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Abstract

The prevailing information structure in the iiterature of common
knowledge is the partition of the set of states. This structure is based on
the impiicit assumption that agents are aware of what they do not know. We
study more general information structure in which agents are aliowed to
ignore their own ignorance. The main result is that Aumann's (19761 famous
result on the impossibility of agreeing to disagree, wnhich was proved for
partitions, still holds for the more general structure. Hence, people

cannot agree to disagree even when they are ignorant of their ignorance.



IGNORING IGNORANCE AND AGREEING TO DISAGREE
by

Dov Samet

1. Introduction

In his seminal paper, "Agreeing to Disagree,'" Aumann {19761 has shown
that agents who have the same prior distribution over the states of the
world cannot agree to disagree. More precisely, if their posteriors for a
certain event are common knowledge then these posteriors must coincide even
though they are based on different information.

The way in which the posterior of a given event E is computed by agent
i is as follows. With each state w there is associated a set Pi(w) of
states that are indistinguishable from w at w. The posterior of E for i is
the conditional probability of E given Pi(w). A basic assumption in
Aumann‘s paper and in all the Iiterature that followed is that the sets
Pi(w) (when w ranges over ail states of the worid) form a partition.

The main purpose of this paper is to show that Aumann's result can be
extended to some information structures (given by the family of sets Pi(w))
whichn are more general than partitions. Further, we examine the underlying
assumptions on knowledge which are required to guarantee Aumann's result for
these general information structures. To do so we introduce the knowledge
of the agents as formal components in the model. The objects that are known
in our model are proposition, and for each proposition ¢ we assume the
existence of propositions Ki¢ which are interpreted as "agent i knows that
¢." The use of a knowledge operator on proposition is standard in epistemic
logic and was aiso used to study the interaction of several agents'

knowledge (see, e.g., Halpern [1986]1 for a survey of such works and also
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some recent papers by Gilboa [1986] and Kaneko {1977}). Bacharach [1985]
used a similar approach where he applied the knowledge operator to events.
Miigrom [19811 characterized common knowledge by using a common knowiedge
operator on events.

There are three properties of knowiedge in our model that together
imply a partition of the states of the world into indistinguishabiiity
classes: (K1) when an agent knows a proposition he knows he does; (K2}, any
proposition known by an agent is true; (K3) when an agent does not know a
proposition he knows he does not.

In our main theorem we show that the more general information structure
which is implied by (K1) and (K2) is enough to guarantee Aumann's result.

In other words, it is impossibie to agree to disagree even when agents are
allowed to ignore their own ignorance. Moreover, with some plausible
assumption on the prior distribution (K1) alone is enough. We note they
{K2) 1is what gives knowledge its good name. When a false proposition is
known we would rather call it belief. So when we give up (K2) it is beliefs
that we are talking about. "We" of course as external observers; the agent
who believes consider his belief to be knowledge and thus his prior would
assign probabiiity zero to states in which his belief is not knowledge. 1if
this is indeed the case then (Ki) alone suffices to prevent agreeing to
disagree.

The structure of this paper is as follows. We define in Section 2
states of the world as lists of true propositions. We then examine the
impilication of (K1)-(X8) on the information structure of the space of
states. In Section 3 we define what is for a proposition to be common

Knowledge in a state. We show that if a proposition is common knowiedge in
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a state it is automatically true and common knowledge in a whole group of
states. This provides a link between the definitions of common kKnowledge in
terms of propositions and in terms of events. 1In Section 4 we define a
natural topology of events starting from the simplest events "proposition ¢
is true.” The results of this section are used later in Section 6 to show
that all the events required to the study of knowledge and common knowiedge
are measurable. 1In Section 5 the notion of finitely generated knowledge is
introduced. Informally it reflects the assumption that our (possibiy
infinite) Knowledge is derived from finitely many proposition (a posteriori
knowledge) by (a priori) deduction rules. This property of knowledge
impiies some restrictions on the information structure which are essential
to derive the results of Section 6. For the special case of partitions, the
required restriction is the countability of the partition, which is assumed
in Aumann {1976]. 1In Section 6 we prove that (K1) and (K2) are enough to
guarantee the impossibility of agreeing to disagree, and show under what
condition (K1) alone suffices. 1In Section 7 we discuss various aspecis of

the model used here.

2. Proposition and States

Let © and I be two countable sets. We interpret elements of & as

propositions describing a certain environment of interest. Alternatively

one may think of ® as a set of well formed formulas in some language. But
since tne structure of such a language plays no role in our study we prefer
the less technical notion of propositions to describe the primitives of the
theory. Elements of I are interpreted as agents. For each agent i € I

there exists a mapping Ki: % - &, where for each ¢ €  the proposition Ki¢



is interpreted as saying "i knows ¢." There exists aiso a mapping ~: ® - &
such that for each ¢, ~ # ¢ and, where ~® is interpreted as "not ¢."

Consider the set E = {0,1}cP

Each element of X can be thought of as an
assignment of the truth vaiues to the propositions: 1 for true and 0 for

false. An element w of £ is caliled a state of the worid (or a state) if for

each ¢ € ¢, w(¢) + wWw(~) = 1. The set of states is denoted by QO. we

identify the state w with the set of propositions {¢|w(d) = 1}. Thus we
write © € w instead of w(®) = 1 and ¢ € w for w(¢$) = 0. We write ¥ Cc w for
a set of proposition ¥ if for each ¢ € ¥, ¢ € w. The phrase "¢ is true in

w" is also used to mean w(®) = 1.

The epistemic content of a state w for agent i is the set K;(w) of all

propositions known by i in w, i.e.,

Ki(w) = {¢!Ki¢ € W}.

We fix now a subset  of Qo. Define for each i € I a binary relation
p; on Q by: w’piw whenever K;(w) C w'. We say in this case that w' is

possible in w for i. This relation expresses the compatibiliity of the state

w' with the knowledge i has in w; each proposition known by i in w is true
in w'. For each i and w € Q let Pi(w) be the set of ail possibie states in

w for i, i.e.,

Pi(w) = {w'}w'piw}.

For a set of propositions V¥, Pi(?) is the set {Pi(¢)l¢ € V¥}.

Consider now three properties of knowledge in state w.
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(K1) For each ¢ € @ and i € I, if Ki¢ € W then KiKi¢ € .

(K2) For each ¢ € @ and i € I, if Ki ® € w then ¢ € w

{K3) For each ¢ € ® and i € 1, if ~Ki¢ € w then Ki~Ki¢ € Ww.
Condition (K1) says that in state w, if i knows & he knows he does. (K2)
says that every proposition known by i in w is true in w. (K3) says that if
i does not know & in w he knows he does not.

We denote by:

Ql the set of all states which satisfy (Ki);

02 the set of all states which satisfy (Ki) and (K2);

Q3 the set of ail states which satisfy (K1), (K2) and (K3).
Ciearly, 03 c 02 c Ql c Gb'

The foliowing theorem describes the relation D, between states in terms

of relation between epistemic content.

Theorem 1: For each i € 1:

(a) For Q C Qz' w'piw iff Ki(w') o Ki(w)

(b) For Q€ Q.. wpw iff K (0') = K, (w).
Proof: (a) Suppose K;(w') > K;(w). By (K2), w' D K;(w') and therefore
w‘piw. Conversely, assume w'piw. If ¢ € K;(w) then by (K1), Ki¢ € K;(w).
Thus, K0 € w' and ¢ € K_i(w').

(b) 1If K;(w') = K;(w) then w'p.w by (a). Suppose w'p.w then by (a)
K;(w’) > K;(w). Let ¢ € K;(w'), i.e.. K¢ € w'. Suppose ¢ ¢ K;(w). Thus,
Ki¢ ¢  and ~Ki¢ € w which by (K3) implies Ki~Ki¢ € w and therefore

~Ki¢ € W', a contradiction. Q0.E.D.



Theorem 2: For each i € I,
(a) If Q@ c Ql, pi is transitive.
(b) If Q c Qz, pi is transitive and reflexive.

(c) If O cC 03. pi is transitive, reflexive and symmetric.

Proof: (b) and (c) follow directly from parts (a) and (b) of Theorem 1,

correspondingly. We omit the simpie proof of (a). Q.E.D.

A proof of Theorem 2 in a slightly different setup is found in Hughes
and Cresswell [1984].

Consider now the foliowing three properties of @ in terms of Pi'

(P1) For each i € I and w € Q, if w' € Pi(w) then Pi(w') c Pi(w).

(P2) For each i € I and w € ), W € Pi(w).

(P3) For each i € I and w € Q, if w' € Pi(w) then Pi(w) = Pi(w‘).

The following is an immediate corollary of Theorem 2.

Coroiiary 1:
(a) If Q c Ql then @ satisfies (P1).
(b) If Q c Qz then  satisfies (P1) and (P2)
(c) If QcC Q3 then @ satisfies (P1), (P2) and (P3). 1In particular,
{Pi(w)lw € (O} is a partition of © into equivalence classes with

respect to equality of epistemic content.

3. Common Knowliedge

A proposition ¢ is common knowledge in w if for each n > 1 and each

ts, i,,...,i , K, ,...,K, ¢ .
sequence of agents 1, i Kl i ¢ € W

1 n



The state w' is commoniy possible in «w if there exists n 2 1 and a

sequence of agents i ,i_ such that w' € P, (P, (...,P, (w),...)). The

AN i
1 n 11 5 1n

set of ali states which are commonly possible in w is denoted by P(w)}, i.e.,

Plw) = U P, (Pi (...,Pi (w),...) where the union ranges over all finite
1 2 n

sequences of agents.

Common knowledge and common possibiiity are related as foliows.

Theorem 3: If ¢ is common knowledge in w, then ¢ is true in every state w'

0

which is commonly possibie in wo. Moreover, ¢ is common Knowiedge in such

w !

Proof: Let w' be common probabiiity in w. Then there exists n 2 1, a

sequence i.,...,i and states w,,....w_ such that w.P. ®, for j =
i n i n joi. j+1
0,...,n-1 and wn = w'. If ® is common knowledge in wo then
Ki ,...,Ki o € wo. it foilows immediateiy by induction on j that
1 n
K. ,....K. ¢ € w, and thus K, ¢ € w which implies ¢ € W = w'.
1 1 j-1 1 n-1 n

j n n
To show that ¢ is common knowledge in w', we observe that for each

n > 1 and sequence il""’in' Ki ,...,Ki ® is also common knowledge in & and
1 n

therefore true in w'. Q.E.D.

The reiation between P(w)} and Pi(w) is given in the next lemma. The

simple proof is omitted.

Lemma 1: For each i € I and w € Q, Pi(P(w)) C P(w). Moreover, if GG C Qz,
then Pi(P(w)) = Plw). If Q@ cC 03 then P(w) is the minimal element of the

joint of the partitions {Pi}ieI which contains w.



We recail that the joint of the partitions {Pi}ieI is the finest
partition of Q which is coarser than each Pi. In Aumann's model where
common knowledge is an attribute of events, an event is common knowledge at

w if it contains this minimal element of the joint, P(w).

4. Topoiogy of Events

The product topbology on I = {0.1}¢ is generated by the family of sets

{A

1}. A, can be interpreted as the event

o

that ¢ is true. This topology induces topology on each of the spaces Qi

¢}¢e® where AQ = {g € Lio(¢)

i=20,..,3. Moreover, as subset of L:
Lemma 2: Each space Qi, i=20,..,3, is closed in £ and therefore compact.

Proof: For a given ¢ the set {w|w(d) + w(~d) = 1} is closed.
Q = ﬂ¢e¢ {wjw(®) + w(~d) = 1} and thus QO is closed. Ql = QO N

0
[ﬂi {w!w(KiKi¢) > w(Ki¢)}]. Therefore, €, is closed. The proofs for

€1 n®€® 1

Q2 and QS are similar. 0.E.D.
We assume from now on that the space Q C QO is closed in L.

Lemma 3: If A is a closed subset of Q2 then Pi(A) is closed for each i € I.

in particular, for each w € Q, Pi(w) is closed.

Proof: Suppose {wn} c Pi(A) and wn -+ w. There exists a sequence {wﬁ} cA

such that for each n, W, € Pi(wﬁ). Since Q is compact we may assume without
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ioss of generality that wﬁ - W', and since A is closed, w' € A.
It is enough to show that w € Pi(w'). i.e., that K;(w') C w. Indeed,
suppose Ki¢ € w'. Then for some N, Ki¢ € wﬁ for ail n >N. Thus ¢ € w_ for

n
n > N and therefore ¢ € w. 0.E.D.
Corollary 2: For each w € Q, P(w) is a countable union of closed sets.

Proof: The proof follows from the definition of P(w), Lemma 3, and thne

countability of I. Q.E.D.

5. Finitely Generated Knowledge

The epistemic content of a state for an agent may be in general of
infinite size. 1Indeed, if anything is known to agent i in state w in Ql,
then i knows all the propositions ki¢,kiki¢,..., etc., which can be an
infinite set. This kind of knowledge is acquired by i without any effort;
it is derived from a single known proposition by a priori deduction rules
which are independent of the state of the worid. 1In other spaces, £, more
deduction rules may be used and therefore more propositions can be derived.
Thus in 02 i derives from ki¢ also propositions iike ~Ki~¢, ~KiKi~¢,...
in general, ¢ may include, of course, consistency requirements and deduction
rules beyond (K1)-(K3).

This leads us to the following definition. Let ¥ be a subset of K;(w).
We say that ¥ generates K;(w) if for each w' € Q, ¥ © K;(w') implies
K;(w) c K;(w'). That is, whenever i knows all the propositions in ¥ he ailso
knows all the propositions in K;(w).

There is, of course, knowledge that cannot be derived from other
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knowiedge and may be considered therefore as a posteriori knowiedge which

depends on experience. We require that such knowledge is finite. Formally,

we say that knowledge is finjteiy generated in Q@ if for each i € I and
w € Q, K;(w) is generated by a finite set of propositions.

Consider now the equivalence relation ot defined on & by: ot w' iff
K;(w) = K;(w'). Let ™ be the partition of  to equivalence classes with
respect to e Let also Ai = {Pi(w)lw € Q}. By Corolilary 1{(c) when < 93,
Ai = "i but when Q cC 02 these sets are not necessarily the same.

The foliowing theorem relates Ai to ni and to finitely generated

knowiedge for Q < Qz.

Theorem 4: Suppose 2 C Qz and knowiedge is finitely generated in . Then
for each i € I, thne sets Ai and m, are countable. Moreover, the g-fields

generated by these two sets coincige.

Proof: Let A(w) be the element in m which contains w. Let ¥(w) be a
finite generator of K;(w). Since for each w' € A(w), K;(w') = K;(w). ¥(w)
generates aiso K;(w’). Consider now a map ¥: 2 - ZQ which assigns for each
w a finite generator of K;(w) such that ¥ is constant on elements of the
partition m . Suppose now that ¥(w) = ¥(w') then ¥(w) ¢ K;(w‘) and

therefore K;(w') o K;(w). By symmetry K;(w') = Ki(w), i.e., w' and w are in

the same element of the partition. Thus there is a one-to-one
correspondence between ™ and the values of ¥. Since ® is countable, T
must also be countabie.

Now observe that by Corollary 1(b), Pi(w) = Pi(w') iff we Pi(w') and

w' € P,(w) and this holds by Theorem 1(a) iff K;(w) = K.(w').
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Thus the map Pi(w) - {w'lw' ~ w} is a well defined one-to-one map from
Ai onto T which shows that Ai is countable. We show now that T, is
contained in the o-field generates by Ai. Let A(w) be the element of “i
which contains w. Consider the set B = Pi(w)\U Pi(w') where the union
ranges over all ' such that Pi(w') g Pi(w). Then B = {w“IK;(w") ) K;(w)}
\{w"lK_i(w") QK;(W} = {w"lK;(w") = K;(w)} = A(w). This, with the
countability of Ai, shows that A(w) is in the field. Now it is enough to
show that no subset of A(w) is in that field. For this it suffices to show
that for each Pi(w), Pi(w') N A(w) is either ¥ or A(w). Indeed, if w" €
Pi(w') N A(w) then Pi(w”) c Pi(w') and Pi(w") c Pi(w). But since
w" € A(w) = B the last inciusion implies Pi(w") = Pi(w). Therefore,

Pi(w') ) Pi(w) and Pi(w') N A(w) = A(w). 0.E.D.

Another useful impiication of finiteliy generated knowledge is the

following:

Theorem 5: Suppose 2 C Qz and knowledge is infinitely generated in Q. Let
{w } be a sequence in Q such that P,(w_ ,)}) c P.{(w ) for n 2 1. Then, for
n i 'n+1 i n
large enough n and m, Pi(wn) = Pi(wm).
Proof: Since P.(w ) is decreasing, K.(w) c KT(w ) for all n 2 1. Let
- 1''n 1 n 1 n+1
W(wn) c K;(wn) be a finite generator of K;(wn) for each n. We may assume
without loss of generality that wn —+ w. The closedness of each Pi(wn)
implies w € P,(w ) for each n and thus K(w) DK (w), i.e.,
i‘Tn i i*Tn
K (w) DU K.(w ). If ® €U K.(w ) then for all n, ~K.¢ € w . Therefore,
i n i ' n n i n i n

~Ki¢ € wand ¢ € Ki(w). Hence Ki(w) = Un Ki(wn). Let ¥ C Ki(w) be a finite
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generator of K;(w). Clearly, for large enough n, ¥ C K;(wn); but then

Ki(wn) = Ki(w). Q.E.D.

Let us finaliy look at two simple conditions which imply finitely

generated knowledge.

Theorem 6: Knowledge is finitely generated in each of the following cases:
(a) € in finite.

(b) For each i € I, Ai is finite.

Proof: Ciearly (a) implies (b). Assume now that Ai is finite. By Theorem
4, L is also finite. Let w € 2. For each element A(w') in LS such that
K;(w)\K;(w’) # @, choose a proposition in the latter set. The set ¥ of ail
such propositions is finite, ¥ C K;(w) and for any &' such that ¥ € w' it

must be the case that K;(w) c K;(w’). Q.E.D.

Let (Q,B,u) be a probability space were B is the Borel o-field on Q on
M probabiiity measure. The measure g is interpreted as a prior distribution
on Q which is common to all agents.
Lemma 4: For each i € I and w € (, Pi(w) and P(w) are measurable.

Proof: Follows from Lemma 3 and Corollary 2.

Assume now that knowledge in  is finitely generated. Fix an element X
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in B. For each w € 2 and i € I such that u(Pi(w)) > 0 denote by qi © the

posterior probability of X given the knowiedge of agent i, that is

% @ " H(X[P (w)) = u(X NP, (w))/u(P;(w)).
Let Qi = {qi,w‘i € I, u(Pi(w)) > 0}. By Theorem 4, Qi is countable. We
assume now that for eacn q € Qi there is a proposition in @ denoted by
xi(q). This proposition is interpreted as saying that the posterior
probability of X for i is a.

Consider now the countable set ?i = {xi(q)lq € Qi}' We assume further
that for each w and i € I, if ﬂ(Pi(w)) > 0 then ?i nNw = Xi(qi,w) and
otherwise ?i Nw = @. Thus the only proposition from ¥ which is in w is the
one that properly describes the posterior of X in w for i.

We say that in @ it is impossible to agree to disagree if for each

w € () the following nolds:

If for each i1 € 1, Xi(qi w) is common knowledge in w then for each

j.ke1l, qj,w = qk,(x).

Theorem 7: If O C Qz then it is impossible to agree to disagree in €.

Proof: Suppose xi(qi w) is common knowledge at w. Then by Theorem 3

) € w' for each w' € P(w). That means that q. = q for each

X, . .
1(q1,w I, iw’

w' € P(w). Let us denote this common value by qi. We will show that

M(xiP(w)) = qi. Therefore, if xi(qi w) is common knowledge for each i, then

’

for any k,j € I. qj = u(Xlip(w)) = q -
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Now by Lemma 1, P(w) = Uw'eR(w) Pi(w }. By Theorem 4 it follows that

there is a subset I', of w. such that P(w) = U A. Since [', is a
1 i AeFi i

countablie partition of P(w) it suffices to show that for any A € Fi either
M(A) = 0 or w{XiA) = qi. (Ciearly there are A's with positive probabiiity
since u{P(w)) > 0.)

Consider the family of all subsets I' of Fi wnich satisfy: for each A €

I' either u(A) = 0 or u(XjA) = ai. This family is not empty (# is such a
subset) and is ordered by inclusion. The requirements of Zorn's lemma are
trivially satisfied and thus there exists a maximal element I'' in this

family. We show that I'' = Fi. Denote G = A and suppose I' # Fi, there

UAGF'

must exist W, € P(w) such that Pi(wo)\G # #. Also there should be a point W

in that iatter set such for each w' € Pi(G)\G, Pi(w’)\G = Pi(G)\G, otherwise

)

we can construct infinite seguence wo,w , ..., such that Pi(wn) 2 Pi(wn

1 +1

for all n 2 1, contradicting Theorem 5.

Now for each w' € Pi(Q)\G we have w € Pi(w')\G and therefore w' ~ e

Also, any w' which satisfies this equivalence must be in Pi(G) and cannot be

—

in G. Thus Pi(i)\G = {w'|w' of} w} which is an element of Fi not in I''.

Moreover, Pi(Q)\G = Pi(Q)\U

AEF’,ACPi(Q) A. Now #(XlPi(w)) = q; and also

eitner u{XijA) = g, or M(A) = 0 for each A € T''. Therefore, either
#(Pi(Q)\G) = 0 or #(Pi(Q)\G) =4q;. This contradicts the maximality of I
and compietes the proof. Q.E.D.

it is possible to extend Theorem 6 to Q C Q1 provided that we restrict

Q? and the prior distribution g as follows. We say that g is consistent with

0 if #(Q\Qz) = 0. We note that for each w € Q\Q2 there exists an agent i

and a proposition ¢ such that i knows ¢ in w but ¢ is not true in w.
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Cieariy this implies that w is impossible for i in w. The consistency on u
guarantees that the prior distribution reflects this (mistaken)

impossibility.

Theorem 7: If O c Ql' M is consistent with @ and 2 does not have dead ends

then it is impossible to agree to disagree in Q.

Proof: Suppose xi(qi,w) is common knowledge in w. Since 2 does not have
dead ends P(w) # @ for each w. The proof then continues as the proof of
Theorem 6 by applying Theorem 3, concluding that xi(qi,w) € w' for each w' €
P(w). We define now Pi(w) = Pi(w) N 02 and P'(w) = P(w) N Qz. Pi(w) is
exactly the set of possible states in w for i in the space Q' = QN Qz.
Further it is easy to see that Pi(P'(w)) = P'(w). The proof now follows
that of Theorem 6.

7. Discussion

Some Benefits of Epistemic Modeis. The main result of this paper can

be stated in a model that, unlike our model, does not introduce knowledge
explicitly. The primitive of such model is a measurable space 2 of states.
Information structure is given by measurable sets Pi(w) (for each agent i
and state w) which satisfy Corollary 1(b) (or 1(a)) and the property
guaranteed by Theorem 5. Common knowledge is defined as the set P(w) of all
commoniy possibie states w. Yet we preferred to introduce knowledge

explicitly for obvious reasons; it enables us to reveal the underlying

assumptions about knowledge that give rise to the specific properties of the
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sets Pi(w). Specifically, we showed that (K1), (K2) and the finite
generation of knowiedge provide all the properties reguired for Theorem 7.

It is also possible in our model to give clear answers to questions
concerning the scope of agents' knowledge required for the study of common
knowledge. The answers to these gquestions are in accordance with the
informai discussion in Aumann [1985]. First of all, what agent i does know
in state w is strictly defined. He knows every proposition in K;(w). Does
he know his information structure? This depends on the set of proposition
®. If there are propositions in & which describe such structures (or
interpreted as doing it) then agent i either knows his information structure
or he does not depending on whether these propositions are in K;(w).
Moreover, if @ does not contain propositions about information structure
then knowing this structure in the model is simply meaningless. 1In fact, in
general it is impossible to specify in @ the possibility relation P; since @
is only countablie while there is usually a continuum of states. In any case
Knowledge of one's own information structure (let aione other's information
structure) is irrelevant to the theory of common knowledge as it is
presented here. Indeed, for the definition of common knowledge and the
results in Sections 2-3 there is no requirement of any specific content of
Knowledge.

For the "agreeing to disagree" result in Section 6 we require that some
propositions of the form xi(q) are true in certain states. These
propositions are interpreted as saying that "q is the posterior of X for
agent i." 1If these propositions are common knowiedge then the posteriors
are the same, claims Theorem 6. Do the agents have to know probability

theory or at least their prior? Must it be common knowledge that they have
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the same prior? The answers to ail these questions is in the negative.
True, the agents know the propositions xi(q). But these propositions are
only interpreted in the model as saying that the posteriors are such and
such (and rightiy so because xi(q) is true in state w iff q is the posterior
of X given Pi(w)). For the agents, Xg is just a predicate of numbers that
may be read as "q is an essential number of i." These propositions obey of
course all the rules of probability but this is something eise than to say
that the agents know it. The source of their knowing these propositions, be
it a probability book or a list of numbers in the newspaper, is irrelevant

to the resuits of Section 6.

Common Knowledge and Epistemic Logic. The basic features of the modei

presented nere are common in the literature of formal modal logic and
epistemic logic but it is worth noting that for our purposes we do not need
the full body of these theories. First of all unlike modal logic systems we
do not start with a language but rather with a set of formulas or
propositions. There is no requirement on the structure of the language that
produces these propositions. Also the epistemic operators Ki which are not
restricted in any way, may have properties that similar operators in
epistemic logic never have. For exampie Kj is not necessarily one-to-one
while if Ki is an operator within a formal language, Ki¢ % Kiw for any & #
Y. Thus in our model the same proposition may express simultaneousiy that i
knows itwo different propositions. Moreover we do not restrict the relation
between Ki's for aifferent agents. 1t is possible to have a proposition ¢
such that Ki¢ = Kj¢ for each two agents i and j. It may aiso be the case

that for eacnh i and ¢,
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(*) KiK.¢ = K.®.

This means that knowing ¢ and knowing that ¢ is known are the same. When
this is the case, requirement (K1) is automatically satisfied in each state
and Ql = QO. In such a model it is possible sometimes to verify that a
certain proposition is common knowledge without resorting to infinite
application of Ki's. This may happen for example if the only source of
knowledge in our model is the newspaper and the propositions Ki¢ for all i
are the same proposition: "¢ is in the newspaper." 1In such a case it is
enough that all the agents know ¢ in w in order that & is common knowledge
in w. Such models formalize ideas of Lewis (19691 and Clark and Marshall
{1981] which try to eliminate infinite processes of verifying common
knowledge.

This liberty in shaping the proposition set and the operators Ki
distinguishes this model from the models of Kaneko [1987] and Gilboa [1986].
in these two papers a high power ianguage is developed that enabies the
agents to speak freely about states, events, common knowiedge and more.
With such a language the agents are, at least partiaily, omniscient. 1In
this paper the whole theory of common knowledge is neutral to the language
structure and to the content (or the possible content) of the agents'
knowledge.

Another feature of the theory of common knowiedge here is the lack of
any "logical" restriction on knowledge. Beyond (K1)-(K3) there is no
required relation between knowledge and propositional calculus or other

logical structure. Unlike modal and epistemic logic we do not require that
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agents nave any deductive tools. Our agents do not necessarily know all
tautoliogies. 1In short the whole theory is indifferent to logic. This
conclusion is a bit surprising when we consider Bacharach's [1985] model in
which epistemic operators Ri are applied to events in order to justify
partitions. 1In his model there are requirements K1, K2, K3 which correspond
to our (K1), (K2) and (K3). But he has also an additional requirement that
for each agent i and events El'E

o

(K4) Ki(E1 N E, n...)= KiE1 N Kibz N
This is interpreted as saying that knowing a conjunction is equivalent
to knowing each conjungant. Where did this requirement disappear in our

modei? To answer it we define in our model event operators K,. Agent i
i

knows that even E happened in state w if any possibie state in w is in E.

" "

Thus the event that "i knows event E," denoted by RiE is simply the event
{wlfor each w' with w'piw, w' € E}. It is easy to see that Ki, K2 and K3 of
Bachrack are satisfied due to (K1), (K2) and (K3). But K4 aiso foilows
immediately by set theoretic considerations which has nothing to do with the
reiation of knowledge to conjunctions. 1If like Bacharach we start with
events and identify each event with a proposition then we have to introduce
conjunctions to take care of the intersection of events and hence K4 is aiso
required. When we start with propositions then events are defined by sets
of propositions, conjunction is simply replaced by intersection and K4 is

automatically gained.

Updating and Learning. Aumann's "Agreeing to Disagree” has also

dynamic variations in which agents interchange information until their
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posteriors become common knowledge at which point they must coincide (see,
e.g., Geanakopios and Polemarachakis f1982] and Bacharach [1985]). In these
dynamic models knowledge increases in each step and as a result the
partitions are refined. When one tries to apply such a procedure in our
model one faces a difficulty. Suppose 2 cC 03 and 1 does not know & in w,
i.e., ~Ki¢ € w. If i gains some new information and he knows ® then the
state of the world is no longer . Change in i's knowledge resultis in a
change in the state of the world. Moreover, the partition of Q cannot
change at all. It depends on the relation between the states and cannot
change as a result of the moving from one state to another. And worse,
information cannot increase. Suppose we are now in a new state w' where Ki¢
€ w'. Alas by moving to w', 1 lost some knowledge; he knew ~Ki¢ in w wniie
of course he cannot know it in w' since it is faise there.

To solve this apparent paradox one has to introduce time into the
model. A state of the worid should be a description of the whole history of
the worid. 1In particular knowledge is now time dependent. Formally we have
for each t, ©t = 1,2,..., epistemic operators Ki,t which are interpreted as
"i knows at time t that. . . ." Correspondingly we have for each period t
and state w epistemic contents K; t(w) and sets of possible states for i,

[}

p (w). Properties (K1)-(K3) should be applied now to each K,

it i ¢ and & Q

and Q3 are defined mutatis mutandis. We add now a new requirement for each

agent i proposition ¢, time t, and state w.

(Ko) If Ki,t¢ € w then Ki.t+1® € .

This simply says that agents do not forget what they know. KO
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guarantees that for each t, i, and w, K; t+1(w) = K; t(w), i.e., Kknowledge

does not decrease. This happens even for  c QS' If in w, i does not know
& at time t but does know it at t + 1 then i does not lose any knowledge at
time t+1. He still may know at t+1 that he did not know ¢ at time t, i.e.,
~Ki,t¢' Ki,t+1¢’ Ki.t+1Ki,t+1¢ and Kt+1~Kt¢ can all be true in w. As a

result of the growing knowledge, information structure is refined in time,

that is for each i, w and t, P, ,(w) 2 p

it (w). In particular for { C 03

i,t+1
this means that the partitions of the agents are refined.

Using this model for dynamic processes of information exchange enables
careful examination of the conditions under which the exchange ieads to or

ends in common knowledge. Results analogous to those of Bacharach [1985]

can be obtained now for any information structure.

Why Qz? We end the discussion with an argument based on bounded
ability of the agents to process information. This argument supports
rejection of (K3) while it enables acceptance of (K1). Suppose we have a

- - + 5 = .
measure of complexity on ¢, comp: ® - R such that {comp(¢)|[P € D} is
unbounded. We assume that for each i and ¢

(Ci) comp(K;®) 2 comp(¢)

(C2) comp(~®) 2 comp(d).

Assume furthermore that

(C3) comp(KiKiQ) = comp(Ki¢).
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(An extreme case of this is when KiKi¢ = Ki¢). if knowledge in our model
involves the ability to produce the known proposition or to use it in a
deductive process then it is natural to assume that knowledge of an agent in
a given state is bounded by complexity. Formally this means that for each i
and w there exists a bound Mi w such that for each ¢ € K;(w), comp(¢) <

M Under this assumptions 2 cannot satisfy (K3). Indeed for ¢ with

i,w
comp(¢) 2 Mi W’ comp(~KiQ) > comp(¢) 2 Mi © by (C1) and (C2) and therefore
~Ki¢ £ K;(w). On the other hand, by (C2), (K1) can be satisfied

notwithstanding the bounded knowledge. Note that it is not the resemblance

of (C3) to (K1) that gives (K1) an advantage over (K3). Indeed the previous

result still holds, even if we add the assumption

(c4) comp (K, ~K,;$) = comp(®)

which corresponds to (K3) in the same way (C3) corresponds to (Ki).
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