Discussion Paper No. 764
UNIQUENESS OF NASH EQUILIBRIUM POINTS IN BINATRIX GAMES
by
Luis C. Quintas*
February 1988

Abstract
This note is concerned with techniques for constructing binatrix games with predetermined unique Nash equilibrium points. The results obtained here extend the constructions presented by Neuer (1979) and Quintas (1988).

*IMASL, Universidad Nacional de San Luis, Chacabuco y Federmann, 5700 San Luis, Argentina. Currently visiting Department of Managerial Economics and Decision Sciences, Kellogg Graduate School of Management, Northwestern University, Evanston, Illinois 60208, USA.

The author gratefully acknowledges the support from CONICET: Consejo de Investigaciones Científicas y Tecnicas, Republica Argentina. Thanks are due to E. Marchi and M. Nakayama for helpful comments.
The concept of equilibrium introduced by Nash (1951) is considered a landmark in noncooperative game theory. The set of Nash equilibrium points is non-empty for any finite game if mixed strategies are allowed (Nash (1951)). However, in general there is a multiplicity of such equilibria. This origin of the problem to decide which equilibria is taken as a solution. If the players cannot communicate it is not clear how they can coordinate their actions to play in a specific equilibrium. Even if they can communicate, it remains the problem of agreeing which equilibrium they will play because the utilities can be quite different from one equilibrium point to another. This problem does not arise if the equilibrium is unique.

Many studies have been done on uniqueness of Nash equilibrium points. On one hand it was studied some sufficient conditions to guarantee uniqueness (Rosen (1965), Gale and Nikaido (1965)) ¹. On the other hand it has been investigated under what conditions it is possible to construct games with predetermined unique equilibrium points. Most of these constructions have been done on bimatrix games: Milman (1972), Kreps (1974), Raghavan (1970), Heuer (1975) (1979), Jansen (1981) and Quintas (1988). (Kreps (1984) studied the problem on n-person games).

In the present note we will construct a broad family of bimatrix games

1. The Cournot (1838) equilibrium in oligopoly theory and the saddle point equilibrium of von Neumann (1928) in two-person zero-sum games are precursor of the Nash equilibrium concept. Both concepts are a special instance of the notion introduced by Nash (1951).

2. This problem does not arise in two-person zero-sum games because the strategies of equilibrium are interchangeable and the utility remains constant over any equilibrium point.

3. There is also a vast bibliography on refinements of the Nash equilibrium concept. Some of them drastically reduce the multiplicity of equilibrium. For a comprehensive discussion of the characteristics of the more important refinements introduced see Van Damme (1983).
with an arbitrary prefixed unique equilibrium points. It will generalize some of the above mentioned constructions.

A bimatrix games is defined by a pair \((A, B)\) of \(m\) by \(n\) matrices over an ordered field \(F\). We denote with \(S_1\) and \(S_2\) the sets of (pure) strategies available to player 1 and player 2 respectively. The cardinality of \(S_1\) and \(S_2\) is \(m\) and \(n\) respectively. We will use the following notation for pure strategies: \(i \in S_1\), \(j \in S_2\) and the respective payoffs \(A(i, j) = a_{ij}\) and \(B(i, j) = b_{ij}\). A mixed strategy for player 1 (player 2) will be a probability vector \(x = (x_1, \ldots, x_m)\) with \(x_i \geq 0\) and \(\sum x_i = 1\) and \(\sum y_j = 1\). We denote the set of mixed strategies for player 1 (player 2) by \(S^m (S^n)\). We will represent by \(A_{i,\cdot}\) and \(B_{\cdot, j}\) the \(i\)-th row of \(A\) and the \(j\)-th column of \(B\) respectively. Let \(y^T\) be the transpose of the row matrix \(y\).

A pair of mixed strategies \((x, y)\) is an equilibrium point for the game \((A, B)\) if and only if \(x^T A y \geq x^T A y^*\) for any \(x \in S^m\) and \(x^T B y \geq x^T B y^*\) for any \(y \in S^n\).

Let \(M_1(x) = \{i : x_i > 0\}\), \(N_1(y) = \{j : y_j > 0\}\), \(M_2(A, y) = \{i : A_{i, y^T} = \max_k A_{i, k}\}\) and \(N_2(x, A) = \{j : x B_{j, \cdot} = \max_k x B_{k, \cdot}\}\).

It is well known the following characterization of equilibrium points:

\[(x, y)\text{ is an equilibrium point of } (A, B) \text{ if and only if } M_1(x) \subseteq M_2(A, y)\text{ and } N_1(y) \subseteq N_2(x, A).\]

(1)

An equilibrium point \((x, y)\) is said to be completely mixed if \(x_i > 0\) for any \(i \in S_1\) (i.e. \(M_1(x) = S^m\)) and \(y_j > 0\) for any \(j \in S_2\) (i.e. \(N_1(y) = S^n\)). The reader is referred to Raghavan (1970) for his work on completely mixed strategies on bimatrix games, and Neuer (1975) who extended some results of
Millham (1972) [Theorem 2] showed that a necessary and sufficient condition for the existence of a game having \((x,y)\) as its unique completely mixed equilibrium point is that \(m=n\). Kreps (1974) extended this condition to the case when the prefixed unique equilibrium is not necessarily completely mixed. The main result presented by Kreps (1974) asserts that: A necessary and sufficient condition for the existence of a bimatrix game having \((x,y)\) as its unique equilibrium point is that

\(|N_1(x)|=|N_2(y)|\) (the bars \(\mid\) stand for the cardinality of the corresponding set). However, it have not been described the sets of all the bimatrix games having \((x,y)\) as its unique equilibrium point. Some constructions quite generals have been obtained (see Heuer (1979) and Quintas (1988)). A broader family of games with this property will be given here and we will establish how the new construction involves those mentioned above.

Let \((x,y)\) be given with \(V_1 = A(x,y) = 0\). \(V_2 = B(x,y) = 0\). \(N_i(x) = S^p\) and \(N_i(y) = S^q\). We will focus our attention to the case when \((x,y)\) results the unique completely mixed equilibrium point (i.e \(m=n\)). A general construction for the case when \(m=n\) can be easily obtained along the lines of section 3, Quintas (1988).

Let \(f_{21} : S_2 \rightarrow S_1\) and \(f_{12} : S_1 \rightarrow S_2\) be two bijective functions such

4 Among the results proved by Paghavan (1970) I mention the following: (a) Let \((A,B)\) be a game having only completely mixed equilibrium points then \(m=n\) and the equilibrium point is unique. (b) If \((x,y)\) is an equilibrium point with \(m=n\) then there is a non-completely mixed equilibrium point \((x',y)\). This last result was improved by Heuer (1975) who proved that \(x'\) may be found with \(n\) or fewer positive components. See also Theorem 3.12 (Jansen (1981))

5 Millham (1972) also characterized the set of all the bimatrix games having a given equilibrium point \((x,y)\).
For each \((j', j'')\) \(\in S_2 \times S_2\) if \(f_{12}[f_{21}(j')] = j''\) then \(f_{12}[f_{21}(j'')] = 1\)\(^{\text{(*)}}\) (or equivalently For each \((l', l'')\) \(\in S_1 \times S_1\) if \(f_{21}[f_{12}(l')] = l''\) then \(f_{21}[f_{12}(l'')] = 1\)\(^{\text{(*)}}\).

We remark that there is a large set of functions fulfilling the above condition \(\text{(*)}\). For example:

\[
f_{21}(j) = j \quad \text{and} \quad f_{12}(l) = 1 - l \mod m.
\]

Let \(A\) be defined by:

\[
a_{i,j} = \begin{cases} v_i \cdot \frac{1}{v_j} \cdot \frac{1}{f_{21}(j)} \cdot \sum_{i \neq j} \epsilon_i \cdot (1 - y_i) & \text{for } f_{21}(j) = i \\ v_i \cdot \frac{1}{v_j} \cdot \sum_{i \neq j} \epsilon_i \cdot (1 - y_i) & \text{for } f_{21}(j) \neq i \end{cases}
\]

and \(B\) defined by:

\[
b_{i,j} = \begin{cases} v_i \cdot \frac{1}{v_j} \cdot \frac{1}{f_{12}(i)} \cdot \sum_{i \neq j} \epsilon_i' \cdot (1 - x_i) & \text{for } f_{12}(i) = j \\ v_i \cdot \frac{1}{v_j} \cdot \sum_{i \neq j} \epsilon_i' \cdot (1 - x_i) & \text{for } f_{12}(i) \neq j \end{cases}
\]

We choose \(\epsilon_i\) and \(\epsilon_i'\) fulfilling:

\[
\sum_{i = 1}^{m} (1 - v_i) \cdot \epsilon_i > 0 \quad \text{and} \quad \sum_{i = 1}^{m} (1 - x_i) \cdot \epsilon_i' > 0
\]

Theorem: For any \((x, y)\) with \(N_1(x) = N_2(y)\) and nonzero values \(v_1 = v_2\) and \(v_2\). The game \((A, B)\) defined by \(\epsilon_i\) and \(\epsilon_i'\) fulfilling (5) and \(f_{12} = f_{21}\) satisfying (2), has \((x, y)\) as its unique equilibrium point and \(v_1 = A(x, y)\), \(v_2 = B(x, y)\).

Proof:

It is immediate to verify that \((x, y)\) is a completely mixed equilibrium point for the game \((A, B)\) it satisfies (1) with \(N_2(A, y) = N_1(x)\) and \(N_2(x, B) = N_1(y)\) and \(v_1 = A(x, y)\), \(v_2 = B(x, y)\).

\(^{6}\) A detailed interpretation of this condition is given by Quintas (1988).
Suppose that there exists another completely mixed equilibrium point (x', y') with $A(x', y') = v_1'$ and $B(x', y') = v_2'$. Then (1) implies $M_2(A, y) = M_2(A, y')$ and $N_2(x, B) = N_2(x, B)$. It means that:

\[
\begin{align*}
\sum_{j=1}^{m} a_{ij} y_j &= v_1 \quad \text{for } i=1, \ldots, m; \quad \sum_{j=1}^{m} b_{ij} x_1 &= v_2 \quad \text{for } j=1, \ldots, m \quad \text{and} \\
\sum_{i=1}^{m} a_{ij} y_j &= v_1' \quad \text{for } i=1, \ldots, m; \quad \sum_{i=1}^{m} b_{ij} x_1' &= v_2' \quad \text{for } j=1, \ldots, m
\end{align*}
\]

And A and B are non-singular matrices (det $A = \pmatrix{\sum \pmatrix{1-y_j} x_{ij}}^m \prod y_j \neq 0$)

and det $B = \pmatrix{\sum \pmatrix{1-x_i} x_{ij}}^m \prod x_i \neq 0$ and x, x', y, y' are probability vectors, then $x = x'$ and $y = y'$.

Now suppose (x', y') would be an equilibrium point with $N_1(x) = N_1(x')$ and $N_1(y') = N_1(y')$ (or $K_1(x') = K_1(x)$ and $N_1(y') = N_1(y')$). By (1) and $N_1(y') = N_1(y')$, we have:

\[
\begin{align*}
\sum_{i=1}^{n} a_{ij} y_j &= v_1 \quad \text{for } i=1, \ldots, m \quad \text{and again, it implies } y' = y.
\end{align*}
\]

Finally suppose that (x', y') is an equilibrium point with $M_1(x) = M_1(x')$ and the strict inclusion $K_1(y') = K_1(y)$ (or $M_1(x') = M_1(x)$ and $N_1(y') = N_1(y)$).

For each $j \in N_1(y) - N_1(y')$ we have:

\[
A_{f_21}(j) \cdot y_t - v_1 \sum_{s \in N_1(y')} v_s' - \sum_{s \in N_1(y')} v_s' \cdot y_t > 0
\]

and for each $r \in N_1(y')$ we have:

\[
A_{f_21}(j) \cdot y_t - v_1 \sum_{s \in N_1(y')} v_s' - \sum_{s \in N_1(y')} v_s' \cdot y_t > 0
\]

Then $A_{f_21}(r) \cdot y_t > A_{f_21}(j) \cdot y_t$ (the strict inequality holds because $y_t' > 0$).

This implies that $f_21(j) \notin M_2(A, y')$ and $(N_1(x) \notin M_2(A, y'))$ then $x_{f_21}(j) = 0$.

Now we choose $j \in N_1(y) - N_1(y')$ such that $L(j) = \pmatrix{\sum f_21(j) \in N_1(y')}$. (the existence of such j is guaranteed by (2)). Then we have:

\[
\begin{align*}
x' \cdot B \cdot L(j) - v_1' \sum_{s \in M_1(x')} x_s' - \sum_{s \in M_1(x')} x_s' \cdot y_t > 0
\end{align*}
\]

and for each r such that:

\[
\begin{align*}
f_21(r) \in M_1(x')
\end{align*}
\]

(6)
we have:
\[x^t \cdot (1-x) = (1-x) \cdot e^t \quad \text{and} \quad x^t \cdot (1-x) = (1-x) \cdot e^t \quad \text{and} \quad x^t \cdot (1-x) = (1-x) \cdot e^t \]
and then:
\[x^t \cdot B \cdot L(r) \geq x^t \cdot B \cdot L(j) \quad (7) \]

However, \(L(r) \notin \mathbb{N}_1(y') \) and \((x',y')\) is an equilibrium point, then:
\[x^t \cdot B \cdot L(j) \geq x^t \cdot B \cdot L(r) \quad (8) \]
(7) and (8) are incompatible because the equalities hold only if \(x^t \cdot 21(r) = 0 \) (which is impossible because of (6)). And this completes the proof of uniqueness.

We note that the present construction is quite general. In particular if we choose \(y^t_j = x^t_j \cdot (1-V_j) \cdot e^t_j = \frac{x^t_j}{1-x^t_j} \text{ and } f_{21}, f_{22} \text{ fulfilling (3) we obtain the construction given by Heuer (1979) in the proof of his Theorem (3.3). Choosing } e^t_j > 0 \text{ for any } j=1,...,m \text{ and } e^t_i > 0 \text{ for } i=1,...,n \text{ we obtain the construction presented in section 2., by Quintas (1988).}

REFERENCES:

8