164, of
[1]). Furthermore, K[X] inherits the same topology as a
subspace of K[L] as it receives “rom X (see 5.2.3 and
5.2.3', pp. 167 of [1]), so that K[x] < K[r] is compact
Hausdorff.

Now KQ[X] c;K[x] is clearly nonempty and convex, since
X 1is so. This leaves only to show that KQ[x] < K[x] is

closed. To that end, let E be a converging filterbase in

KQ[X]. Since K[x] is compact Hausdorff, the limit point,



say Qs 18 unique and ¢Q ¢ K[X]. We show that @ 1is also
convex.

For each X € [O, 1], denote A7 = (1-}) and define the
map &, on K[X] through QA(P) = AP & 1°P (P ¢ K[X]).
By 2.1, QA for each X ¢ [O, 1] is continuous, so that
QA(K[X]) c K[L]: as x 1is convex, we actually have
QA(K[X])IZ K[x]. Furthermore, for each A ¢ [0, 1], the
restriction of QA to KQ[X] is nothing but the identity
map of KQ[X]. Also, given a P g K[X], if QA(P)c: P
for each X ¢ [0, 1], then P ¢ KQ[x]. Take any 1 e [o, 1].
We show that QA(Q) = Q. Let VcC K[X] be any nbd of
QA(Q) € K[X]. As Qx is continuous, there is a nbd
Uc Kk[x] of @ e K[x] such that @, () = V. as F con-
verges to Q, there is some W ¢ F with W c U. But

W < KQ[x], so that W

QA(W) C QA(U) c V. This shows that
F converges to QA(Q); and, the limit point being unique,
QA(Q) = Q. Then, Q € KQ[X], showing that KQ[X] is closed

and completing the proof. ¢



3. EMBEDDING KQ[] 1IN A TOPOLOGICAL VECTOR SPACE

A subset of the semivector space [L], to be embeddable
in a vector space, must clearly be pointwise convex and
cancellative. Now the largest pointwise convex set in [L]
is Q[L], but clearly Q[L] fails to be cancellative and
is, therefore, not embeddable in a vector space. On the
other hand, we have just extended the operations of L to
KQ[L] (see 2.1), and this is a topological semivector space
which 1is both pointwise convex and cancellative (2.2). In

standard fashion (see also 2.9 of [2]) we embed it in

The Real Vector Space L: Denoting S =»KQ[L] x KQ[L], equip

S with coordinatewise addition (A, B) ® (C, D)

= (A®C, B & D) and define the equivalence relation G < S
through (A, B) 6 (Cc, D) < A @ D = B & C, so that G is

a semigroup congruence and the quotient L = S/G 1is a

group. Denote the equivalence class of (A, B) by [A, B],
and define scalar multiplication ¢: R x L - | by setting

vx, [a, B8]) = [xa, xB] if A 20 anda y(r, [a, B]

= [IAIB, IAIA] if X < O.‘ Now L is a real vector space

and the map g which sends each A ¢ KQ[L] to the equivalence
class [2A, A] € L is an algebraic isomorphism embedding

KQ[L] into L. Evidently, | is, up to an isomorphism, the
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smallest vector space in which KQ[L] may be algebraically
embedded. N.B: Clearly, [A, A] = [B, B] for all
A, B ¢ KQ[L], and this equivalence class is the identity

element of L.

We now take a fundamental system U = {Ual o € A} of
symmetric open nbds of the identity e in L, and for L

we define

The Topology T: For each a e A, declare W = {[a, B] ¢ L
|lBca o U,», RAC B ®U]} tobe an open nbd of the identity
element [A, A] of L; and, for each [P, Q] e L, declare

[P, Q] ® wa to be an open nbd of [P, Q]. (Wwe check that,

it [a, B] ¢ W ana (c, p) ¢ [A, B], then Dcc ® U,

and Cc D @& Ua: As (Cc, D) ¢ [A, B], we have A @ D =B & C,
while A @ Dc B @ D & Ua' so that B @ CC B &6 D @& Ua' from
which 2.2 implies C C D & Ua; similarly, DC C © Ua')

3.1 THEOREM: (1) L equipped with the topology T a

is
topological vector space, and (2) g embeds KQ[L]

iseomorphically in L.

Proof: (ad (1)): To see that the family W = {wal a ¢ A} is

a local base for a Hausdorff vector topology on L, we note



that each wa is symmetric,
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and check that:

(i) For each pair a, B € A, there is a y € A such that
W : A U U, ;
y C wa n ws Choose ¥ ¢ such that UY c o, 0 8
(id) For each o e A, there is a B € A such that
W e W W : cChoose e A such that U, @ U, C U_;
g ® Vg &Y B g & Ug &Yy
(iii) For each o € A, there is a B € A such that ow C.wu
for each scalar XA e R with IA{SI: Choose B8 ¢ A such that
AUg © U, for each X e R with [A{=1;
(iv) Given any [A, B] e L and a € A, there is a A € R

such that [a, B] e AW :
find A_ e R
a

ae A U ® B, and so {Xx U
a o a o

A and, since A C L 1is compact,
{Aa(i)Ua @ B|] i =1, ..., m}.

U .
Aa(m)}’ now A C:AA o ® B

and setting A = Max {AA, AB}

(v) (where

Qwa = {[a, a]}

of L): [A, A] £ Qw , since

On the other hand, if

is'an B € A such that

[B, C] ¢ wB and [B, C] ¢ Qwa

(ad (2)):
isomorphisnm,

uous and open.

Taking any b € B,
such that a ¢ AaUa ® {b}. Then, for each

® B|] a ¢ A}

Finding AB

B, ¢ e KQ[1]

B¢ CeoeuU

Baving already seen that
all we need to check here is that g

A basic open nbd of an element

for each a € A
ae A,
is an open cover of
there is a finite subcover

Defining A, =

A Max {Aa

(1)’ > e »
in similar fashion

we see that

[, a]

[A, A] € wa for each a € A.

[, B] ¢ aw,.

is the identity element

are distinct, then there

or C ¢ B ® U so that

B B’

g 1s an algebraic

is contin-

P e KQ[L] is
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of the form Ua(P) = {Q ¢ KQ[L]I PCQeU,Qc?Pe Ua}
(¢ ¢ A). A basic open nbd of g(P) = [2P, P] ¢ L according
to the subspace topology of g(KQ[L]) determined by T 1is
of the form W&(P) = ([2P, P] ® wa) N g(KQ[L]) (a ¢ A).
What we actually show now is the formula g(Ua(P)) = W&(P).
Let [29, @] ¢ g(U (P)), so that Pc Q ® U and
ecrpevu . ret [a, B] = [20, 0] © [P, 27] = [20 @ P, 0 @ 2P],
so that A ® Q ® 2P = B ® 2Q @ P, i.e., A ® P = B ® Q. As
A 8PCHRG®Q® Ua' we have B & QC A & Q & Ua' and 2.2 then
yields B C A © Ua' Similarly, AC B ® U,r so that [A, B] € wa

and [20, @] = [2p, »] @ [a, B] e Wl (P), i.e., g(U (P)) C W (P).

Now let [2p, P] @ [2a, a] = [2(P ® 2), P ® 2] ¢ W;(P), so that

2ACA@U and AC22@U_ . Then P ® 2ACP @A OU,
and P @ ACP ® 2a ®U_ , so that 2.2 gives P ® AC P & U
and Pc P @A®U, L.e., PO AcU (P) and [2(P @), P o 1]

€ g(Ua(P)). Thus, g(Ua(P)) C.W&(P), and we conclude that

g(Ua(P)) = wa(P), completing the proof. ¢

3.2 THEOREM: L with the topology T is locally convex iff

L is locally convex.

Proof: "Only if" follows from the conjunction of 2.1(2) and
3.1(2), To see "if," assume L to be locally convex. W.l.g.,

we may assume that, for each a € A, Ua is convex, circled,

and radial at e and that, for each nonzero X & R, XUa e U.
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Let a € A, It is straightforward to check that (i) wa

is circled and (ii) for each nonzero X € R, Awa e W. To
check that (iii) wa is convex, let [A, B], [C, D] € wa

and A = (1-2x") ¢ [o, 1]. wow a[a, B] @ a'[c, D] = [xn @ ar'C,
AB @& A'D]; and, since Ua is convex, we have AUa ® A'Ua = Ua'
Now [A, B], [C, D] € wa says A C B @& U, and C D @& Ua'
so that AA & A'C C AB & A'D ©® AUa ® A'Ua. Similarly,

AB ® \'Dc AA ® A'C & U . Thus, [}a ® )\'C, B ® r'p] e W,
showing that wa is convex. This in conjunction with (iv) in
the proof of 3.1 (1) implies that (iv) wa is radial at the

identity element [A, A] of L. Thus, W is a local base for

a (unique) locally convex topology in L. ©

3.3 THEOREM (RAdstrdém [4]): (1) L with the topology T is

normable iff L is normable, and (2) if L is normed,

L admits a norm for which 4§ and g are isometries.

Proof: (ad (1)): "Only if" is obvious from the conjunction

of 2.1(2) and 3.1(2). To see "if," assume that L 1is normed
by a norm p, so that V = {x ¢ L[ p(x) < 1} = u, for some

o e A. Thus, W = {[a, B] e Ll AcBev, Bcaev}el
Since V 1is radial at the origin, circled, convex and bounded,
one easily checks (see also the proof of 3.1(1) that wa

has these properties too, so that (the Hausdorff space) L

is normable, prdving (1).



(gg (2)): In fact, the Minkowski functional p'i

of wa is a norm for L and, computing that p'[2P, P]
= Sup p(p) for each Pe KQ[L], one easily sees ¢ and g
P

to be isometries. ]
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