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Cournot's assumption of zero conjectural variation in a duopoly game has
been extensively criticized in the economic literature. Recently notions of
equilibrium with non-zero conjectural variation have been suggested. However,
these notions were largely defined for one shot simultaneous move games and in
such setups the idea of variation or reaction to other players' changes in
outputs is meaningless. This paper supplies a game theoretic foundation for
notions of conjectural variations other than zero in the context of infinitely
repeated games. It is demonstrated that in the infinitely repeated duopoly
game, large families of conjectural variations Nash equilibria exist and that
their performance agrees with economic intuition. The results presented here
coincide with and generalize those of Smithies and Savage in their treatment

of the one shot duopoly game using a differential equation and calculus of

variations approach.



DUOPOLY, CONJECTURAL VARIATIONS AND SUPERGAMES

Ehud Kalai and William Stanford

The central focus of this paper is on equilibrium in a duopoly game. Our
model follows the work of Cournot (1), in that it is characterized by a
homogeneous product and pure competition on the buyers' side of the market.

We consider only the case of duopoly, where the decision variable for each
firm is the amount of the homogeneous good to produce.

Beginning perhaps with Bowley (2), the study of the oligopoly problem has
been intimately related to the idea of conjectured reaction functions and
their derivatives. These derivatives capture the- notion of each firm's
beliefs about its rival's response to changes in the firm's output level.
These beliefs should enter into the firm's decision process for its output.
This dependence gives rise naturally to the concept of reaction functions for
the firms, each reacting optimally to the conjectured response of the other.
The firm's belief or conjecture about the slope of its rival's reaction

function was named the conjectural variation by Frisch (3).

Thus constant conjectural variations, for example, are associated with
linear reaction functions. Conjectural variations of zero are the Cournot
assumption. In this case, each firm maximizes myopically under the assumption
that its rival's output will remain fixed. Kamien and Schwartz (4) have
effectively criticized the Cournot assumption on several grounds, and have
studied the implications of nonzero conjectural variations. Bresnahan (5),
among others, has also studied this problem.

Difficulties remain, however, with the definition of conjectural
variations. As outlined above, the idea has much intuitive content, but its

foundation would be more secure if some precise context of action and reaction



for the firms were presecribed. The purpose of the present paper is to build
a secure game theoretic foundatioa for the notion of conjectural variatiomns
and to present some results on equilibrium in the duopoly game.

It appears that conjectural variations havevno meaning in a statie,
single-period setting. 1If the firms are to choose production levels
simultaneously just once, we see the necessity for action, but there is no
opportunity for treaction. The Stackelberg (6) leader—follower model allows
for a degree of reaction, but it is unclear what singles out one of the firms
as leader and the other as follower.

Thus, we naturally tura to a dynamic setting where the firms meet in
competition repeatedly. Friedman (7), among others, has considered dynamic
reaction function models, and supergame models. The equilibrium coucept he
uses in his reaction function models is not, however, that of the usual Nash
equilibrium. For him, an equilibrium is a set of reaction function for the
firms to which there corresponds a set of "conjectured” reaction functions
such that the actual functions are best replies to the conjectured functions
and at some output vector, both the values and slopes of the actual and
conjectured functions are the same. This goes to the heart of "consistent”
conjectures, an idea whose implications have been analyzed by Kamien and
Schwartz (4), Bresnahan (5), Lainter (8), Boyer and Moreaux (9), and others,
Friedman's supergames treatment employs the so-called "grim" strategies to
show the existence of supergame Nash equilibria which Pareto dominate the
repeated play of the stage game Cournot equilibrium outputs.

In 1940, Smithies and Savage (10) applied the calculus of variations and
mixed difference and differential equation theory to the dynamic duopoly
problem. They considered the case of identical constant conjectural

variations in a finite horizon, undiscounted, continuous time model. Our



supergame results will be seen to parallel theirs as we consider the identical
coanstant conjectural variations case. We then exteand our consideration to

asymmetric linear and non-linear conjectural variations.

The Model

In this work, we consider the supergame consisting of infinitely many
repititions of the stage duopoly game. We assume downward sloping linear
demand, and identical constant marginal costs for the two firms., The object
of each firm is to maximize the sum of discounted profits by choosing at each
stage its own output level of the product. We assume that the firms have the
same discount parameter, 0 < a < 1. Thus, the profit function for firm 1 at

each stage is:

m,(q41,9,) = q;(A-B(q,%q,)),
and for firm 2,

m,(d7,4,) = q,(A-B(q,+q,)),

where A > 0, B > O.

It is easy to show that in the stage game, the usual Cournot equilibrium
output for each firm is A/(B3), and the monopoly output in this situation is
A/(B2). Thus if the firms acted identically in concert to produce the
monopoly output, each would produce A/(B4&4).

At each stage, the firms are allowed to choose quantities qi€R+. A
strategy for i in the supergame is a set of functions

t-1

€R+ and for t > 2, q s I [R+ X R+] > R+.
Lt )
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Thus a supergame strategy is a choice of output at every stage, where each
choice is possibly dependent on the outcomes of the preceding games and where
both firms know all the choices made by each in the past. The set of
supergame strategies of i will be denoted Q;. Q is the set of pairs of
strategies, Q = Q1 X Q2.

A Nash equilibrium in the supergame is a strategy pair qeQ with the

property that for firm 1, for example, a deviation (i.e., playing

[+ <}

t-l) cannot strictly increase the firm's sum

{4y Jpuy tnstead of {q; .}
some ql,t =1 instead o ql,t
of discounted profits, given that firm 2 plays q9  at all stages. Of course,
>

for q to be a Nash equilibrium, we wmust also be able to make the analogous
statement for firm 2.

We begin the study of conjectural variations by considering siwmple
strategies in the supergame discussed above. 1In particular, instead of

depending on the entire history of outcomes, the Tit for Tat strategy defined

below will depend only on the outcome at the previous stage.

Definition 1: The supergame strategy defined by q1,1€R+ and q,¢ =
99, t-1 is called the Tit for Tat strategy for player 1 (with initial output
ql,l)'

The Tit for Tat strategy for player 2 can be analogously defined. (Note
that there is a slight abuse of notation here, for the RHS of the defining
aquations (q2,t-1) is taken as 2's actual output at stage t-1 rather than its
entire stage t-1 game strategy as the notation would indicate.)

Now if 2, for instance, believed that 1 were playing Tit for Tat, then it
would be natural to say that the conjectural variation is one, for the slope
of 1's reaction function 9Q,¢ = 92,t-1 is believed by 2 to be one (with

respect to changes in 2's output).



Definition 2: The conjectural variations are defined to be one if each firm

believes that the other is playing Tit for Tat.

Theorem A: The strategy pair

A

i,1 = B(3+a) =12

q

9, “ 9,e-1 » Y2, T Y4,¢e-1

is a Nash equilibrium in the duopoly supergame. That is, the initial

supports an equilibrium in the supergame if the

ity X o= o
quantity x = B(3+a)

conjectural variations are one.

Proof: Theorem A is a Corollary to Theorem D.

It is perhaps worthwhile to point out that this strategy pair gives rise
to the same output at each stage, namely the initial output X =-§?%16y for
each firm. Also, as a varies between zero and one, this stationary output
varies between the stage game Cournot output and half the stage game monopoly
output for each firm. In other words, the more heavily the firms weight
future considerations, the more closely their combined output will approximate
the joint profit maximizing output.

We can now consider extensions which will move toward a definition of
constant conjectural variatioms, which should capture the(idea that the

conjectured reaction functions are linear.

Definition 3: The conjectural variations are the constant ¢ if the beliefs of

the firms about their rival's behavior are consistent with a strategy pair of

the form



= x = ¥

> q2,1
U, = x ¥ elay o =% Gy =xFeley g %)

As required, the conjectured reaction functioans are linear in the firm's
output, There are certainly other ways to define linear reaction functions,
but this specification seems to offer a favorable combination of tractability
and intuition. In particular, if ¢ is positive, each believes that a
deviation from the specified output x will elicit a response reminiscent of
the Tit for Tat response seen earlier. In general, Tit for Tat carries with
it strong implications of punishment for unseemly behavior. This appears to
be an effective, if not rational attitude in many situations.

The companion thoerem for this definition is Theorem B, which can easily

be seen to generalize Theorem A.

- _ A \
Theorem B: Let x =BG If 0 € ¢ € 1, then the strategy pair

,1 = %> 9,1 7%

Ge=xtelay (g -®, q =x+clq 4 -x%

is a Nash equilibrium in the duopoly supergame. That is, the initial

supports an equilibrium in the supergame if the

uantity x = A
1 y B(3+ac)

conjectural variations are the constant c.

Proof: Theorem B is a corollary to Theorem D.

As in the case of Theorem A, this strategy pair gives rise to the same

output at each stage, with each firm repeatedly producing X = The

A
B(3+ac)’

intuition behind this equilibrium appears to be strong. Note that, for small



conjectural variations c¢, this equilibrium output will closely approach the
Cournot equilibrium output for the firms. Presumably, since small conjectural
variations are consistent with the assumption of relatively weak retaliation
for increased output, we caan think of both firms perceiving the opportunity to
produce at levels much larger than the equally shared monopoly outputs. This
departs from the usual Cournot assumption of Ffixed output for rivals to the
extent that c exceeds zero.

In Definition 4, we coansider the case of asymmetric constant conjectural

variations.

Definition 4: The conjectural variations are the constants c¢; and ¢y if the

beliefs of the firms about their rival's behavior are coasistent with a
strategy pair of the form

= X = X

1’ 92,1 2

U, =% T oy g 7 %) QG,¢ = %2 ¥ S0y g~ %)

All of the remarks following definition 3 alsos apply here. 1In addition
suppose, for example, that ] > cg. In this case, firm 2 supposes firm 1 is a

"tough™ opponent relative to firm 1's belief about 2, 1If we look for initial

quantities §1 and §2 which support the above strategies as an equilibrium in

the supergame, we might expect that firm 1 will benefit from this fundamental

imbalance in the sense that x, > X,, resulting in greater profits for firm 1

1 2’
at each stage, over the entire infinite horizon of the game. Intuition also
dictates that we should see §l increasing in c;, and decreasing in c,. Also,
we requira that such (El,iz) quantities should generalize the quantities given

in Theorems A and B. the quantities in Theorem C, below, possess all of these

characteristics.



A(1+acl) ~ A(1+ac2)

Theorem C: Let X| = [(zwac;)(Thac,)=1T * *2 = BI(Zrac) (Zrac,)-iT *

where cl,cze[O,I]. Then the strategy pair

X

TXyo 917 %

[

x)+elay 7%y UG ¢ =Xy Fey(ay )~ X

is a Nash equilibrium in the duopoly supergame. That is, the initial
quantities (§1,§2) support an equilibrium in the supergame if the conjectural

vairations are the constants ¢y and Cye

Proof: Theorem C is a corollary to Theorem D.
As in the earlier cases, this strategy pair gives rise to the same output

at each stage, with firm 1 repeatedly producing X,, and firm 2 repeatedly

1

producing x If we take ¢y = ¢y, the result of Theorem B is obtained. If ¢y

2.
=cy = 1, then Theorem C reduces to Theorem A.

Some results concerning the behavior of X and x, are given in

Proposition 1.

Proposition 1:

1. 3 increases in 1 and decreases in cy ¥a.

2. If ¢ > Cy» then X, > x, ¥a.

3. A/(2B) < X, + X, < (2A)/3B Va,cl,cz.
4, If c) < 2¢cy, then §1 decreases in a .

5. If ¢, < 2c,, then x. < A/(B3) ¥a.

1 2’ 1



2
1-a -
5. If |cl—c2| < o5, then A/(4B) < X, .
7. If a < 1/2, then A/(4B) < il Vcl,cz.
8. If ¢, < ¢, then A/(4B) < ’—‘1 ¥a.
9. If e, < 1/2 then A/(4B) < §l Va,cl.

Proof: All proofs are immediate or involve only the obvious differentiation

and/or elementary manipulations.

Result 3 shows that the combined equilibrium output is always between the

monopoly output and the combined Cournot equilibrium output.

Result 6 shows that for relatively large o, if the conjectural variations are

close together, the output for each firm exceeds half the monopoly output.

Result 7 shows, on the other hand, that for small a, independent of the

conjectural variations, the output for each firm exceeds half the monopoly

output.

these conditions are necessary is easy to show by counter-examples. Also,

o - A .= _A )
there exist triples (a,cl,cz) such that L3 < B and X, > 38" For example, if
= = —zé—xé

a = 0.9, c; = 0.1, and Cy = 0.7, then X, 0.242B and X, 0.362B.

Finally, we consider the case of greatest generality, where asymmetric

nonlinear conjectural variations are allowed.

Definition 5: Let fi:Rl > R1 be differentiable , i=1,2. The conjectural

1 1
variations are the functions f1 and f9 if the beliefs of the firms about their

rivals' behavior are consistent with the strategy pair:

= X

9,1 = *1> 92,1 2
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A e =% vy ) - %) 2y =% £20a)e-p ~ %)

|
Theorem D: Let fi:R1 > R1 be twice differentiable, and c, = fi(O) for

i=1,2. Let

A(1+ac1) _ A(l+ac2)

1 ='§T(§IEE;7(§¥EE;T:YT » ¥ T B[(2+ac1)(2+ac£7:fT'

Assume:

(1) £,(0) =0 i=1,2

(2) 0<¢c; <1 1i=1,2

(3) 0¢« f;(q-§2) < 1/Va, 0 < f;(q-xl) < 1/Ya for qel0,A/B].

te - Tt — +
(4) 0 < f1 (q—xz) , 0% f2 (q-xl) for qeR .

Then the strategy pair

X1 292,17 %

4 =%t E Q) (o x) s ay Ty HE(y ) - X))

is a Nash equilibrium in the duopoly supergame. That is, the initial
quantities (;1’22) support an equilibrium in the duopoly supergame if the

|

1
conjectural variations are the functions f1 and f2.

Proof: See Appendix.

All of the remarks following Theorem C and Proposition 1 in its entirety
apply to the result of Theorem D.

It is perhaps remarkable that the equilibrium outputs depend on the
reaction functions only through their slopes at zero. Of course, the
restrictions on the f; and their derivatives are very stringent; these

fuanctions are very well behaved away from zero.



With this fairly large family of equilibrium strategies to consider, we
might hope to find some which retain their credibility away from the
equilibrium path. This is the concept of subgame perfection, which concerns
the infinite period subgame which lies ahead following whatever history of
play up to period t occurs. The initial period for the subgame is t+l. A
strategy pair q induces in the obvious way, a strategy of pair a in any
subgame. If we require that the induced strategy pair a be an equilibrium in

any subgame which could possibly lie ahead in every period, then the strategy

pair q is called a subgame perfect strategy pair.

Results in this direction are entirely negative.

Theorem E: Let 0 < a < 1. Except for fl = f2 Z 0, none of the equilibrium

strategy pairs of Theorem D are subgame perfect equilibrium strategy pairs.

Proof: See Appendix.

Conclusion

The above definitions of conjectural variations seem to be natural and
intuitive. That they are also fruitful is demonstrated in the theorems.
These theorems indicate the possibility of non-cooperative (i.e., non-
collusive) behavior which moves the firms in the direction of Pareto
optimality by restricting output and thus increasing payoffs.

We view the model of Smithies and Savage and our work as complementary.
In the case of ideuntical constant conjectural variations, both account for
essentially the same cooperative behavior--in their case at intermediate
stages, and in our case over all values of the time parameter. The asymmetry
of conjectural variations we have introduced allows for more reasonable
conjectured response behavior, based perhaps on differences of reputation or

other factors such as the ability of firms to react to a changing environment.
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Appendix

First, we prove two lemmas.

Lenma 1. Let T = (T,,T,,ee05T, ,s++) Where T 8R+Vt. Suppose A > 0, B > 0, x
——— 1°°2 t 1

t
>0, k0> 0, 0<a< 1. Let f:[—xl,w) > R have the property that

+
x, + f('rt - Xl) » 0 for TtSR .

2

t-1
za Tt(A—B(Tt+X2+f(Tt_1—X1))).

o122

Let GN(T) =
t
Then there exists K such that ¥t, » > K > lim GN(T) = 1im GN(T) > -,

That is, lim G

N>

N(T) exits, and is bounded above, independent of T.

Proof: It is easy to see that the terms a, = Tt(A—B(Tt+X2+f(Tt_l—xl))) are

t

uniformly bounded above on R+ X R+

. This shows lim GN(T) is bounded above,
indepeundent of T.

Suppose 1im GN(T) > lim GN(T) > —o, Let 6 > 0 have the property that
1im GN(T) = EEE'GN(T) + 8. The terms GN(T) must lie within a neighborhood
radius &§/3 centered at lim GN(T) infinitely often. Also, the terms GN(T) aust
lie within a neighborhood of radius §/3 centered at TEE'GN(T) infinitely

t-1

often. But is clear that the positive terms of the sequence {a have

2
bounded sum. This yields a contradiction. Thus, in case lim GN(T) > ~w, we
have 1€E-GN(T) = lim GN(T). The case where lim Gy (1) = —» is proved by

similar contradiction.

Lemma 2: Let T = (11,12,...,Tt,...) where Tt€R+ ¥t. Suppose A > 0, B > 0, x
>0, x>0, 0<a< 1. Let f:[rxl,W)+R be differentiable, with f' » 0 and

with the property that x, + f(Tt—xl) > 0 for Tt€R+. Let

2

?t = min{A/B,Tt}, ¥t. Then
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— —_ *® t_l_ -— —
Tl(A—B(T1+X2)) + I a Tt(A—B(Tt+X2+f(Tt_1 xl)))

t=2

T t-l
> Tl(A—B(T1+x2)) + tiza (A—-B(Tt+x2+f('rt_l—xl))) .

Proof: Both infinite sums exist by Lemma 1. It will be sufficient to show
that for arbitrary N,
- —_ N * 1
- “T1T (A-B(T I -
Tl(A B(Tt+x2)) + tiza Tt(A B\Tt+x2+f(1t_1 xl)))
N

> Tl(A—B(Tl+X2)) + tiza

t-1
Tt(A—B(Tt+X2+f(Tt_1—X1))) .

Let t* be the smallest t for which Te > A/B, and consider changing only

T , to A/B.
t

Lo

Case 1: t = 1. We must show

%(A—B(% + %)) + ot (A-B(T 4+ (A/B = x,)))
> Tl(A—B(Tl+X2)) + aTz(A—B(T2+X2+f(T1—X1))) .

Since 0 > ArB(%-+ XZ) > A—B(T1+X2) and f(Tl—xl) > f(A/B—xl), the result is
immediate.
The cases where 1 < t* < N and t* = N are very similar, The result

follows by a finite induction type argument.

L
Theorem D: Let fi:R1+ Rl be twice differentiable, and ¢y = fi(O) for i=1,2.
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A(l+ac1)
1 B[(2+ac )(Z¥ac,)-1]

A(l+ac2)
: 7 B{(Z¥oc ) (ZFac )-1T °

Let X

y X

Assume:

1. fi(O) =0 1i=1,2 .
2. 0 < ¢y < 1 i=1,2
) —_ — ) -
3. 0 < £,(q=x,) < 1/Ya , 0 < £,(ax)) < 1/Ya for qe[0,A/B]
fl' - fll . f +
4. 0 < 1 (q—xz) , 0 € 9 (q—xl) or qeR’' .
Then the strategy pair

= X

B,1 %12 9,17 %

_ - R .
)+ 60y ) TR s a4y =Xy EN(ay ) Ty

is a Nash equilibrium in the duopoly supergaume.

Proof: First, we must show that these strategies are well defined., This
+ _+ +
means q,  :R'>R7. Clearly, xl,XZE(O,A/B) ¢ R'. To see, for example, that
>

q, t:R++R+, note that by properties of convex functions, fl(—xz) > —C1£2'

b

Also, f; is minimized when q9 t-1 = 0. Thus:
b

A(1+ac1 l—aclcz)

x)H @ X)) > oxpex, = B[(2%ac Y (2Fac,)=1T

-C

? O .

Turning to the body of the proof, it is clear that these strategies,

played one against the other, yield the stationary quantity pair (il,iz) at
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each stage. So if firm 1, for insktance, has a strategy 9, which is strictly
b h ={a, .} i = | > hen q 1d h

etter than q1 = ql,t t=1 against q2 = q2,t}t=l’ then q1 wou ave to
1 In

contradiction to this, we show that it is optimal for firm 1 (given that firm

prescribe an output at some stage which is different from X

2 plays qz) to produce El at each stage.

Given 2's strategy q9, firm 1 confronts the problem:
max ql(A—B(q1+§2))
qlaq'_)_a"'
taq, (A-B(q,+x,+f,(q,-x,)))

2 - —

3 _ — —_
+a q4(A B(q4+x2+f2(q3 xl)))

ess 4

, Where qt€R+ ¥t.

(Note that we have dropped the first subscript from the ql,t's to simplify

notation.) By Lemma 2, it will be sufficient to consider as the feasible set

for the above maximization problem the set 1 [0,A/B]. That is, we need only
t=1

consider qte[O,A/B] yt.

For any vector of outputs T = (TI,TZ,...,Tt,...), where 0 < 1, < A/B, let

t

FN(T) = TI(A—B(T1+§2))

+ar2(A—B(T2+x2+f2(T1—X1)))
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2 — —
+a T3(A—B(T3+X2+f2(T2 Xl)))

N+x2+f2(TN_1—xl))), for N> 2 .

+aN—er(A—B(T

N _ N s - _ s =
Also, define FN(T) = FN(T) a sz(O)xlTN, q (xl,xl,...,xl,...), and
F (1) = lim FN(T).

N>

We will show that Fw(i) > Fw(T) fo all 1, where 0 < T, < A/B ¥t. So

suppose for some fixed 1, we have F_(t) > Fm(a). Let § > 0 have the property
that Fw(a) + 6 =F_(1). By continuity of £y, there exists a real number m

such that |Tt(A-B(Tt+§ +f

) 2(Tt_l-—xl)))l < m for all (t

-1 T €[0,A/B]

o0

implies m T o < &/8, and N, such that
i=n

x [0,A/B]. Choose N; such that n > Nl

' -
n > N, implies aanz(O)x1

2 < §/8 for TNs[O,A/B]. Let N = max {Nl’NZ}'

™

Now, for n > N, it is clear that
|F ()-F (@) < 8/8 , |F (1)-F (1)| < §/8
|F (O-F (] < 8/8, |F (0)-F (1)] < 8/8 .
By the Triangle inequality, we thus have

IFw(a)—fn(a)| < &8/4 |Fw(T)-§n(T)I < 8/4, for n > N. *



_]_7_.

By assumption, we have Fm(i) = F _(1)-8. By * and the Triangle

inequality:
lfn(i)—Fn(r)+a| < F_(@)-(F (1)-8)] + IFm(T)—fn(T)I < §/2 . *%

Suppose we can show ?N(i)—fn(r) > 0 for all n. This would give an
immediate contradiction to the assumption and establish the theorem, since by
%% we would have Fn(i)—fn(t)+6 < §/2, or fn(i)—fn(r) < -§/2 < 0, for n > N.

The remainder of the proof consists of showing fn(i) > fn(T) for all n,
for all te 1 [0,A/B]. Recall
t=1

ﬁn(r) = Tl(A-B(T1+§2))

+ aTz(A“B(T2+X2+f2(T1'K1)))

2 — ~ —
+a 13(A B(T3+x2+f2(T2 xl)))

+

n-1 = = n,° =
+a Tn(A—B(Tn+x2+fZ(Tn_l—xl))) - a Bf2(0)x11'n .

First order conditions are given by:

- 1 -
—2BT1+A*BX2—GBT2f2(Tl—Xl) =0

—_ 1 — _
—2Btt+A—Bx2-aBtt+1f2(Tt-xl)—sz(Tt_l—xl) =0 t=2,...,n-1

- — 1 -
—ZBTn+A—Bx2—an1f2(0)—Bf2(Tn_1—xl) = 0
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_ A(1+acl)
So it must be shown that Tl = T2 = Le. = Tn = Xl = B[(2+ac2)(2+ac1)—1]
solves —2311 - GBCZTZ = sz - A
—ZBTt - chZTt+l = sz - A t=2,...0-1

Il
o
>

|
>

—ZBTn - chle 2

A(l+ac2)
if X, = B[(2+ac2)(2+ac1)—fT' It is clearly enough to show this for the first

equation only. To this end, it is straightforward to verify that

A(1+ac2) BA(1+ac2)
‘B‘[(2+ac2)(2+acl)—“1"r = B[(2Fac,)(Tfac )-1T -

—B[2+ac2] A .

So it remains to check second order conditions for a maximum. For this,
it will be sufficient to show that the associated Hessian matrix, H, evaluated
at every (Tl,...,rn) is negative definite, where 0 < Ty < A/B for t=l,...,n.

The first row of H is given by

11
(-2B -aBt.f, (7T

Sy (1)) (-an;(rl—il)) 0 0...0

1

n-2 zeros

the £ row of H is

0...0 (="REN(r,  F)N("T Batr £1(r %)) (B (1)) 0...0

n—(t+1)
zeros

t2zrs
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th

the n row of H is

n - 2 zeros

Let dt be the determinate obtained by considering the first t rows and t
columns of H, for a fixed but arbitrary (Tl,...,Tn). It is well known that H
is negative definite if and only if dt has the sign of (-1t for t=1l,e0.,0,

1t — 1 -—
£, (T —xl) , Y, = fz(Tt-xl). Let Bn = 0. By

For t=1,2,...,n-1, let Bt = Tt+1 9 t

t

standard theorems from determinate theory,

i B
oo Mgy T
_ ¢ yEot t(e-1)/2
dt = (~1) B o 0 oy, 2+a83 13

Yep 2By Ve

oy Ha

L

for t=1,2,+4.,m,
Let &t be the above determinate. If Et > 0 for all t, we will be done. We
have 51 = 2+a61 > 2, since Bi 2 0 for all i.

< = 23 : 2
d2 = (2+a82)d1 @Yy > dl > 2, since ay| <1,

For t > 3, it is easy to see that

- - 2
dt = (2+a6t)dt_l - aYt—ldt—Z .
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> d > 0. Then

We have d2 > d1 > 0. Suppose for t > 3, we have dt— £-2

1

- 2 -
(2+ag ), ) — ¥ d

fu
1l

> (2+aB )d, _,~d

t-2 t-2

(1+a3t)dt_1+(d -1

t-l_dt—Z) > (1+a8t)dt_l > d

By induction, d_ strictly increases in t. Since 51 > 0, the theorem is

t

proved.

Theorem: Let 0 < o < 1. Except for f1 = f2 = 0, none of the equilibrium

strategy pairs of Theorem D are subgame perfect equilibrium strategy pairs.

Proof: Assume f1 £ 0.

Suppose at time t, firm 1 produces x, and firm 2 produces a large output

1

M, to be specified below. Then in the subgame begianing at time t+l, the

following outputs are realized by the induced strategies:

Period Firm 1 Firm 2
t+1 £1+fl(M—£2) §2
t+2 X, x,+H , (F) (M%)
t+3 £1+f1(f2(f1(m-§2))) iz
t+4 §1 §2+f2(f1(f2(fl(m—x2))))

By Lemma 1, firm 1's total payoff beginning at time t+2 is bounded above,

independent of M. It is easy to see that lim fl(M—iz) = o, Thus by choosing
Moo

M large, the total output at time t+l can be made arbitrarily large. This
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implies that firm 1's payoff at time t+l can be made so small that firm 1's
total payoff is negative. But firm 1 can achieve a positive payoff by
producing §1 at t+l and then following its induced strategy. This proves the

theorem.
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