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FINITE RATIONALITY AND INTERPERSONAL COMPLEXITY IN REPEATED GAMES

by

Ehud Kalai and William Stanford

Abstract

Every subgame perfect equilibrium of a repeated game with discounting can
be approximated by one of finite complexity. Generically at equilibria,
interpersonal complexity bounds exist and at equilibria of two person games
the players must use strategies of equal complexity and equal memory. The
measure of the complexity of a strategy, introduced in this paper, is defined
to be the number of distinct strategies induced by it in the various
subgames. It also equals the smallest number of states of an automaton which
can fully implement the strategy. New computational methods for the subgame
perfect equilibrium payoffs of the game are available by the use of complexity

properties at equilibria. Further related results are also proved.



1. Introduction

In this paper we introduce a measure of strategic complexity for a
strategy of a repeated game. Having such a measure is important for several
reasons:

1. It gives us a measure of the difficulty involved in conceptualizing
or describing a player's strategy. This is important becuase some strategies
are so difficult to conceptualize that it is unlikely that players would ever
use them. Moreover, strategies which are not describable in finite time could
not be used in games where a player has several agents working for him--for
example, a firm whose strategy has to be carried out by its employees.

2. It measures the possible difficulty that a player may face in
checking the rationality (for example Nash, or (subgame) perfect equilibrium)
of a strategy combination. As we will point out later, this task may vary
from being trivial to impossible depending upon the complexities of the
underlying strategies.

3. It gives us better understanding of the structure of strategies and
equilibria. This contrasts with previous analyses which have concentrated on
characterizing equilibrium payoffs. (Exceptions are Rubinstein [1985], Abreu
[1985], and Stanford [1985].) This new understanding aids us in may ways—-—for
example, it enables us to generate new methods for computing and approximating

equilibria and equilibrium payoffs.

In order to illustrate these points and our results we consider the two
person repeated prisoners' dilemma game with the labels ¢ for "cooperate” and
d for "defect” describing the stage game actions available to each of the two
players. Let C and D denote the constant cooperation and defection

strategies, respectively. Thus, for example under D, a player defects in



every stage of the game regardless of past history. These are the simplest
strategies that one may think of in this repeated game. On the other hand,
the tit-for-tat rule (choose for this period the action that your opponent

chose in the previous period) induces two strategies which are specified by
the choice of an initial action. We denote them by c-tft and d-tft. While
these strategies are more complicated than the constant strategies they are
still quite simple.

To illustrate an example of a highly complicated strategy we do the
following. We consider the binary expansion of the irrational number w (or
any irrational number will do), and label the periods in the repeated game as
O-periods or l-periods according to the corresponding entries in the binary
expansion (this assures us that there is no regularity in the labeling of
periods). A player playing the T strategy will defect on every O-period. On
l-periods the player will play the “"trigger two period punishment™ strategy,
which means the following. After observing a defection by anyone (including
himself) on a l-period the player will defect for the following next two
l-periods (he will not trigger, however, on the punishment phase itself).
Otherwise he will continue cooperating.

It seems that the constant and the tit-for-tat strategies are much more
likely to be used by players because of their simplicity. Our measure will
assign complexity 1 to the constant strategies, complexity 2 to the tft
strategies and infinite complexity (aleph~naught) to the = strategy. Constant
strategies are assigned complexity one because they induce only one mode of
behavior (strategy) regardless of the histories of plays that might have led
to the current stage. The cooperate and then tit-for-tat strategy, c-tft, is
somewhat more involved. Depending on the history of plays that led to the

current stage the player strategy from the current stage on may be c-tft or



d-tft (depending on his opponent's last period action). Thus, the c~tft
strategy induces two different strategies and for this reason its complexity
is defined to be 2. It is easy to see that the T strategy induces infinitely
many different strategies as we consider all the possible histories that may
be played, and thus its complexity is infinite. We define the complexity of a
strategy to be the number of different strategies that it may induce after the
various histories of plays.

The task of checking the rationality (Nash equilibrium, perfect
equilibrium, etc.) of a strategy combination becomes more difficult as the
players use more complex strategies. To check the constant strategy pair
(D,D) for perfection a player has to solve at most one optimization problem.
This 1s the case because under this pair only one situation (1 = complexity(D)
X complexity(D)) occurs repeatedly. To check for perfection of the pair of
strategies (c~tft, c—~tft) no more than four optimization problems will have to
be solved. Because four (4 = complexity(c-tft) x complexity(c-tft)) is the
largest number of different induced strategy pairs that may arise after all
the possible histories of play.

A natural interpretation of the complexity measure is through the
computer science notion of an automaton (finite or infinite). With this
interpretaion we think of a player as having a set of states of mind. Each
state of mind completely summarizes the past for the player, and the action of
the player in every stage of the game is completely determined by his current
state. There is one unique state, called the initial state, with which he
starts the game. As the game progresses the player transits from one state to
another depending upon the action combination taken by all the players
(including his own) in the previous stage. After this transition, his new

state determines his next period action and so on. It is important to note,



and will be expanded upon later, that the transition from a state to the next
is defined also for action combinations in which the player himself took an
action which was not prescribed by his automaton. In other words, the
transition rule from a state to a state can cope with mistakes. With this
notion of an automaton we argue that every strategy in a repeated game can be
fully described by an automaton. Moreover, we argue that the measure of
complexity of a strategy discussed above equals the number of states of the
smallest automaton that describes it. Thus one may think of the complexity of
a strategy as the minimal number of states of mind that the player must
possess in order to consider the strategy.

The results can be divided naturally into two categories. The first
concerns the possibility of low complexity approximations for subgame perfect
equilibria. More explicity, suppose we are given a repeated game and a vector
of discounted payoffs for the players which is realizable in perfect

equilibrium. Then we can find a finite complexity strategy vector for the

repeated game which is an approximate perfect equilibrium and yielding a
vector of discounted payoffs very close to the payoffs in the initial

equilibrium. Moreover, the simultaneous approach to full subgame perfection

and to the initial equilibrium payoffs can be made as close as we desire,
retainingbthe finite complexity character of the approximating strategy
vector. Thus we find that imposing the condition of finite complexity on
players' decision procedures is unrestrictive in the sense made precise
above. This result appears to be well within the spirit of any natural theory
of practical computations since any such theory would be based upon the idea
of finite but potentially unbounded computing power.

The second category of results has to do with the structure of perfect

equilibria in discounted repeated games. By way of introduction, note that



perfection requires the players to find themselves in an equilibrium state
under all possible contingencies. However, in the standard repeated games
model, contingencies are merely histories. Thus, in some sense, there must be
agreement among the players concerning the important aspects of a given
history and what should be done by all players in the light of that

agreement. This would seem to argue in favor of necessary complexity
relationships among the strategies. Our second category of results helps to
make this precise. For an interesting class of stage games (including the
Prisoner's Dilemma) and a reasonable class of perfect equilibria, we
demonstrate that certain complexity relationships must indeed hold. 1In
particular, the complexity of each player's strategy must be bounded above by
the product of the complexities of strategies adopted by all other players.

In the two player case, this reduces to equal complexity. Actually, all of
this is driven by a stronger result which says that equilibrium is completely
determined by the strategy choice of any group of N - 1 players. Thus two-
player perfect equilibria are prescribed by the strategy choice of either
player, and we may as well refer to an equilibrium as a strategy instead of as
a strategy pair.

A second result in the second category focuses on another interesting
class of two-player games and related ideas. 1In this class of stage games,
players may well employ strategies with different complexities in perfect
equilibria of the repeated game. However, it will prove possible to modify
the strategy of one or both players in a manner which simultaneously equates
complexities and preserves the payoff structure of the equilibrium in all
contingencies, and hence the equilibrium itself. Thus, in this case, little
is lost be restricting the search for perfect equilibria to strategy pairs of

equal complexity. Results of this kind are then used to outline some



computational aspects of subgame perfect equilibria in repeated games with
finite action stage games.

The importance of incorporating bounded rationality into economics has
been argued by Simon since the 1950s (see Simon [1972]). Notions of bounded
rationality and computational complexity have been studied by many
mathematicians and economists. See, for example Mount—Reiter [1983], Smale
[1980], and Futia [1977]. The notion of an automaton in economics has been
used by Varian [1975] and Lewis [1985]. A notion of bounded ratiomality which
is especially important for this paper is the notion of e-equilibrium used by
Radner [1980] in his analysis of repeated oligopoly games.

The idea of using finite automata in order to separate out a "simple”
class of repeated game strategies was proposed by Aumann [1981] in his well-
known survey of repeated games. In this survey he proposed the automaton
notion with states describing the states of minds of the players. He then
proposed that simple strategies are those that use a finite number of
states. In two recent path-breaking papers, Neyman [1985] and Rubinstein
[1985] used Aumann's automaton notion in order to model two different problems
of bounded rationality within the context of repeated games.

Neyman studies repeated games in which the strategies of the players are
restricted. His restrictions consist of requiring that a piayer's strategy be
describable by an Aumann type of automaton of a given fixed size. It could
also be thought of as the game being played among the programmers who have
different size machines at their disposal (the Axelrod [1980] type of
experiments are a very good illustration of this type of game). With this
model he is able to carry a meaningful analysis of the effects of computing
ability on the final outcome of the repeated game.

Rubinstein uses Aumann type automata in an infinitely repeated prisoners’



dilemma game. However, he incorporates it straight into the solution

concept. He modifies the notion of Nash equilibrium to still have the players
maximize their utility but to also minimize the number of states they use at
the given equilibrium. As he illustrates, this results in a significant
reduction in possible payoffs of the kind found in the “folk-theorem."
Extensions of these results and other interesting recent studies of bounded
rationality can be found in Ben-Porath [1986], Megiddo-Wigderson [1985], Zemel
[1986], Abreu-Rubinstein [1986], and Aumann-Sorin [1985].

Our approach is different from the ones cited in several important
respects. Unlike them we work with standard unmodified notions of repeated
games and strategies. It is within this context that we define the complexity
measure which allows us to sort strategies according to their complexity. The
classical Kuhn's notion of a strategy is defined for every history, whether it
contradicts its own earlier prescribed moves or not [see Owen [1982]). For
this reason we choose an automaton notion which is richer than the one
proposed by Aumann. The key difference here is that our automaton has as its
input the player's own action in addition to the actions of his opponents,
while in Aumann, Neyman, and Rubinstein automata, only the actions of the
opponents are input. This difference enables our automata to read every
history of past plays and not just the self consistent histories. Viewing the
automata as programs to implement strategies, the Aumann automata may be
thought of as "exact implementations™ of plays of strategies and have no
prescriptions of how to react to self—-make mistakes. Our automata are
programmed also with reactions to self-made mistakes, and in this sense can be
thought of as the complexity of full (even if sometimes wasteful)
implementations. We could follow the other route and define the complexity of

a strategy to be the number of states required for its "exact



implementation.” This would result in a smaller measure of complexity and
thus our finite approximation result will hold for it as well. We believe
also that the interpersonal complexity relations will hold for this smaller
measure. However, we feel that if it is the strategic complexity, and not the

exact implementation complexity, that we want to measure, then the one we use

is the appropriate one.

2. Notation and Definitions

N
By an N-person stage game we mean a pair (A,u). A = 1 Ai describes the
i=1
action combinations available to the N players. u = (ul,uz,...,uN) is a

vector of utility functions where uj: A » R represents player i's

preferences. We assume uj is bounded, i.e., there is an Mj € R with
|uj(a)| < M; for every a € A, and i = 1,2,...,N.

For a discount parameter a, 0 < a < 1, we define the infinitely repeated

game G (A,a) as follows. The set of histories of length O is a singleton set

denoted by uo. Its single element will be denoted by e. For a positive

interger n the set of histories of length n is defined by H™ = A™. the set of

o

all histories is defined by H= u H".
n=0
For every h € H, define h' € A to be the projection of h onto its r-th

coordinate. For every h € H we let 2(h) denote the length of h. Thus, for
h € H', we have X(h) = n. For two positive length histories h and h € H we

define the concatenation of h and h, in that order, to be the history (h<+h) of

length (h) + A(h):

(heh)" = h" if 1 < r < Ah),

and

-r~A(h)

(heh)" = h if A(h) < r < (h) + A(h).



We also make the convention that e*h = hee = h for every h € H.

An individual strategy in the repeated game is a function fj: H »> A;. Ve

let F; denote the set of all such individual strategies for player i and we
N

let ¥ = 0I Fi denote the set of strategy vectors. f € F is then a function
i=1

f: H > A defined by f(h) = (fl(h),fz(h),...,fN(h)). Define

(f_i,Ei) = (fl,,,.fi_l,fi,fi+l,...,fN) for i = 1,2,...,N.

Given f € F, define a sequence of functions f": H »> H by:

£9(h) = n
£l(h) = hef(h)
£(h) = 2 L(h) «£(£21(n)).

Now extend the utility functions from A to F by defining

wi() = ] ar—lui(f(fr—l(e))).
r=1

Finally, the repeated game derived from (A,u) with discount parameter a,

G (A,u,a) is defined to be the pair (F,u?).

For a history h € H and an integer 0 < m < 2(h), the m—stage end tail of

h is denoted by E™(h) € H:

. h)—
(Em(h))l = hX( ) m+1 for i = 1,2,.-.,m

amd the m—stage beginning of tail h is denoted by B™(h) € H:
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(B™m)' = h' for 1 = 1,2,...,m.

Given an individual strategy f; € F; and a history h we denote the

individual strategy induced by f; at h by filh' filh is defined pointwise on

H:
(fi]h)(ﬁ) = fi(h-E), for every h € H.

Clearly filh € Fy, file = f; and for every history h and integer m with

0 <m < Ah),

l(h)—m(h)).

m
£,(n) = (£, [B"(n))(E
We will use (flh) to denote (f1|h,f2|h,°..,fN‘h) for every f € F and h € H.
We let Fy(f;) = {f;|h: h € H} and for £ € F, we let F(£) = {(f|h): h € H}.
N
Clearly, Fj(f;) < F;, F(f) < F, and F(f) < 1 Fi(fi)- Typically, these three

i=1
containments will be proper and F(f) need not be the product of subsets of the

Fi(f)-

A strategy vector f € F is a Nash equilibrium of G™(A,u,a) if

~

04 a
ui(f) > “1(f-1’fi)

for all f; € F;{ and i = 1,2,...,N. A strategy vector f € F is a subgame

perfect equilibrium of G®(A,u,a) if every f € F(f) is a Nash equilibrium (see

Selten [1975]). f € F is a discount robust subgame perfect equilibrium of

G"(A,u,a) if f is a subgame perfect equilibrium of G®(A,u,B) for every B in

some neighborhood of «. Since this condition on equilibrium is extensively
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used in this paper we abreviate it by saying that f is a DRSP equilibrium.

Two strategy vectors, f and g in F, are payoff equivalent if

u®(f) = u®(g). They are perfectly payoff equivalent if ua(flh) = ua(glh) for

every h € H.

3. Complexity and Automaton Implementations

In this section, we give the complexity definition for repeated game
strategies and establish the simple but basic relationship between strategies
and computing machines called automata. There are at least three reasons for
doing the latter. First, the equivalence gives substance to the complexity
notion which can then be viewed as a measure of computing power inherent in
the strategy. Second, in the case of finite complexity strategies——or
equivalently, finite automata--we are restricting attention to a class of
objects whose properties and capabilities have been studied extensively and
independently of game theoretic considerations. See, for example, Hopcroft
and Ullman [1979] for a state-of-the-art introduction and references.
Finally, the equivalence between strategies and automata makes available an
interpretation and way of thinking about strategies which has materially aided
us in our research. It also makes available a notation scheme which we will
find convenient to use at several points in the paper.

We now proceed to the complexity definition for strategies and a
discussion of automata.

Given a strategy f; € F; we define the complexity of f;, comp(f;j), to be
the cardinality of the set F;(f;) = {filh: h € H}. Thus the complexity of a
strategy is measured by asking how many strategies it induces.

As we have seen, constant strategies are assigned complexity one; while
the tit-for-tat strategy is judged to be of complexity two. Also, again in

the repeated Prisoner's Dilemma, consider an n-period "trigger" strategy.
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This strategy plays cooperatively until either player chooses his
noncooperative action and then plays noncooperatively for n periods before
returning to cooperation. The complexity of such a strategy is judged to be

n + 1, corresponding to a coooperative “state,” and n punishment states across
which the player must "transition” as a punishment cycle is played out.
That the above reference to "states” and “transitions™ is not an aimless

convenience is brought home in the following discussion.

By an automaton implementation for player i, we mean a triple

I; = ((Si,sg),Ti,Bi) where:

Si is a set of states;

sg is an initial state;

x A+ 8; is a transition function; and

> Ai is a behavior function.

Given an implementation I; for player i, it induces a strategy f; for player i
as follows:

For a history h with 2(h) = m define inductively
0 0 r n-1 .r
si(h) =S5 Si(h) = Ti(si ,h') for r = 1,2,40.,m
and then

£5(h) = B;(s™(h)).

The cardinality of an implementation I; is defined to be the cardinality of
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its S;, Card(S;).

In the case of finite Sj, the above definition corresponds to a class of
finite automata called Moore [1956] machines. Moore machines are
distinguished among finite automata essentially because the behavior function
B; is allowed to take on more than two values. Again, see Hopcroft and Ullman
[1979] for details and further references.

The fact that the transition function of a player's automaton depends on

the player's own move (T;: S;

i X A > S; rather than the more restrictive one,

if Sy X A—i > Si) is crucial. It represents one of the significant
differences between the Aumann [1981], Neyman [1985], Rubinstein [1985] papers
and ours. When one restricts oneself to the second type of automata, many
strategies cannot be modeled as such. For example, the grim trigger strategy
in the repeated prisoners' dilemma game (trigger defection on anybody's
defection including one's own) could not be represented by a restricted
automaton. Thus, in order to obtain a measure of complexity for every

strategy we need the larger class of automata. We then have the following

lemma.
Lemma 3.1: Every strategy f; € F; is implementable by some automaton.

Proof: We let I; = ((H,e),T;,B;) be defined by Ty(h,a) = hea and

Bi(h) = £:(h). 1[I

Theorem 3.1 below is the main result of this section. In light of this
result, it is reasonable to think of a repeated game strategy in the following
terms: in each period, the player finds himself in some state of mind, which
gives rise to action as a function of state. The player then observes the
actions of all players, including his own. This datum, together with his

original state of mind determines a new state which in turn governs his action
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choice in the next period. This process continues through the course of the
game. As we will see, states of mind correspond to induced strategies, action

as a function of state is determined as the first period action of the
corresponding induced strategy, and transition from state to state is governed

by the transition law for induced strategies.

Theorem 3.1: For every f; € F; comp(f;) is the cardinality of the smallest

automaton implementing f;.

Proof: Let I; = ((Si,sg), T;, Bj) be an implementation of f;. We first show

that Card(Si) > Card(Fi(fi)) = comp(fi). We assume without loss of generality
that for every s; € 51 there is a history h € H with s{(h) = s; for some

r 2 0. Now define Ci: S.

i * Fi(fi) by letting Ci(si) be the strategy induced

by I; ((Si’si)’ Ty, Bj). It suffices to show that C; is onto. But for

every fi € Fi(fi) we have fi = fi|h for some h € H and hence Ci(si) = fi if we
let s, = s%(h)(h).

i i

To see that the comp(fi) equals the cardinality of some implementation of

fi define
I; = ((Fy(£;),£5), Ty, By) with
T;(f5,a) = f;]a and By(f;) = £;(e).

It is easy to see that I; implements f; and obviously it has the right

cardinality. 0

In the computer science literature, this result is known as the Myhill-
Nerode theorem,1 which is proved there for the finite cardinality case. In

the computer science vocabulary, the theorem says that there is an essentially
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unique minimum state finite automaton for every "regular set"” of symbol
strings. See Hopcroft and Ullman [1979], Myhill [1957], and Nerode [1958].

To illustrate examples of automaton implementations we consider first the
example where player I plays cooperatively and then tit-for-tat, c-tft, in the
repeated prisoners' dilemma with the stage actions being labeled C; and Nj

decribing the "cooperative” and "noncooperative"” choices of the two players.

Transition Function

Action Combinations

States (Cl,Cz) (Cl,Nz) (Nl,Cz) (NI’NZ) Behavior Function
O.¢ c N c N c
51 T M 1 1 1 1 1

On the other hand, the following player I automaton describes the trigger 2

phase punishment strategy. This is related to the trigger strategies

introduced by Friedman [1971].

Transition Function

Action Combinations

States (C;5C9) (Cy,N5) (N;,Cy) (NI’NZ) Behavior Function
P Py Py Py Py N
Py C ¢ | € N)

lije are grateful to Eitan Zemel for pointing out the relationship of our
Theorem 3.1 to the Myhill-Nerode theorem.
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b Finite Complexity Approximations

In this section, we consider finite complexity approximations to

(potentially) infinitely complex perfect equilibria. We contrast this with
the approach of Fudenberg and Levine [1983] in which perfect equilibria of
infinite horizon games are characterized as the limits of perfect approximate

equilibria of finite horizon truncations of the original game.

Before proceeding to the results, and in order to bring some of the
relevant questions more sharply into focus, we will first discuss an
example. This example is based on a family of infinitely complex perfect

equilibria in the discounted Prisoner's Dilemma.

Example 4.1: Our stage game is represented by the following bimatrix game:

Player 2
Ny )
N]. 0,0 al,bz
Player 1
€ azsb] 1,1

To make this a Prisoner's Dilemma, we require al’bl > 1 and aj;,by < 0. C4 is

associated with "cooperation” and N;j with "noncooperation.” Thus
Ay = {Ci,Ni}, and u;: A > R is the payoff to player i as given in the above
matrix. Given a, we then form G (A,a).

In the following, we construct an infinitely complex perfect equilibrium

WD . . .
for G (A,a). Consider an irrational number x between zero and one. x has a
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binary expansion <bn>:-1 which is an infinite vector of O's and 1's. Thus

e

X = Z (bn/2n) and this expansion is unique. Moreover, <b,> is aperiodic,
n=1
which means precisely that

<b_, > # <b

n+m” n=1 n+2>n=1

whenever m, 2 » 0 and m # . Thus infinite ending tails of <bn> which are
complements of different finite initial tails must in fact be different. We
construct a pair of strategies based on x by first modifying <b,>. Define a
new infinite binary vector <c,> by: Cp; =1 for i = 1,2,..., and cp;3._ 1 = by
for 1 = 1,2,... Thus <c,> is just <b,> with 1's interspersed between the
components. Clearly, <c,> is also aperiodic. Define the strategy f; for
player i as follows: along the equilibrium path, play cooperatively in period
n if and only if ¢; = 1. 1In the event of defection from this rule by either
player, transition to an absorbing state for which the behavior rule specifies
the noncooperative action. One might label this the "grim" trigger
strategy. This strategy has (countably) infinite complexity because
infinitely many outcome paths are induced as play proceeds along the
equilibrium path. If both players adopt this strategy, it is also easy to
verify that they are in perfect equilibrium if o exceeds some critical lower
bound. (This is the reason for interspersing 1's between the components of
<b,?>+ In the absence of this device, it is conceivable that arbitrarily large
gaps between 1's might reasonably tempt defection for any pre—specified value
of a).

The point of this example is simply that infinitely complex perfect
equilibria exist, even in discounted repeated games based on finite bimatrix

stage games. The existence question for finite complexity approximations is
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easily answered in this family of equilibria. One needs only to replace a
sufficiently distant infinite tail of <c,> with an infinite vector of 1's and
leave the specifications of the f; as is. This results in a perfect
equilibrium of finite complexity in which the payoffs are close to those in
the equilibrium based on <c,>. What makes this work is that the worst
punishment payoff for each player can be realized simultaneously in finite
complexity perfect equilibrium, which is a consequnece of the structural
characteristics of the Prisoner's Dilemma as a stage game. The rest of this
_ section is concerned with extending this kind of result to repeated games
based on much more general stage games.

In the rest of this section, we assume only that u; is bounded, i.e.,
there is an M; € R with |ui(a), < M; for every a € A and i = 1,2,...N. The
main result is given in Theorem 4.l1. It shows that perfect equilibria in
discounted games can be approached (with regard to payoffs) by finite
complexity approximately perfect equilibria of the repeated game.

Before proceeding, we need to make precise the notion of approximately

perfect equilibrium. A strategy vector f € F is a (Nash) e-equilibrium of

G™(A,u,a) if

~

04 04
u () > u (£_,E.) = ¢

~

for all f; € F; and i = 1,2,...N. A strategy vector f € F is a subgame

perfect e-equilibrium of G (A,u,a) if every f € F(f) is an e—~equilibrium of

G (A,u,a).
Qur first lemma, which is auxiliary in nature, is adopted from a result
of Harris [1984]. According to this lemma, in discounted games, it is easy to

check whether a given strategy vector is a perfect e-equilibrium; we need only
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consider one-shot deviations by the players. This of course contrasts with
the case of evaluation relations based on a zero interest rate where it must
be verified that arbitrary sequences of deviations are not overly profitable

in any subgame.

Lemma 4.1: Let £ € F and suppose that no single period deviation against f is
more than (1 - a)e profitable for any player in any subgame. Then f is a

subgame perfect e£-equilibrium.

Proof: Fix h € H and suppose player i considers employing the strategy g1

instead of fj. For each k > 0, define g; | (a strategy for player i) by
]

gi(ﬁ) if &(h) < k
g5, =
fi(E) if 2(h) » k.

Then if (h) < k,

k-2(h)-1

04 04
ui(f_i’gi,klh) < ui(f—i’gi,k—llh) + a (1 - a)E

ak—l(h)—Z + ak—l(h)—l

Cuf(_g,gg o)+ (1 - a)e

a k-2(h) r-1
CuflE_,8y g™+ 1A oe
k-2(h)
=uig|m) + C ] THa - we.
r=1

Taking limits as k + « on both sides of the above inequality yields the

result. {
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We can now state the main result of this section.

Theorem 4.1: Consider the game G(A,u,a) and let € > 0. There exists a
positive integer W such that for every subgame perfect equilibrium f there is

a strategy combination g € F satisfying:

1. comp(gj) < W for i = 1,2,...,N,
2. lu:(f) - u‘;(g)| <efori=1,2,.0.,N, and

3. g is a subgame perfect e-equilibrium of G*(A,u,a).

To prove Theorem 4.1 we first define W and then g and show, in a series
of lemmas, that it satisfies the properties of the theoren.

To begin, we partition the set of subgame perfect equilibria, SPE, into a
set of equivalence classes as follows: first enclose u%(SPE), the set of
discounted payoff vectors to subgame perfect equilibria, by an N-cube K with
sides of length max{ZMi/(l - Q) i-= 1,2,...,N}. Next, partition'mN into
disjoint half—ope; cubes with sides of length (1 - a)ze/z. This partition of
RN clearly induces a finite disjoint partition of K, P(K), by way of
intersection. We define W to be the cardinality of this partition. Two
members of SPE are now declared to be equivalent if and only if they yield
vectors of discounted payoffs which occupy the same member of P(K). Now
choose one representative member of every equivalence class in the partition

of SPE. Define C: SPE + SPE to be this selection rule, and let

C.:

j: SPE » F; be the projection operator for C, i = 1,2,...,N. Then

C(SPE) = {C(f): f e SPE} is a finite set with at most W elements.
Given a subgame perfect equilibrium f € SPE, we are now in a position to

define g, the approximating strategy vector for f: let g; be the strategy
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implemented by the automaton

I = ((C(F(£)), C(£), T, B,)
defined by

Ti(f,a) = C(fla) and Bi(f) = fi(e).

First, it is clear that comp(gi) €W fori=1,2,...N because each
implementing automaton uses the same finite state space (and, we note, the
same transition function) and as we have seen in the proof of Theorem 3.1, the
complexity of a strategy is never larger than the cardinality of any
implementing automaton. Thus part one of Theorem 4.1 is proved. For the

second part, we have:
a a .
Lemma 4.2: Iui(f) - ui(g)l < (1l - a)e for i =1,2,...,N.

Proof: First, define inductively a sequence of strategy vectors g, by:

g1 = C(f)
gy = Clgp|g (e
gk < C(gk_1|gk_1(e)),

and recall the convention that

[
=2

g0(n)
gl(h)

heg(h)

g™(h) = g™ 1(h)-g(g™1(n)).
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It is straightforward to verify that gp(e) = g(gk'l(e)). Thus we can find n

so large that

1 n-1 a(

o -
| L a hagteen + @ hafiey) - uf@)] < (1 - wes2.
r=1

For such n, we have:
a a
lui(f) - ui(g)| <

|uf@ - uig)] + |ufle)) - uglg (e)) - e,y +

n k-2 k-1
-1 k=2 -1 k-1
L1 e + Tl p - 1 e - e uftey)
ool r-1 n-1 a
l rzl " ug(g(e) + I uf(g) - uf(e@)]| <
Tor-1 2
( Zl a W1 - a)7e/2 + (1 - a)ef2 < (1 - a)ee. {1
r=

The next lemma finally establishes Theorem 4.1.

Lemma 4.3: g is a subgame perfect e-equilibrium of GZ(A,u,a).

+

Proof: The idea is to show that no single period deviation against g is more

than (1 - a)e profitable for any player in any subgame. The result then

follows by Lemma 4.1.

Fix h € H. Without loss of generality, we assume that player i deviates

once from g; immediately following h, and themn all players conform with g in

all subsequent periods.
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Now, there is a strategy vector fl(h) € F(f) with which glh has a natural

association. fl(h) is defined inductively as follows:

= C(f)

'—h
(o]
|

Hh
—
I

= C(fOlhl)

£y = CCEgeny-1 [P,

and we have fk(h)(e) = (glh)(e). Thus any deviation by player i from

(gi h)(e) yields the same immediate payoff to player i as it would against
fk(h)(e)° Let d = ((g_ilh)(e),di) € A represent the vector of actions
indicating i's deviation. Then given that all players conform, post—deviation
(discounted) payoffs to player i from glh*d are within a(l - a)e of post-
deviation payoffs to i from fl(h)|d° (See the proof of Lemma 4.2.) Now
observe that fl(h) € F(f) means that d followed by conformity is not

profitable for player i against fk(h)’ since fk(h) is perfect. 0

At this point, let us briefly consider some observations concerning the
structure of Theorem 4.1 and its proof.

First, note that no particular relationship is implied concerning the
complexities of the approximating strategies g;. Of course, each is finite
and bounded above by the cardinality of C(F(f)); but the structure of g could
be quite complicated, with complexities of all feasible orders represented.
We will return to this issue in Section 5, where sufficient conditions for
complexity relationships are considered. These conditions are stated
primarily in terms of the stage game payoff structure which, apart from the

boundedness condition, has been left arbitrary in this section.
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Noté also that given a, &, and u%(F(f)), an upper boun& on Card(C(F(f)))
is easily calculated. In fact, the way g is constructed gives rise to the
reasonable presumption of increasing complexity for g with decreasing € and
increasing a. This simply says that the more closely we wish to credibly
approximate a complex equilibrium, the more computing power we need.

Finally, we will informally outline a way in which the results of Theorem
4.1 might be sharpened. We have in mind a sufficient condition on the perfect
equilibrium £ which guarantees the approximating vector g can be taken as a
full perfect equilibrium. Thus we can dispense with one of the two
approximating aspects of g under this condition, with the rest of the theorem

remaining as is. The condition on f might be termed uniform strict

perfection. By this, we mean that one-shot deviations by any player are
always strictly unprofitable, and in fact uniformly so across players,
contingencies, and deviations. Thus there will exist a & > 0 such that under
all conditions, one-shot deviations by any player followed by conformity yield
the deviating player a discounted payoff bounded above by the induced
equilibrium payoff decremented by &. By the result of Harris [1984], if £ € F
is uniformly strictly perfect, then f is a perfect equilibrium. The
equilibria of Example 4.1 will satisfy this condition if a is large enough.
Referring the reader to the proof of Lemma 4.3 for justification, we will
simply assert that if f and g are as in Theorem 4.1l., and f is uniformly
strictly perfect, then g (as constructed) will be a perfect equilibrium if €
is small enough. Under this condition on f and in the case of finite-action
games (Card(A) is finite), we also assert that g (as constructed) will be a

DRSP equilibrium if € is small enough.

5. Complexity and the Structure of Perfect Equilibria

As we remarked in the introduction, perfection would seem to carry with
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it at least the presumption of complexity relationships between players'
strategies. As some examples will make clear, this is not universally so, at
least with respect to our current definition of complexity. In particular,
when we move away from discounting to zero interest rate evaluation relations,
dramatically large differences between players' strategy complexities can be
found in perfect equilibria. We will discuss this and some other examples
later in this section.

Our purpose here is to give some simple sufficient conditions on
discounted games for patterns to begin to emerge. We begin by singling out a
particular class of stage games and note that finite matrix games fall

generically into this class. We say that a stage game (A,u) has individually

reponsive payoffs if for every i = 1,2,...N and every a_; € A_j»

uj(a_j,aj) # ui(a_i,Ei) whenever a; # Ei. Thus individually responsive
payoffs have the property that player i's payoffs are one-to-one on his action

set given an action combination of the other N - 1 players. Recall that £ € F

is a discount robust subgame perfect (DRSP) equilibrium of G*(A,u,a) if f is a

subgame perfect equilibrium of Gw(A,u,B) for every B in some neighborhood of
@. We consider only DRSP equilibria in this section. Given a strategy of

player i, f; € F;, we say the memory of f; is m, Mem(f;) = m if m is the

i
smallest integer satisfying the property: for every h € H with 2(h) > m,

f.|h = fiIEm(h). If such an m does not exist, we say that Mem(fi) = o,

i
Our first theorem shows that DRSP equilibria of G”(A,u,a) are completely
determined by the strategy choice of any group of N - 1 players if the stage

game has individually responsive payoffs. This gives rise to some interesting

corollaries on complexity relationships and the memory of strategies.

Theorem 5.1: Suppose (A,u) has individually responsive payoffs and f is a

DRSP equilibrium of G (A,u,a). Then for all i,
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A

{£,: (f_,,£,) is a DRSP equilibrium of G (A,u,0)}

is a singleton set.

A

Proof: Suppose f = (f fi) is a DRSP equilibrium of Gm(A,u,d). We will show

-1
that f; = £f; on H. Fix h € H. By the best reply property of perfection

applied to player i, we must have:
uf(flh) = ug(flh) for all B in an open neighborhood of «a.

Thus we have two power series which coverge to the same function on some open
neighborhood of a. A well-known result from real analysis then yields term-
by-term equality of stage game payoffs to player i along the two induced

equilibrium paths. In particular, we have

a, (C£[R)(e)) = u, ((E]n)(e)).

However, the action combination of players other than i is the same in these
two cases. The fact that payoffs are individually response gives

fi(h) = fi(h). 0
Our first corollary applies to the general case of N » 2 players:

Corollary 5.1: Uunder the hypothesis of Theorem 5.1:

1. comp(fi) < Card( II F (£.)) for i = 1,2,...,N,
j#i

In particular, if all complexities are finite:
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comp(f,) < I comp(f ), for i = 1,2,...N.
AT J

2. Mem(fi) < max{Mem(f,)}, for i = 1,2,...N.
j#i

In particular, if we assume strategies are ordered by memory size:
Mem(fl) < Mem(fz) € ves € Mem(fN), then

Mem(fN_l) = Mem(fN)-

Proof: For the first part, since DRSP equilibria of G (A,u,a) induce DRSP
equilibria of G®(A,u,a) after all histories, Theorem 5.1 provides an onto map

M: F—i(f-i)) > F;(f5). But clearly,

Card(F . (f )) < Card( I F _(f.)).
-i -i . s
J#l

For the second part, if for some i, Mem(fi) > max {Mem(f,)}, we could
j# ] -
find a history h with 2(h) = max {Mem(fj)} and two histories h and h such that
J#i

fi heh # fiIE'h. But by Theorem 5.1, and the fact that DRSP equilibria induce

DRSP equilibria, we get a contradiction when we note that

heh = f_:|heh. ]

f—i i

Especially in the finite case, we would expect the complexity bounds

given in the first part of the corollary to be conservative, since typically

we should have:

comp(f,) € Card(F ,(f .)) < Card( I F_(f.)).
i -i -1 j#i

In fact, if all complexities are finite and comp(f;) > 1 for at least three

players, then the structure of the inequality system itself guarantees that
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comp(f.) = 1II comp(fj)

1 j#i

for at most one value of i. Otherwise we would have

(comp(f.))(comp(fk)) = (I comp(f ))( I comp(f,)),
1 j#i 3 gk ]

which yields

1=( 10 comp(£,))°.
j#i,k ]

We might paraphrase the result of Theorem 5.1 and its first corollary in
terms of computing machines. They say the maximum amount of computing power
(size of automaton or equivalently, complexity of strategy) which a player can
profitably bring to bear in equilibria of repeatéd conflict and cooperation
situations is strictly limited by the capabilities of the other players. We
think this makes precise a reasonable and intuitive truth: in equilibrium,
such interactions must be governed by the capacities of the least capable
participants.

The case of two players deserves to be singled out for special
attention. Theorem 5.1 says directly that if N = 2, equilibria are completely
determined by the strategy choice of either player. Thus all information
carried by the equilibrium is encoded in each strategy. A weaker condition is
expressed in the following definition. If N = 2, we say that a pair of
strategies f = (fl’fz) € F is conjugate if there is a one-to-—one and onto

correspondence M: Fl(fl) +> Fo(f9) satisfying
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foih = M(f1|h) for every h € H.

It is obvious that a conjugate pair of strategies must be of equal complexity

and of equal memory.

Corollary 5.2: With N = 2 and under the hypotheses of Theorem 5.1,

f = (fl’fZ) € F is a conjugate pair. Hence, comp(fl) = comp(fz) and

Mem(fl) = Mem(fz).

Proof: Again by Theorem 5.1 and the fact that DRSP equilibria induce DRSP
equilibria, we have fi|h = £;|h if and only if f,|h = f,|h for all

h,h € H. 0

Again, in the language of machines, the minimal automata implementing the
two strategies may be taken to use the same state space, the same initial
state, and the same tramsition rule, with differences in the strategies
showing up only in the behavior functions. Thus, the dynamiés of the two
strategies are identical. This contrasts with the case of N players because,
at least with respect to our present knowledge, the minimal implementing
automata will have cardinalities subject only to the bounds given in
Corollary 5.1.

As an extreme example of how these results can fail, consider a duopoly
game with the limit of the means evaluation relation. In this case, we give
up any form of discounting, and payoffs do not have the individual
responsiveness property. Stanford [1984] considers linear reaction function
equilibria in this context. A linear reaction function strategy specifies a
production quantity for the player in the first period, and a decision rule
which selects a production level for the player in period t + 1 as a linear

function of the other player's production level in period t. From our present



_,30_
viewpoint, an interesting result is that perfect equilibria of this form exist
with the property that exactly one of the players uses a constant reaction

function, and thus a strategy of complexity one. The other player uses a

nontrivial reaction function which, because the stage game strategy sets are

continua, means a strategy of uncountable complexity. This results in

collusive outcomes along the equilibrium path. We would guess that this
possibility is driven more by the zero interest rate evaluation relation than
by the lack of individual responsiveness in the payoffs. 1In any case,
perfection itself is insufficient to guarantee relationships like the ones we
find here.

Another (less extreme) example of failure comes from the repeated
Prisoners' Dilemma game. In this case, we have individually responsive
payoffs and return to discounting as the evaluation relation. Kalai, Samet,
and Stanford [1985] have shown that tit-for-tat versus tit-for-tat can be a
perfect equilibrium in this framéwork for only one value of the discount
parameter a. To be precise, recall the notation of Example 4.1. The result
is that given a, tit-for-tat versus tit-for-tat will be a perfect equilibrium
of G (A,u,a) if and only if a; = by = 1/(1 - a) and as = by = —-a/(l - a).
Now, regarding a; and b; as fixed at these levels, we find a perfect
equilibrium of a very knife-edge character with respect to discounting. In
other words, we have a perfect equilibrium of G*(A,u,a) which is not a DRSP
equilibrium of Gm(A,u,a). It is also easy to see that tit-for-tat versus tit-—
for-tat is not a conjugate pair. Thus Corollary 5.2 fails even though we have
a perfect equilibrium in a discounted game based on a stage game with
individually responsive payoffs. This means some form of discount robustness
of perfection is necessary for the results. As a final remark we observe

though, that the strategies involved have the same complexities.
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Finally, if we drop the requirement of individually responsive payoffs in
the stage game, it is easy to find examples of DRSP equilibria in which the
players employ strategies with arbitrarily large differences in complexity.

We have in mind replicating the first row in the payoff matrix for the

Prisoners' Dilemma, giving player one an extra action in the stage game:

Player 2
Ny )
Nl 0,0 al,b2
Player 1 Cl az,bl 1,1
Nl 0,0 al,bz

Thus, a DRSP equilibrium of G~(A,u,a) could be constructed where player 1
alternates between N; and ﬁl in an aperiodic manner, while player 2 uses the
constant Ny strategy. This equilibrium has player 1 using an infinitely
complex repeated game strategy and player 2 with a strategy of complexity
one. This last is an example of a two-player stage game drawn from a general

class with which we will be concerned in the remainder of this section.

We say the two-player stage game (A,u) has jointly varying payoffs if

uj(a) = ul(;) if and only if uy(a) = “2(;) for every a,; € A=A x Ay. Note
that the Prisoners' Dilemma as well as its row—augmented version are both
examples of stage games with jointly varying payoffs. We might suppose that
giving player 1 an additional inconsequential action in the stage game as

above gives rise to potential complexity differences only as an artifact.
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-

That this is so follows from our next result. Befure consideringgfhis result,

recall that two strategy pairs f,g € F are perfecily payoff equivalent if

u(f|h) = ua(g|h) for all h € H.

YRR L

Theorem 5.2: For N

2, let (A,u) be a stage game with jointly véxying-:
. L L

payoffs. Suppose f = (f;,f,) € F is a DRSP equilibrium of G‘?(A';u_';:a).. - Then

there exists g = (gl,gz) € F satisfying:

l. g is a DRSP equilibrium of G*(A,u,a);

2. f and g are perfectly payoff equivalent;

3. g 1s a conjugate strategy pair;

4 comp(g;) = comp(gz) < min{comp(fl),comp(fz)}; and

5. Mem(g() = Mem(gz) < min{Mem(fl),Mem(fz)}.

2

Moreover, perfect payoff equivalence is uniform in the sense of holding for

all g in some open neighborhood of «.

Theorem 5.2 says that any search for DRSP equilibria in games of this
kind may as well be restricted to conjugate strategy pairs satisfying the

conclusions of the theorem.

We should remark that stage games -with jointly varying payoffs can arise

naturally when we reduce certain extensive form games to their normal forms.

SR - . f,_"_' P

For example:

Player 1's move

Player 2's move

(1,2) 0,00 s (2,1) Ce e
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Thus, even though finite matrix games fall generically into the class of games
with individually responsive payoffs, other natural structures such as jointly
varying payoff games deserve investigation as well.2

The proof of Theorem 5.2 is deferred to later in this section. It uses

two propositions which may be of independent interest, since they do not rely

on the assumption of jointly varying payoffs.

Proposition 5.1: Compositions of perfectly payoff equivalent strategy pairs

are perfectly payoff equivalent. Let f and g be strategy pairs of
Gw(A,u,a). Suppose g satisfies the following condition: for every h € H,
g(h) = ;h(e) for some strategy pair Eh which is perfectly payoff equivalent to

flh. Then g is perfectly payoff equivalent to f.
Proof: Define a sequence of strategy pairs gy for k = 0,1,2,..., by

g(h) if 2(h) < k

g, () =
£(h) if A(h) > k.

It is clear (by the discounting) that for all h € H, lim ua(gklh) = ua(glh).
Thus, it suffices to show that for k = 0,1,2,..., g Egmperfectly payoff
equivalent to f. This is clearly true for k = 0. Now consider k > 0 and

h € H. We want to show that ua(gklh) = ua(flh). This is proved by backwards
induction on 2(h). Clearly, if &(h) > k, equality holds by the definition of
Sk+ So assume equality holds for all histories with k > &(h) > K and suppose

b is a history with 2(b) = K = 1. Then

ua(gklb) = u(g, (b)) + aua(gk|b°gk(b))

ZWe are grateful to Robert Aumann for pointing this out.
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W(EP(e)) + au(£

b-gk(b)) (by induction hypothesis)

u(fb(e)) + aua(fb‘fb(e)) (by the definition of Eb and its equivalence to flb)

n

W)

= ua(f'b) (by the equivalence of Eb and flb). i

Proposition 5.2: Compositions of perfectly payoff equivalent subgame perfect

equilibrié“;fe perfectly payoff equivalent subgame perfect equilibria. Let f
and g be stfategy pairs of G (A,u,a). Suppose g satisfies the following
condition: for every h € H, g(h) = Eh(e) for some subgame perfect equilibrium
Eh which is perfectly payoff equivalent to f‘h. Then g is a subgame perfect

equilibrium which is perfectly payoff equivalent to f.

Proof: By Proposition 5.1, g is perfectly payoff equivalent to f£. If g is not
subgame perfect, by Lemma 4.1 with € = 0, we may assume there is a history h

and an action a; € Al such that

u (a),g,(0) + aul(g|he(a ,g,(1))) > ul(g[n).

Now,

u,(a;,8, (M) + au (g|he(a;,g,(h))

ul(al,gz(h)) + auT(f,h°(alfg2(h))) (by Proposition 5.1)

ul(al,fg(e)) + auf(fh[(al,fg(e))) (by perfect payoff equivalence of £ and flh)

[
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N

uf(fh) (by perfection of fh)

u B e)) + (@)

heg(h)) (by perfect payoff equivalence of £ and flh)

uy (8(0)) + aul(£

heg(h)) (by perfect payoff equivalence of f and g)

u (g(h)) + auf(g

uT(gIh), which is a contradiction. |

Proof of Theorem 5.2: For é,g € F, we write é ~ g if and only if

uB(§|ﬁ) = uB(glﬁ) for every h € H and every £ in some open neighborhood of

«s Clearly, ~ is an equivalence relation. Thus F(f) can be partitioned into
~ equivalence classes. From every equivalence class, we choose one
representative strategy pair (using the axiom of choice if F(f) is large).
Define C: F(f) » F(f) to be this selection rule, and let Ci: F(f) » Fi(fi) be
the projection operator for C. Thus, if g,g € F(f) then g ~ ; if and only if
cg) = C(g). Also g ~ C(g).

Define the strategy pair g by
g(h) = (C(£f|n))(e), for all h € H.

Then by Proposition 5.2., g is a DRSP equilibrium of G®(A,a) which is
perfectly payoff equivalent to f. Moreover, perfect payoff equivalence is
uniform in the sense of holding for all B in some open neighborhood of a.

We next claim that g = (gl,gz) is a conjugate pair of strategies. If we
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can show gllh = gllh implies g2|h = g2|h for all h, h € H, then by symmetry,

h. Since g is a DRSP

the claim will be proved. So suppose gllh g1

equilibrium of G"(A,u,a),

ug(g|h-h) = ug(g heh) for all h € H and all B.

Again, we have two power series converging to the same function on an open
'neighborhood of @, and so there is term-by-term equality of stage game payoffs

‘to player 2. Since stage game payoffs are jointly varying, this means
u?(g'h-h) = uf(g,ﬁ-h) for all h € H and all B.

h. Since g is uniformly perfectly payoff

Together, these facts imply glh ~ g

h. Thus

equivalent to f, we know then that f'h ~ £

C(£|heh) = C(f|h+h) for all h € H,

and so

g(heh) = g(heh) for all h € H.
In particular, this means

(gzlh)(ﬁ) = (gzlﬁ)(ﬁ) for all h € H,
or

g2|h = g2|E.

Next we note that Card(C(F(f))) < Card(Fi(fi)). This follows from an

argument similar to the one above. 1In particular, we can show that flh * f|h
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implies filh # filh for i = 1,2, Thus the projection from C(F(f)) into Fi(fi)
is one-to-one. Now observe that g; can be implemented by the automaton
I; = ((C(F(f)), C(£)), T;,B;) defined by T;(f,a) = C(f|a) and B;(f) = £;(e).

Again, by the proof of Theorem 3.1, we have

comp(g;) < Card(I;) = Card(C(F(f))) < comp(f;)-
Equality of complexity follows from conjugacy, and the fourth result of the
theorem follows from comp(gl) = comp(gz)-

Finally, we want to show that

Mem(gs) < min{Mem(f;),Mem(f,)}, for i = 1,2.
Without loss of generality, assume

m = Mem(fl) < Mem(fz), with m < «.
Let h be a history with 2(h) > m. Since Mem(fl) = m, we have
£,[h = £,/E®(h). This implies (as before) that f|h ~ f|E™(h). Thus

C(flh) = C(f|Em(h)), which gives g(h) = g(E®(h)), and we see that g, and gy

are both of memory at most m. Mem(g;) = Mem(gz) follows from conjugacy. 1

6. Finite Complexity and the Computation of Perfect Equilibria

This section contains a brief discussion of some computational aspects of
perfect equilibria. We will describe a strategy tuple (or equilibrium) as

being of finite complexity if the strategies of all players are of finite

complexity. With modifications, the following remarks will apply to all

finite complexity equilibria in repeated games based on finite action stage
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games.

As a concrete example, consider the Prisoners' Dilemma as a stage game
and form G (A,u,a) for given a. If we specify complexity levels for the
strategies of both players and are interested in the corresponding set of
finite complexity perfect equilibria, it should be an easy task to write a
computer program listing all of these as output. Our aim here is to give an
outline for such a program.

Restricting attention to DRSP equilibrium of Gm(A,u,a) simplifies things
since the results of section 5 show that we need consider only conjugate
strategy pairs. As we have seen, this means the minimal implementing automata
may be taken to use the same state space, the same initial state, and the same
transition rule. Thus if the fixed (common) complexity level is denoted by c,
we start with a finite set S such that Card(S) = ¢, and distinguish one
element of S as the initial state. Denote this element by so. Recalling the
notation of Example 4.1, we have Ay = {Ni’ci} for i = 1,2, and A = A} X Aj.

We now program our computer to generate all possible transition rules T:

S x A> S, (Actually, we need not consider all such transition rules. Since
we are dealing with minimal implementing automata we can, for example,
restrict attention to those T which are onto the set § — {so}. This is

0 via T and suitable histories

because states which cannot be reached from s
are superfluous.) This set of transition rules is finite. The next step is
to generate the sets of all possible behavior functions Bj: S » A; for

i = 1,2, These two sets of behavior functions are both finite. We proceed by
forming all possible triples (T’BI’BZ)' Since, under a given transition rule
and behavior functions, states correspond precisely to induced strategies, in

this way we can generate a finite set of payoff pairs which can be indexed

over states. Thus u%(s) represents discounted payoffs to the induced strategy
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pair corresponding to the state s. These payoff pairs are easily computed
given (T,Bl,Bz) because the finiteness of S guarantees that starting from any
state, the sequence of states induced by the transition rule and behavior
functions must eventually cycle repeatedly through some finite set of
states. Our computer program can be written to detect this condition. Hence
induced per—period payoffs must also cycle repeatedly through a finite set of
values.

Now observe that the one-shot deviation condition of Lemma 4.1 (with
€ = 0) is both necessary and sufficient for perfection. Since the Prisoners'
Dilemma is a finite action game, in each state there are finitely many
deviations to comnsider. Thus for every state s, we need check only finitely

i i ’ i ’

where d represents a pair of actions with di # Bi(S) for precisely one value
of i. In summary, there will be finitely many conditions to check in
verifying that (T,Bl,Bz) does or does not correspond to a perfect equilibrium
Gm(A,a). This means we have a finite algorithm for generating all perfect
equilibria of G~ (A,a) which consist of conjugate strategy pairs of given
complexity. Since S is finite and (A,u) is a finite action game, a sufficient
condition for one of these to be a DRSP equilibrium is that all of the

inequalities shown above be satisfied as strict inequalities.

7. Concluding Remarks

Broadly, the goal of this paper was to study the structure of infinitely
repeated games with discounting. The development of our understanding of such

games has been slow, largely because their equilibria can be extremely
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complex. Our approach was to attack this feature of the problem directly by
proposing and examining a precise complexity concept for strategies in
repeated games. The relevance of the concept was tested in studying some of
its relationships to subgame perfect equilibria.

With the foregoing results in hand, we are willing to conclude that
measuring the complexity (or simplicity) of a strategy by the number of
strategies it induces gives rise to a useful classification scheme

particularly in the case of finite complexity. With respect to perfection,

the observations of section 6 show that finite complexity equilibria are
indeed simple in the relevant sense: in a finite number of steps, we can
decide the perfection question regarding proposed strategy tuples, at least
for finite action stage games. Also the simplest strategies, the ones with
complexity one, capture the idea of no collusion. Because one can easily see
that every subgame perfect equilibrium in which the players use strategies of
complexity one must consist of repeated use of the equilibria of the one

shot game.

Further, we have seen that finite complexity strategies correspond
precisely to the simplest computing machines: the finite automata. If we
adopt the views that "rationality” is a finitely describable phenomenon, then
the automaton interpretation lends real substance to the approximation results
of section 4. Adopting this viewpoint, particularly in infinite action games
leads naturally to a focus on approximate equilibria implemented by finite
automata. We would paraphrase the approximation result by saying that under
the restriction of "finite rationality,” all equilibria remain relevant. None
can be entirely ruled out on the basis of complexity considerations. This is
particularly true in light of the constructive nature of Theorem 4.1's

proof. The structure of the equilibrium is partially echoed in the structure



- 41 -

of the approximation. Of course, assigning costs to increasing complexity, an
idea which can be found in Rubinstein {1985], might yield very different
results and deserves investigation.

We are less hopeful regarding the appropriateness of the complexity
definition when strategies are judged to be of infinite complexity. It
strains credulity to claim that a linear reaction function in a duopoly game
gives rise to an infinitely (in fact, uncountably) complex strategy. Such a
possibility comes, of course, from considering stage games with continua as
strategy sets. To summarize the foregoing, we think the complexity concept is
arguably the “"right” one for finite complexity strategies. It is impossible
to implement such a strategy with a strictly smaller automaton and adding
superfluous states accomplishes nothing. On the other hand, in the infinite
complexity case, we doubt that a strategy can be found which will be assigned
a complexity which is too low by our definition relative to any other
reasonable measure. Thus, if "errors™ occur in our classification scheme,
they should uniformly consist of assigning complexities which are too high.

The results on structure in section 5 capture at least some of the
essence of subgame perfection as a condition on equilibria. The fact that
equlibrium is completely determined by the strategy choice of any group of
N - 1 players sharply emphasizes the strategic interdependence among
players. The corollary complexity relationships have the natural
interpretation that players must face worthy opponents, at least in the
aggregate, in order to realize their full strategic potential. This is true
both with respect to memory and with respect to the complexity of their
strategies.

With regard to extensions to mixed or behavior strategies of the

infinitely repeated game we see no difficulty in extending our definitions and
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the approximation result. The complexity of a behavior strategy will still be
defined as the number of distinct (behavior) strategies it induces in the
various subgames. The automaton notion would then have to be modified to
become an automaton with a randommizing device. This means that the behavior
function would be allowed to randomize over the set of actions for every given
state. We see no difficulty in repeating the proof of Theorem 4.1 for this
case. We doubt, however, that the interpersonal complexity bounds will carry

over to the mixed strategy case.
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