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INTRODUCTION

To the extent that economic behavior is purposeful and takes place over
time, expectations and plans clearly play a major role.l Yet there has been
considerable difficulty in formulating models of producer and consumer
behavior that incorporate these elements in Aeaningful ways and that are also
simple enough to permit empirical application. Hicks (1946) found a solution
to the problem of formulating a dynamic theory of the firm under certainty by
dating all variables and applying a static theory to the thus expanded set.2
But such a solution fails to reveal the dynamic structure of decisions and
constraints, and it does not explicitly deal with uncertainty, the costs of
information, or the costs of formulating plans and decisions. In principle,
theorists know how to set the problem up as a dynamic programming problem
under uncertainty, in which the conditional distributions of future unknown
exogenous variables are estimated by using all available information up to the
current period (Nerlove, 1972).3 While costly information is more difficult
to incorporate since its value is usually not known until it is acquired,
presumably a suitable Bayesian framework can be devised for incorporating this

element.

In this paper, I attempt to peek into the "black box" of the firm and to
explore some very simple models of expectation formation and planning, using
data on a group of French and German manufacturing firms who report over time
on both expectations and their subsequent realization. Although much simpler
than the '"correct" approach described in the preceeding paragraph, these

models work well, provide a straight-forward, less rigorous, yet practical



framework for the empirical analysis of plans and expectations, and are a
useful point of departure for future research.

The plan of the paper is as follows: First, T discuss a number of
different models of expectation and plan formation, the French and German
survey data and problems connected with their analysis; next I present the
results of a series of empirical investigations, dealing with the relation of
prior plans and expectations to subsequent reélizations, with the formation
and revision of production plans, price expectations, and expectations of
future demand, and with some simple models of expectations and plan
fulfillment. In conclusion, a summary of the results and the questions they
raise for future research is presented. A technical appendix contains a more

detailed discussion of the principal methodological tcol.



PART I: BACKGROUND

1. Models of Expectation Formation and Planning

The Hicksian model of dynamic planning under certainty is the basis for a
more empirically relevant framework for the analysis of plans and
expectations, which is developed in the work of Modigliani and Cohen (1961)
and which is the starting point for the investigations reported here.4 The
Hicksian assumption of certainty means that information about the future value
of a variable is single-valued and costless. We continue to regard
expectations and plans as single-valued but to recognize that the economic
agent knows that they may turn out to be wrong. As of a particular date
information about the future can be acquired only at a cost, albeit a cost
which decreases for a particular future date as that date draws near.

Planning and decision making are themselves costly activities. Therefore only
what 1s necessary to plan will be planned, only decisions which cannot be
postponed will be made, and only the information about the future necessary to
those plans and decisions and only to the accuracy warranted by the cost of

error will be gathered. Plans will not always be fulfilled, single-valued

expectations will often turn out to be wrong, and both will be continually

revised.

Extrapolative Expectations

Use of weighted averages of past readily observable data, or linear
extrapolations, has negligible cost and yields a single-valued expectation,

which is perhaps why such extrapolations have been so popular with



econometricians.5 The class of extrapolative expectations includes adaptive
expectations and expectations based on forecasts from time-series models
(including quasi-rational expectations) and some formulations of rational
expectations.

Let X, be the realized value of a variable in period t (in the data used
*
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below, this is reported on a survey at the end of period t). Let
the value projected for period t+l in period t. The general form of

extrapolative expectations is

(1)

where the wj are some fixed weights, which may, for example, have been chosen
. * . : .o .

to yield a forecast, X", with certain statistical propertles.6 The form (1)

can be extended in an obvious manner to periods farther in the future than the

next and to forecasts involving the past values of several variables.

Adaptive expectations result when the weights decline geometrically,

vy o B(1-8)7, o<l

in which case

* * *

(2) R e S £t the-1

In this form, the model is sometimes known as the error-learning model,



Below, I use both the form (2) and a less restrictive form

* *

= + X .
(3) t+lXt let B2

It is well known that in the case of any covariance-stationary time
series the minimum mean-square error (MMSE) forecast can always be written as

a linear function of past one-step-ahead forecast errors

* © *
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(4)

where

£

In general, MMSE, forecasts for covariance-stationary time series have
greater stability of long-term expectations than of short—-term, although this
conclusion may be modified by adding trends, introducing non-stationarities in
the manner of Box-Jenkins, or adding seasonal components. This property of
MMSE forecasts may account, in part, for the commonly observed regressivity of

expectations.

Rational Expectations

In the early 1960°s, Mills (1962) introduced the notion of "implicit
expectations' and Muth (1961) of "rational expectations.'" The idea of the
former is to employ future values as proxies for anticipations of them on the

grounds that, on the whole, economic agents forecast successfully and errors



are small. Rational expectations are based on a broadly similar hypothesis
but one which, especially in recent years, has taken different specific
forms. The underlying idea is simply that economic agents behave purposefully
in collecting and using information just as they do in other activities. In
this general form the hypothesis is a compelling one, but in practice this
idea is often translated into the requirement that expectations are, in the
model at hand, formed in a way that is stochastically consistent with the
behavior of the realized values of the variables in question. This is clearly
a much stronger hypothesis, which one can reasonably dispute. Clearly, our
models of behavior are imperfect and, however attractive consistency may be,
it would be unreasonable to insist that expectations and behavior are
necessarily generated by the same stochastic approximation, with every
restriction pertaining to the one incorporated in the other.8

A more attractive but weaker form of the rational expectations hypothesis
is simply that there is no pattern of systematic error.9 Purposeful economic
agents have incentives to eliminate such errors up to a point justified by the
costs of obtaining the information necessary to do so. (See Feige and Pearce,
1976.) The most readily available and least costly information about the
future value of a variable is its past values. Moreover, in the absence of
structural change, the final form of an econometric model leads under fairly
general conditions to univariate relations between the current value of a
variable and its own past values.lO Thus one possible approach to model-
ing expectation formation, consistent with the rational expectations
hypothesis, would be to generate expectations as MMSE forecasts (also
conditional expectations in the mathematical sense) from empirical time-series
models for the variables to be forecast by the economic agents whose behavior

we are studying. Elsewhere (Nerlove, Grether, Carvalho, 1979), I and others



have called such expectations quasi-rational. They are not fully efficient
because they neglect some of the restrictions implied by the behavioral model;
but, of course, those restrictions may not be correct because the model itself
is only an approximation. In the absence of structural change, quasi-rational
expectations satisfy the minimal requirement of rational expectations: they
are unbiased forecasts of the realized future values. Moreover,there will be

no systematic components in the forecast errors.

Inference about Expectation and Plan Formation

In the form in which they are usually applied, all of the foregoing
approaches to the modeling of expectations and plans have one common
feature: a model of expectation formation is embedded in a behavioral
model. We can infer how expectations are formed and how they influence plans
and behavior only indirectly by observing realized outcomes and the values of
variables representing external forces impinging on the firm. This means that
errors in the formulation of a behavioral model affect conclusions regarding
expectation formation and plans.11 For this reason it is important to obtain
independent evidence on expectations and plans and to devise models which are
able to explain variations in such variables directly.

In recent years, a number of studies have been made using aggregates of
expectational data obtained from surveys. Turnovsky (1970), Carlson (1977)
and Jacobs and Jones (1980) have analyzed aggregates from a survey of general
price-level expectations. Similar studies of aggregates from surveys have
been made by Knoebl (1974), deMenil and Bhalla (1975) and Carlson and Parkin
(1975). deLeeuw and McKelvey (1981) analyze information collected in the

year—end surveys of business plant and equipment by the U.S. Bureau of



Economic Analysis on the expected prices of capital goods purchased and the
prices of goods and services sold. There are few studies which make use of
the micro-data themselves to study reported expectations and plans directly
and to test various models of the formation and revision process.12

While the use of aggregates derived from surveys is an important first
step in the analysis of expectations and plans, such analysis should be
supplemented by studies based on the microdaté themselves for several
reasons: First, the micro—-data should be consistent with hypotheses regarding
the behavior of the aggregates; for example, expectational aggregates could
provide unbiased forecasts of realized aggregates, as asserted by the theory
of rational expectations, yet forecasts of individual agents could be
systematically and persistently biased. Second, some factors affecting
deviations between expectations or plans and subsequent realizations may
affect all individuals simultaneously yet vary from period to period and some
factors may affect individuals; only through analysis of the micro-data can we
disentangle those two groups of effects. Finally, individual variation in
variables related to expectations, plans and realizations may be reduced or

obscured in aggregated data.

2. The French and German Business Tests

For many years and in a large number of countries, data have been
collected from individual firms on expectations, plans, appraisals, and past
realizations for a variety of variables (Strigel, 1977). The oldest and most
famous of these surveys is that done by the Ifo-Institut, Munich, every month
since November 1949 for the Federal Republic of Germany. Other surveys, such

as the quadrimestrial survey conducted by the Service de la Conjoncture of the
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Institut National de la Statistique et des Etudes Economiques (INSEE),
beginning in 195! for France, are administered less frequently but often
contain data on a greater number of variables. These business tests, as they
are called, offer a unique source of data for the analysis of how expectations
and plans are formed and revised at the level of the individual firm. The
empirical investigations reported in this paper are based on monthly data, in
the case of Germany, for approximately 4500 individual establishments over the
period January 1977 through December 1978.13  For France, the data are for
approximately 1600 firms for the period June 1974 through June 1978, collected
in March, June and November.14

Almost all the data are categorical, indeed most are trichotomOus.15 The
categorical data can be classified into three groups:

(i) Variables that reflect plans or expectations
(ex ante data).
(ii) Variables referring to realizations (ex post
data).
(iii) Variables indicating appraisals.

Responses are in the form: Increase (+), no change (=), or decrease (-); or
greater than normal (+), normal (=), or less than normal (-); or too large
(+), about right (=), or too small (—).16 In most previous work, so-called
balances have been used to aggregate the categorical responses obtained from
business—test surveys. In this procedure, the number or percent of
respondents reporting a '"-" is subtracted from the number or percent reporting
a '"+". As noted by Carlson and Parkin (1975), the aggregate balances neglect
the information afforded by the no-change, "=", category. The balances are
typically used as time-series data, for example, as leading indicators, or in

analyses relating one series to another. It is easy, however, to construct an
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example for two categorical variables which are in fact independent but for
which the balances show a perfect positive correlation over time (Koenig,
Nerlove, Oudiz, 198la). This situation may arise because changing common
environmental factors influence all individuals over time. As such, the
problem is analogous to spurious correlation among time series, but the use of
micro~data may permit the true nature of the relationship (in the example,
independence) to be established, even thOugh_it may not be possible to specify
or observe the common environmental factors responsible for the spurious
relationship among the aggregate variables. The methods used here to analyse
the micro—-data from the Ifo and INSEE surveys do not aggregate categories and
do treat the categories symmetrically.

The data available from the German (Ifo) and the French (INSEE) survevs

are summarized in Table 1.

Table 1: German (Ifo) and French (INSEE) Business-Test Variables

Variable Plans or Realizations Appraisals
Expectations
*
Business G G -

Conditions (Ifo)

Demand (INSEE) D+ D pd
. *
Production Q Q -
Inventories of - L L2
Finished Products (INSEE)
Backlog of Orders -- S sa
(Ifo)
. . *
Domestic Selling P P -
Prices
Incoming New Orders - A -

(1fo)
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The variable designations employed are German and French mnemonics; thus, G is
"Geschiftslage," etc. Data are also available for exports and, for the French
surveys, on stocks of materials and semifinished products, foreign demand,
delivery delays, labor force and hours, expectations of the general level of
industrial production, general price level and general wage level. Continuous
data on capacity utilization and on weeks of production represented by
inventories of finished products and order béﬁklogs are available in certain

months from the Ifo surveys and from all INSEE surveys. Continuous data on the

wage rate for the firm are avilable from the French survey.1

3. Some Problems Encountered in the Analysis of Categorical Data

The difficulties encountered in the analysis of categorical data may be
illustrated by the problems of defining a change over time and a forecast error
(surprise or failure to fulfill a plan). For example, firms report whether they
plan to increase production, decrease it, or maintain it at its present level.
Subsequently, they report in the same categories what has happened to the level
of production. In the absence of any order among the categories, each individual
prediction would be merely right or wrong: either the firm correctly anticipated
that it would increase production or it did not. There is no sense in which one
prediction would be closer to what subsequently happened than another. When the
categories are ordered, as in the case of the business-test responses, a greater,
but still limited, possibility exists for such comparisons; for example, when an
increase occurs, a prediction of no change is better than a prediction of a
decrease although both are wrong.

In what follows, I deal only with consecutive pairs of surveys at three-

month intervals for the German data and at three-, four—-, or or five-month
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intervals for the French data. Consequently, the pre-subscript indicating the

period for which a forecast or plan is made may be dropped.

*

Let X__1 represent a reported expectation or plan on a prior survey and let

X be the corresponding realization reported on a subsequent survey. In Koenig),

Nerlove, Oudiz (198la), we define a surprise, or failure to fulfill a plan, as a

new variable, EX, with categories given by the table.18

X*
-1
+ + -
+ = + +
i
EX=X = - = +
Figure 1

For the most part, the responses already reflect changes rather than
levels. In some instances, however, one may wish to examine changes in the

direction of change, realized or anticipated. This may be done by defining a new
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variable, AX, by means of table similar to that used in the definition of EX

-1
+ = -
¢ |
+ = + +
AX = X = ‘ - = - -
)
- 1 —_ - =
‘ 4
Figure 2

where X_y refers to the realization reported on a prior survey.

In Part II, the first empirical investigation reported deals with the
question of how well firms forecast future changes or to what extent plans are
fulfilled. 1In particular we are concerned with the temporal stability of the
cross—sectional conditional distributions of realizations given prior
expectations/plans. In contrast to variables which are quantitative, relations
between predictions and outcomes cannot be numerically expressed and distances
between forecasts and outcomes cannot be defined in the usual way. Criteria such
as mean—-absolute error or mean-square error cannot be used to assess the
goodness—of-fit of forecasts of aggregates or of individual data or to compare
forecasts made at one time with those made at another. As noted above, forecasts
are either right or wrong or, at best, more or less wrong.

Forecasting individual observations are what Hildenbrand, et al.

(1977) call "forecasting events." 1In the case of quantitative variables, it is
possible to form aggregates of individuals. Thus, for example, one might

aggregate individual firms’ expectations of future sales and compare these with
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subsequently realized industry sales. Similar aggregation procedures may be
applied to categorical data and, indeed, may be highly desirable because of the
"all or nothing" character of the individual forecasts of events. Let xf be a
forecast of a variable, the realization of which in a subsequent period we denote

by X. Let Xf

and X have the same categories. One possibility would be to
analyse forecast errors defined as EX is defined in Figure 1, replacing Xfl by
Xf; this converts individual forecast errors into a third categorical variable.
An alternative is to consider the properties of a 2-way table relating forecasts
and realizations by counts of firms falling in each combination of categories.

n_mn 1w
=

Replacing "+, , , in subscripts by 1,2,3, respectively, this table is

o
+ = -
s
+ Nip Ny Ni3 Ny,
X = Noy Noo Nyj Ny,
- N3y N3o N33 N3,
N.y N., N. 4
Figure 3

where N; —and N . are the marginal row and column totals. The marginal

J
distributions and related balances of forecast and realization may be compared
over time to assess, for example, systematic bias; but it should be understood
that, like all aggregates, such variables may conceal rather than reveal what is
actually going on.

Perfect forecasting in the context of categorical variables may be defined

as a situation in which everv firm correctly forecasts the direction of change.
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Clearly it is possible, in the context of quantitative variables, for perfect
categorical forecasts to be very far off the mark, and, conversely, for imperfect
categorical forecasts to be close quantitatively. Comparison of the marginals

may also be misleading as illustrated by the example in Figure 4.

xf
+ = -
' ot
+ 0 25 25 50
|
X = \ 25 50 25 100
- j 25 25 0 50
50 100 50
Figure 4

In the table of Figure 4, the margins fit perfectly yet the forecasts are quite

bad .19

Even if expectations or plans do not forecast subsequent realizations
perfectly, in the sense defined, there is always a close relation between the
two. Because realizations are not independent of earlier expectations or plans

*
the conditional distribution of X depends on X_ Let the conditional

1°

* * *
distribution of X given X . be P(X( X—l) and let P(X) and P(X_l)be the respective

1
marginal distributions. Then knowledge of the conditional distribution would
enable us to deduce the marginal distribution of X exactly from the marginal

*
distribution of X_ by means of the identity

1

(1) PO = £ p(x | X)) PxD))

*
where the summation is taken over the categories of X ..
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In a true forecasting context, the current conditional is not known. If the
conditional distribution does not vary very much from one survey date to the

next, an estimate, such as

*

(2) PX | xfl) = P(X_, [x_z)

may be used in (1) to estimate the marginal distribution of X from that of

f
-1 We may imagine an implicit random variable XC for which

- * *
IP(X | X2)) P(XD))

is the marginal distribution.zo Call this implicit random variable the

conditional forecast of X. It is conditional on data from two previous surveys.

The possibility of constructing conditional forecasts provides an additional
reason for studying the time stability of the conditional distributions
P(X ( Xil)’ although this question is of intrinsic interest,

In formulating models of expectation/plan formation and revision as well as
in the analysis of the temporal stability of conditional distributions of
realizations given prior expectation/plans, it is highly useful to have a
parametric formulation of the joint multivariate distribution of three or more
categorical variables and the associated conditional distributions. The
parametric formulation used in the empirical investigations reported below is the
log-linear probability model. (See the appendix.) The two most important
properties of the model for my purposes here are: (1) The conditional
probabilities associated with a joint distribution characterized by the log-
linear probability model are also log-linear in form but involve a reduced set of

parameters. (2) The model decomposes the logarithm of the probability, joint or
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conditional, into "effects" analogous to the usual analysis-of-variance (ANOVA)
effects. In this formulation the log probability is represented as the sum of an
over—all mean (which is chosen so that the probabilities sum to one), main
effects for each categorical variable, bivariate interaction effects for pairs of
categorical variables, and so on.

In this formulation, component probabilities may be defined corresponding to
each effect configuration; and, in this way,‘it is also possible to define
measures of partial bivariate association, for example, based on the Goodman-
Kruskal Gamma coefficient, normally defined only for the two variable case.21

Models which contain all possible effect configurations are called
saturated. In general, one would want to restrict attention to models containing
fewer configurations, for example, only main—effect and bivariate-effect
configurations. Such restrictions may be justified on grounds of parsimonious
representation, ease of interpretation, and considerations related to
estimability.

One way to test for time stability is to formulate a log-linear probability
model for the conditional distribution

*
P(X| X ., T)

1 3

where T is a dichotomous variable representing two survey dates and the variables
* . I3 - . -

X and X_1 represent realization and prior expectations or plans on either of the

two survey dates. An appropriate test for stability is then whether either the

bivariate interaction configuration T x X or the trivariate interaction
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*

configurative TxXxX is significantly different from zero.

1
Methods of analysis based on the log-linear probability model do not, in
general, permit structural estimation in the traditional econometric sense as

23 Conditional probability models

developed for the analysis of continuous data.
may, however, be formulated. These models contain relatively few parameters and
correspond under some circumstances to reduced-form equations from a structural
model. Estimation of conditional probability models permits inferences about
direction and strength of associations, although, as is typically the case in the
analysis of cross-section data, inferences about the direction of causality are
hazardous, since it is hardly ever appropriate to assume that post hoc implies
propter hoc. Nonetheless, throughout the remainder of this paper, I do generally
assume that timing determines direction of causality, i.e., that prior events,
plans and expectations reported by the firm influence current expectations and

plans and not vice versa, Causality is assumed to run in the direction past to

present.

PART II: EMPIRICAL INVESTIGATIONS

Koenig, Nerlove, and Oudiz (1979,198la,b,c) report a variety of results
derived from the French and German business-test data related to expectations,
plans and realizations. In this section I selectively review and summarize the

main findings and report a few additional complementary analyses.
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1. Prior Expectations and Plans in Relation to Realizations24

How well do firms’ expectations or plans predict subsequent realizations?

To what extent is the relation between expectations or plans and subsequent
realizations a stable one, irrespective of how well the former predict the
latter? These are the first questions one asks about the French and German
business—test data. I argue in Part I that cbmparing marginal distributions of
firms’ forecasts (expectations or plans) with the marginal distributions of
realizations could be a rather misleading indicator of the quality of the
forecasts. Inspection of the contingency tables between Xil and X, however,
suggests that the marginals do provide a fairly accurate summary of the extent to
which the observations are concentrated along the diagonal. The balances derived
from the marginals, while helpful in revealing broad tendencies, conceal
considerable information. In particular, the apparent stability over time in the
marginal distributions for the German data conceals considerable individual
variations in response over time.

In Koenig, Nerlove, Oudiz (198lc), we present marginal distributions and
balances for both the French and German data for prices, demand, and production
for realizations, expectations or plans, and conditional forecasts. Tests for
the presence of significant bivariate and trivariate interaction configurations
involving the variable T, the realization, and the expectation or plan are also
presented for each triple of consecutive survey dates. Here I illustrate these
results with two examples: production plans and realizations for the German data
and demand expectations and realizations for the French data. The marginal
distributions and balances are presented in Tables 2-3 and XZ —tests of stability

in Tables 4-5.

The first thing to note is that there is very little variation in the
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Marginal Distributions and Balances.
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(continued):

Table 3

Period and Variable
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Table 4: German Data. Chi-square Values and Associated Probabilities for Tests of
Significance of Certain Interactions in the Model {QIQfl, T}.

Bivariate Interaction Trivariate Interaction

2640

| | |

| i !

Period and [ , T x Q I ) T x Qx Q* |

Number of Observations | X Prob. ] X Prob. |

| I |

I I [

I I |

I f |

I I |

Jan. ‘77, Apr. ‘77, July ‘77, 1 19.6 0.000 [ 2.28 . 0.684 [
! - | [

2476 | | |

[ | |

Apr. ‘77, July ‘77, Oct. ‘77 | 0.560 0.756 | 3.84 0.428 |
] i |

2293 | ] [

I I I

July ‘77, Oct. °77, Jan. ’78 | 1.39 0.499 | 1.56 0.815 |
I | I

2218 | | ]

i [ [

Oct. 77, Jan ‘78, Apr. °78 | 5.07 0.079 [ 2.29 0.683 |
I I |

2497 | ] !

I | !

Jan. ‘78, Apr. ‘78, July ‘78 | 0.440 0.802 | 1.89 0.755 |
[ [ !

2650 | | |

I { [

Apr. ‘78, July ‘78, Oct. ‘78 | 1.83 0.401 | 3.28 0.512 ]
| | i

! [ I

| | |

I | |

I ! [

I [ |
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Table 5: French Data. Chi-square Values and Associated Probabilities for Tests of

Significance of Certain Interactions in the Model {D[Dfl, T}.

Bivariate Interaction Trivariate Interaction

1355

! | !

[ ! !

| Period and ] 9 T x D | 2 T x D x Dtl

l Number of Observations ] X Prob. | X Prob.
| | [

! ] |

| | [

| June ‘74, Nov. ‘74, Mar. ‘75 | 2.94 0.230 | 16.5 0.002
] | |

| 835 | |

| | - |

{ Nov. ‘74, Mar. ‘75, June ‘75 ! 6.25 0.043 { 6.29 0.178
| [ I

i 926 | |

[ I !

| Mar. ‘75, June ‘75, Nov. ‘75 | 57.9 0.000 i 4.67 0.323
| I !

| 1160 | |

| ! [

| June ‘75, Nov. ‘75, Mar. ‘76 | 21.3 0.000 | 4,22 0.377
] | |

| 1220 | |

| | |

| Nov. ‘75, Mar. ‘76, June ‘76 | 7.00 0.030 | 9.66 0.047
| | |

| 1153 | I

I ] |

| Mar. ‘76, June ‘76, Nov. “76 | 4.98 0.083 f 3.59 0.464
[ I I

| 1109 | !

! [ |

| June ‘76, Nov. ‘76, Mar. ‘77 | 1.06 0.588 | 3.53 0.473
| | !

| 1000 | [

| | |

| Nov. ‘76, Mar. ‘77, June ‘77 | 20.1 0.000 | 4,66 0.324
| | |

| 1003 | |

| | [

| Mar. ‘77, June ‘77, Nov. ‘77 | 0.157 0.924 | 4,44 0.350
! | |

| 1223 | |

I ] ]

| June ‘77, Nov. ‘77, Mar. ‘78 | 0.447 0.800 | 3.69 0.450
i | |

| 1215 | I

| [ |

| Nov. ‘77, Mar. ‘78, June ‘78 i 5.59 0.061 | 9.22 0.056
| [ i

! | f

I [ [

| I |

| | {
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- *
marginal distributions of Q , Q__l and Qi for the German data and substantial

variation in D, Dil and Di for the French data. This is characteristic of the
other variables examined, little variation for the German data, much variation
for the French data, irrespective of concentration in the no-change categories.
Despite concentration in the no-change category for prices and production and in
the minus category for incoming orders, the balances for the German data exhibit
a similar lack of variability. While the French responses tend to be
concentrated in the no-change category for prices and production, there is
considerable variability for demand. This variability is also exhibited by the
balances.

The second thing to note is that the strong bias towards the no-change
category in the production plans or demand expectations as compared with their
respective realizations is almost completely corrected by the conditional
forecasts. In the case of the German firms the balances of both realizations and
plans are consistently negative, but the balances of the plans generally tend to
underestimate the absolute values of the balances of the realizations; that is,
German firms underestimate both increases and decreases, but they tend to report
a planned decrease in production proportionately less frequently. This too is
corrected by the conditional forecasts. While the general tendency to forecast
no change in demand by French firms is corrected by the conditional forecasts,
the balances are often further off for the conditional forecasts than for the
firms’ own projections. This is a consequence of a more stable conditional
distribution P(Q l Qil) for the German firms than the conditional
distribution P(D l Dil) for the French firms.

The third thing to note appears in the stability tests reported in Table 4
for the German firms and in Table 5 for the French firms. In only one case is

the bivariate interaction configuration T x Q significantly different from zero
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for the German firms and in no case is the trivariate interaction configuration
significantly different from zero; thus, in all but one case, we can accept the

null hypothesis of no change in consecutive pairs of surveys of P(a [ Q ,). In

-1
the one case we cannot accept the null hypothesis, the change appears to be

25 For the French firms, on the other hand, the

confined to the main effect.
bivariate effect configurations TxD are significantly different from.zero at the
10% level in seven out of eleven cases, whilé the trivariate effect
configurations TxDxDi1 are significant in only three of the eleven cases at the
same level. This suggests that the conditional distribution of realizations
given prior expectations/plans is more unstable for the French than for the
German firms but that, in both cases, the instability is concentrated in the main
effect parameters of the distribution. Since these parameters reflect factors
affecting all firms simultaneously, it would not be unreasonable to conclude that
economy-wide variations are causing changes in the conditional distributions.

The same finding of relative stability for the German firms and changes which are
confined to main effect parameters for the most part reappears in the data for
business conditions, prices and production.

The comparative instability of the French conditional distributions of
realizations given prior expectations or plans is perhaps directly attributable
to the greater changes taking place in the French economy over the period for
which I have data. Clearly, the more variation, the more difficult it will be to
forecast demand or prices or other relevant variables and the less likely it will
be for firms to adhere to production plans. The more variation in other relevant
variables, the less stable will be the relation between prior forecasts and

subsequent realizations.
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2., Results on Formation of Production Plan526

In this section I report results from a model of the formation of production
plans. This model relates the conditional probability of reporting a planned
increase, no change, or a decrease in production to recent past changes in
production, appraisal of inventory levels (for firms carrying inventories of

finished products) and expectations of future demand or business conditions. In

the notation introduced above, the model estimated from the data is

a 27

{Q* \ Aor D, L%, G* or D* }. We would expect to find that the probability
that a firm will report a planned increase in production will be higher if it has
recently experienced an increase in demand or incoming orders, if it reports
inventories too low, or if it expects an improvement in business conditions or
demand for the product. Conversely, the probability of reporting a planned
decrease in production should be higher if the opposite is true. Thus, we would
expect a positive association between Q* and A or D and between Q* and ¢* or

D*. Depending on the order of the responses for L2, we expect a positive
association (too low, about right, too high) for the German firms or a negative
association (above average, average, below average) for the French firms.

The principle tool in the statistical analyses reported here is the log-
linear probability model and the component gamma coefficient, vy, derived from
that model (see Kawasaki, 1979), based on the familiar bivariate Goodman-Kruskal
measure of association for pairs of ordered categorical variables.28

Tables 6 and 7 report results for the German data and Tables 8 and 9 for the
French data. The first of each pair of tables shows the component gamma, its
associated t-statistic, and the configuration X2 for each bivariate interaction

*
between Q and one of the conditioning variables in the model

* 4 * *
{Q I A or D, La, G or D }. The second of each pair presents the complete set
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* — *
Table 6: German Data. Conditional Model {Q |4, La, G 1. Bivariate Component Gamma,
t-ratio, and Configuration Chi-square.

Bivariate Interaction

Period. Number of

| I [
| | * - I * a * * l
] Observations. Item. | Q x A | Q x L | Q x G |
! I | ! |
I | | { |
| April 1977 (1842) ! I |

| Y | 0.509 i 0.543 | 0.875 [
! i [ ! |
| t | (7.79) | (5.65) ] (25.6) [
[ 2 I | | |
| X [ 79.2 [ 65.8 [ 340. |
| ! I | !
| July 1977 (1897) I B | [
[ Y ! 0.545 ! 0.443 [ 0.909 |
[ J | I |
! t | (7.30) | (4.05) [ (34.1)

I 2 [ | [ |
| X | 66.1 | 30.2 | 333, |
| | ! I [
| October 1977 (2026) ] [ | |
{ Y ! 0.362 | 0.558 | 0.897 |
| | I | !
[ t ! (5.12) | (5.93) I (27.7) |
! 2 | [ I [
f X [ 44,0 | 42.1 | 370. !
| | | | |
| January 1978 (1881) | | | |
! Y | 0.406 i 0.501 | 0.933 |
f I | | f
| t ! (6.01) | (4.51) | (43.7)

| 2 I | | |
| X | 52.8 [ 55.1 | 371. {
| { f I ]
! April 1978 (2054) | | [ [
| Y [ 0.523 I 0.300 [ 0.889 |
| | | | |
| t [ (8.83) | (2.39) ] (26.0)

[ p | | [ I
| X ! 95.1 ] 45.9 | 338. i
| | | | |
| July 1978 (2011) | | l I
[ Y | 0.416 ; 0.497* | 0.922 |
| ! | ] [
! t | (4.34) | (6.42) | (37.5) !
J 2 | | [ f
[ X | 59.3 I 28.1 | 403. |
| I | [ |
I October 1978 (2018) | [ | |
| Y i 0.530 | 0.322 | 0.880 |
| [ | ] !
| t I (8.77) l (2.71) [ (23.4) i
[ 2 | | | [
| X ! 70.1 | 26.3 I 350. [
| | I | |
[ f ! | [

* . . . .
Partially estimated configuration. 1 degree of freedom.
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Table 7: German Data. Estimates of the Conditional Model {Q 1A, La, G } for October 1977
and October 1978. (t-ratios in parenthesis below estimates.)

Period. Number of Variable at

| ! |
! I [
| Observations. Item. i Level 1 Level 2 Level 3

! f I
! I I
[ October 1977 (2026) |

| Main Effect | -0.992 1.657 -0.665 i
| | |
| Q" | (6.39) (15.6) (4.07) |
| I !
| Bivariate Interaction | 0.445 -0.103 ~-0.342 ]
I - I . [
| Q* x A& | (3.82) (0.748) (2.74) |
| [ I
f | -0.099 0.224 -0.125 |
| I i
[ ] (1.32) (2.76) (1.75)

[ [ !
| | ~0.346 -0.122 0.467 |
| | |
] | (3.12) (1.09) (5.12)

| i |
| Y | 0.362 |
I ! !
| I (5.12) |
I I i
| Bivariate Interaction | 0.713 0.077 -0.791

I I I
| Q¥ x La | (3.77) (0.602) (4.45) |
I | |
| [ -0.084 -0.001 0.085

I I I
| | (0.645) {0.002) (0.820) f
| [ |
| | -0.529 -0.077 0.706 !
[ { |
! | (3.03) (0.644) (5.20)

l I |
] Y I 0.558 |
! I I
| | (5.93) !
| | ]
| Bivariate Interaction | 1.616 -0,286 -1.330

[ % * I |
] Q x G ] (9.22) (2.05) (5.59)

| ! |
| | -0.205 0.410 -0.205

| | !
| [ (1.43) (4.39) (1.46) |
| ! |
| | -1.411 -0.124 1.536 |
[ | [
| ! (6.49) (0.993) (9.64)

[ | [
[ Y [ 0.897 |
I I {
I I !
[ { J




Table 7 (continued):
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Period. Number of

Variable at

:
Observations. Item. | Level 1 Level 2 Level 3
i
October 1978 (2018) |
Main Effect | -1.051 1.599 -0.548
Q" : (5.76) (14.5) (3.68)
Bivariate Interaction : 0.558 0.174 -0.731
Q* x A : (5.07) (1.46) (5.09)
: —0.037 0.088 -0.051
: (0.502) (1.17) (0.623)
: -0.521 -0.262 0.783
: (4.64) (2.36) (7.65)
Y : 0.530
: (8.77)
Bivariate Interaction : 0.436 -0.183 -0.254
Q" x 12 : (2.62) (1.65) (1.85)
: -0.074 0.190 -0.116
: (0.589) (2.49) (1.32)
: -0.363 -0.007 0,370
: (1.73) (0.062) (2.85)
Y : 0,322
: (2.71)
Bivariate Interaction : 1.646 -0.600 -1.046
Q* x ¢* : (8.81) (4.98) (6.06)
: -0.135 0.460 -0.325
: (0.752) (4.54) (2.55)
: -1.510 0.140 1.371
: (4.68) (0.824) (7.49)
Y ; 0.880
l
|
I
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Table 8: French Data. Conditional Model {Q |D, L, D }. Bivariate Component Gamma

and t—-Ratio., Configuration Chi-square.

Period. Number of Bivariate Interaction

! |

| |

: Observations. Item. : Q* < D : Q* < 12 : Q* « D*
I | [ |

| November 1974 (779) | ! !

| Y | 0.535 | -0.412 ! 0.877
| | | |

I t [ (5.96) I (3.44) [ (20.7)
| 2 I [ [

| X i 41.3 | 17.3 | 250.

[ I [ |

| March 1975 (832) | o |

| Y i 0.596 i -0.227 | 0.932
! [ I |

[ t | (6.03) [ (1.56) | (41.1)
I 9 [ | I

| X ! 35.6 | 13.5 | 287.

| [ [ [

| June 1975 (884) | | |

| Y | 0.196 | -0.403 | 0.893
| [ | !

i t ] (1.72) | (3.40) ] (30.7)
I 2 [ [ [

| X | 29.0 | 30.2 | 342.

! | I |

| November 1975 (920) | ! |

I Y | 0.401 | ~0.377 | 0.907
| [ I I

| t | (4.72) | (3.72) | (37.0)
I 9 | | |

| X 1 31.2 | 17.2 | 375,

! I l I

| March 1976 (906) I ! |

| Y | 0.503 | -0.162 i 0.946
| [ ! |

f t { (6.52) | (1.08) | (47.5)
] 9 | J I

! X { 43.4 | 2.73 I 351.

[ ! [ !

| June 1976 (886) | [ |

[ Y | 0.380 I -0.162 | 0.909
I I | I

| t | (4.31) [ (1.07) { (31.0)
| 2 [ ! I

| X | 24,0 | 9.78 | 334,

[ | | !

| November 1976 (894) [ | | .
] Y | 0.365 ! -0.299 [ 0.990
! ! I !

| t | (3.92) | (2.43) | (303.9)
[ 2 | | |

] X ) 29.1 | 9.01 ] 291.

| | | I

| | I I

Partially estimated configuration. 1 degree of freedom.
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Table 8 (continued):

Period. Number of Bivariate Interaction

I I

[ [

| Observations. Item. | Q* x D | Q* x 12 | Q* x D
[ ! [ ]

| [ f !

| March 1977 (956) | | [

| Y | 0.258 | -0.417 | 0.927
| | ] |

| t | (2.68) | (3.40) [ (40.1)
| 2 I ! I

I X ! 26.0 | 30.8 | 329.

I | | I

| June 1977 (972) | - I I

[ Y ! 0.362 f -0.175 ] 0.918
[ I I [

| t | (4.21) | (1.26) I (40.5)
| p I ! I

| X | 26.0 | 12.1 | 403.

[ | ! I

| November 1977 (1085) [ | [

| Y | 0.465 | -0.310 | 0.912
I | | |

| t [ (6.42) | (2.71) | (39.0)
I 9 ] | |

[ X | 35.2 ! 22 .4 | 388.

! I | |

| March 1978 (1039) | i i

l Y | 0.364 | -0.173 f 0.957
| I I [

[ t f (4.03) { (1.19) ! (63.9)
I 5 | ! [

! X | 21.8 ! 13.7 I 402.

J I | f

| June 1978 (1077) | | |

! Y ! 0.351 [ -0.166 [ 0.926
[ ! [ |

] t { (4.19) ! (1.16) I (41.9)
! 9 I I !

| X | 16.8 | 7.16 | 423,

I [ [ J

f I f |
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* *
Table 9: French Data. Estimates of the Conditional Model {Q |D, La, D} for March 1976
and March 1978. (t-ratios in parenthesis below estimates.)

Period. Number of Variable at

(47.5)

| [ i
| | |
| Observations. Item. | Level 1 Level 2 Level 3 |
I | |
| [ i
| March 1976 (906) |

| Main Effect | 0.178 1.010 -1.188

I * ] |
[ Q I (1.25) (8.18) (5.75) |
! | |
| Bivariate Interaction | 0.709 -0.070 ~0.639 |
| | - |
| Q¥ x D | (5.98) (0.72) (3.91) |
I | |
| i -0.204 0.119 0.085 |
| [ |
! | (1.80) (1.29) (0.54) i
| | [
| | -0.504 -0.049 0.554 |
| | [
| | (3.99) (0.52) (3.77)

| | |
] Y | 0.503 [
| | |
I | (6.52) l
[ | |
] Bivariate Interaction I -0.216 0.019 0.198

] | |
| Q" x 1@ | (1.55) (0.16) (1.09) |
| | |
i | 0.040 0.014 -0.054

| | !
| [ (0.36) (0.14) (0.34)

| I |
| | 0.177 -0.033 -0.144

| f |
] | (0.96) (0.19) (0.53)

| | |
| Y | =0.162 |
| | |
| | (1.08) [
| | {
| Bivariate Interaction | 1.844 -0.222 -1.622 |
l * * | |
| Q xD | (9.59) (1.24) (4.95)

f | |
| | -0.296 0.622 -0.326

! | |
| | (2.11) (5.30) (1.63)

| [ |
| | -1.548 -0.400 1.948

i | |
| | (7.89) (2.83) (9.44)

[ | |
| Y | 0.946 I
| ] |
| i i
{ I |
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Table 9 (continued):

Period. Number of Variable at

(63.9)

| [

! |

| Observations. Item, | Level 1 Level 2 Level 3
! [

| |

| March 1978 (1039) |

| Main Effect | -0.313 1.066 -0.754
! [

! Q* | (1.88) (8.92) (4.29)
| ]

i Bivariate Interaction i 0.506 -0.173 -0.333
[ [

1 Q* x D | (3.90) (1.77) (2.12)
| I -

| I -0.077 0.128 -0.051
| |

| [ (0.74) (1.70) (0.43)
| I

| | -0.429 0.045 0.385
[ |

f | (3.63) (0.55) (3.10)
J {

! Y | 0.364

I I

| | (4.03)

I I

| Bivariate Interaction [ ~0.264 0.068 0.196
I I

| Q* x 12 | (1.90) (0.56) (1.01)
| I

| | ~0.024 0.216 -0.192
! !

| | (0.25) (2.44) (1.32)
! I

! | 0.289 -0.284 -0.005
I !

I | (1.94) (2.08) (0.02)
| |

! Y | =-0.173

J |

| ] (1.19)

! I

| Bivariate Interaction | 2.080 -0.292 ~1.788
I x N [

! Q xD I (10.63) (1.84) (6.53)
J !

[ I ~0.300 0.483 -0.183
| |

I f (1.81) (4.29) (1.08)
| I

| | ~1.780 ~0.191 1.971
| |

I | (6.53) (1.20) (10.04)
I |

| Y | 0.957

| I

| |

I |

{ !
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of estimates for the conditional probability model for two of the available
survey dates: October 1977 and October 1978 for the German firms and March 1976
and March 1978 for the French firms. The x2 —-statistic with four degrees of
freedom would be appropriate for testing the null hypothesis that the entire
configuration is absent.29

In Tables 6 and 8, we see that the directions of association are all as
expected and highly significant for the most_part. Note that the sign of ¥y for
the bivariate association between Q* and 1? is positive for the German data and
negative for the French data, which is exactly as it should be, since the first
category for L& in the German survey corresponds to the response 'too small'
while that for the French survey corresponds to the response "above normal." The
relationship between Q* and G* or D* is clearly the strongest and most
significant of the three conditional bivariate interactions of the model, with
component gamma coefficients of about 0.9 and X2 -values of about 300. The
association between Q* and A or D is somewhat weaker but still quite
significantly positive. The relationship is more unstable over time for the
French firms than for the German firms. The relationship between Q* and L2 is
always significant and relatively stable over time for the German firms, but the
relationship between the two variables is frequently not significant and quite
unstable over time for the French firms.

Similiar results are obtained for firms which do not carry inventories of
finished products using the model {Q*i A or D, Sa, G* or D*}.

Tables 7 and 9 exhibit for two survey dates the actual parameter estimates
(given a particular choice of basis for the log-linear probability model, in this
case the deviation~contrast basis) for the main and bivariate interaction

* *

- *
configurations in the models {Q* A, La, G } and {Q i D, La, D }.

Examination of these tables (as well as similar results for other survey dates,
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not presented here) reveals a similar stability and significance of the

* * * *
relation between Q and G or D in comparison with the relation between Q

- * a
and A or D and between Q and L . Moreover, the parameters for the bivariate
. . * * * * , e e .

interactions Q X G and Q x D are numerically very similiar, suggesting that

. R * . s . .
the German business-test variable G, expected business conditions, is in fact a

30

measure of expected changes in future demand.

In order to see whether these models of the formation of production plans,
which make good economic sense, in fact do better than naive models, I estimated
several naive models for the same data, identical to those estimated in the next
section for price expectations and expectations of future demand (extrapolative,
adaptive, and error-learning). While it is clear that these models all fit the
data well, their parameters appear to be much less stable than the models with

. 31 . . *

more economic content. A strong and stable serial correlation between Q

*
and Q_1 does emerge from these estimates (stronger and more stable for the
German than for the French data). To see whether such serial correlation might

dominate the economic variables, I estimated conditional models

and

for firms with inventories., Although the significance and strength of the
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*
*
economic variables were somewhat reduced, the relationship between Q and Q—l by

no means dominated.32

3. Estimates of Models of the Formation of Expectations of Prices

and Future Demand33

This section examines some simple specific models, adapted here to the

analysis of categorical data: Extrapolative expectations, adaptive expectations,

and error-learning models.

Extrapolative Expectations: Two-Period Case

In the model of purely extrapolative expectations, currently reported

expectations, depend upon immediately preceeding realizations:
*
P(X ( X, X_yJ,

where X may be prices (P), demand (D), or incoming orders (K, in which case

X = G*). Estimation of this model requires complete data on each firm included
in the sample for a five month period in the German case and for the preceding
survey in the French case. Although, in general, extrapolative expectations can
refer to any weighted sum of past values, I call the two-period case
extrapolative here. Two forms of naive model are special cases: Current
expectations reflect only what has happened in the immediately preceding period,
and current expectations reflect what has happened one and two periods previously
in such a way that current changes are expected to be augmented or decremented by

4
the change in the rate of change between last period and two periods ago.34



-27 -

Adaptive Expectations

In its original early formulation, the adaptive expectations model related
the change in expected normal prices to the difference between last period’s
realized price and last period’s expectation (Nerlove, 1956, 1958). The
variables X* and X already represent changes En levels, but one can consider
changes in X* in relation to surprises as defined above. Below I call this the
"error—learning" model of expectation formation. In the notation used in this
paper, I would write the error-learning model as {AX* { EX} . Clearly this model
represents a special restricted case of the adaptive expectations model that

*
places no quantitative restrictions on the relations between X . and the previous

1

*
expectations and realizations, X and X, respectively. I view the more general

1
form as more appropriate in the case of qualitative data since this form allows
the strength of the association between current expectations and immediately

preceding ones to differ from the strength of the association of the former with

realizations. Thus, if one writes, as for continuously measured variables,
* *
X = BgX + (1-B) X—l s

*
it suggests that, the stronger the association between X and X relative to the

* *
association between X and X_ the larger the coefficient of expectation, B.

1 b

* *
The model is thus {X \ X—l’ X} with no further restriction.
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An Error-Learning Model of Expectation Formation

As we noted in Koenig, Nerlove, Oudiz (198la), there is a strong

* —
relationship between P—I and P or P in both the French and German data. This

— *
and A and D_, and D . Although the

*
same relation exists between G_ 1

1
relationship is a strong one, it is not, however, as we showed above, .stable for
the French data. Because the form of the adaptive expectations model proposed

above introduces no restrictions on the relation among the three variables, it is

%
possible that the relation between X and X_ so dominates that it is impossible

1

* * *

to find a stable or well-defined relation between either X and X or X and X_1
*
when both X and X_l are included in the model.35 Thus, I also estimate a
restrictive form of the adaptive expectations model, which I call the error-
learning model. In the notation of Part I, it is
%
{ax | =Ex},
* * * _

where X stands for P or G and X for D or A . In the next two sections I

also examine joint models of production plans and price expectations and models

of expectation or plan fulfillment.

Empirical Results

The results of fitting the three conditional probability models,
extrapolative, adaptive, and error-learning, to data on prices and demand for
German and French firms are given in summary form in Tables 10-15.36 The price

n_n

data for the French firms have been recategorized so that now corresponds

to "< 0 % ," "=" now corresponds to "0% < and <5%," and '"+" now corresponds to



Table 10: German Data. Prices and Business Conditions. Extrapolative Expectations.
Conditional Models: {P*|P, P_.} and {G*|A, A—1}° Bivariate Component Gamma
and t-Ratio. Configuration Chi-square.

Bivariate Interaction

Period. Number of

! [ |
| [ N _ ! N _ N _ | N _ [
| Observations. Item. 1 P x P | P x P_1 N G x A | G x A__1 ]
{ [ | I [ |
| Il ! Il [ |
| July 1977 (2914, 1913) {1 I Il [ |
| 11 } I | |
| Y |1 0.812 | 0.186 |1 0.528 | 0.262 i
] F | I | i
| t 1 (19.3) [ (2.29) i1 (10.6) I (5.03)

| 2 {1 | [ | |
| X [l 260. | 39.8 | 198. | 49.4 |
[ [ | Il f [
| October 1977 (2759, 1759) || | [ | !
| P [ I | [
| Y | 0.599 | 0.314 11 0.524 i 0.243

| [ | f I [
| t 1 (7.89) | (3.24) [] (11.00) i (3.95)

| 9 [ [ I | |
! X (| 124, | 28.6 iy 218. | 34.0 I
| |1 | | [ |
| January 1978 (3176, 1964) || | I I |
[ [ | I [ |
| Y il 0.801 | -0.075 W 0.415 | 0.385

| [ | [ | [
| t i1 (13.7) | (0.710) ] (8.58) ] (7.92) ]
| 2 [ | [ [ |
[ X |1 155. | 11.9 it 157. | 93.6 |
! [ | [ f J
| April 1978 (3072, 1922) b | |1 | [
| I f [ | |
| Y |1 0.724 | 0.237 i 0.558 | 0.253 |
| I i ! | |
l t I1 (14.6) I (2.13) 1 (12.1) | (4.45)

[ 2 I | | | !
] X 11 127. | 39.0 Il 216. | 36.1 |
[ [ I | f |
| July 1978 (3174, 2063) [ | I | |
| | J I | I
| Y I 0.854 | 0.041 | 0.510 ] 0.261 |
| {1 | Iy | |
[ t 11 (19.7) I (0.384) 11 (11.2) | (5.47)

[ 2 il f [ | !
| X 11 199. | 20.4 Il 191. | 38.1 |
[ I | I | J
| October 1978 (3183, 2054) || [ [ | |
[ I | Il | J
| Y | ] 0.837 i 0.264 | 0.537 ] 0.165 |
{ I i L | |
| t [] (16.8) I (2.15) I} (13.7) | (3.19)

I 2 [ i I { |
] X i1 234. | 13.5 | 181. | 40.8

I [ | [ | f
| || | | | |




Table 11: French Data. Prices and Demand.

{pxip, P_,} and {D*ID, D_,}.
Configuration Chi-square.

Extrapolative Expectations:

Bivariate Component Gamma and t-Ratio.

Bivariate Interaction

Period. Number of

| i

I (! * ! * * | N

| Observations. Item. | P x P ] P x P_1 il D x D | D x D_
| [ | il |

| F [ I J

| November 1974 (843, 1014) ]| | i [

| Il I | I

[ Y [ 0.191 | 0.034 [ 0.644 | 0.204
I [ | [ I

| t [ ] (4.04) [ (0.695) || (12.38) | (1.77)
| 2 [ | F (.

I X [ 77.6 I 31.7 [t 169, | 17.4

| [ | [ |

| March 1975 (827, 1080) I | [ 1

! L ! {1 |

| Y bl 0.043 | 0.149 i1 0.486 | 0.081
[ E | [ |

l t [ (0.64) [ (2.71) I (7.62) | (1.13)
[ 2 i | | [

| X | 92.1 | 172. | 88.6 | 2.1

| [ | I !

[ June 1975 (979, 1313) N i [ [

[ I I I |

[ Y il 0.228 | 0.347 I 0.573 | 0.096
! Il { [ I

I t [ (3.38) | (7.76) |1 (10.98) [ (1.36)
! 2 i | Pl [

] X I 59.0 | 98.2 Il 156. i 10.1

I i ! ! I

| November 1975 (1094, 1425) || ] 11 |

| I I I [

| Y [l 0.107 ! 0.069 |1 0.462 | -0.075
| I [ I} |

i t i1 (1.86) | (1.04) [{ (10.01) | (1.16)
[ 2 B! ! I |

[ X [ 90.7 | 44,3 [} 123. ! 4.4

| [ | I I

| March 1976 (1122, 1364) [] | | [

I P | i [

[ Y I -0.108 ! 0.182 I 0.298 | 0.198
I I | 1 |

I t | (1.96) I (3.24) Il (5.68) | (3.19)
I 2 I | I |

] X | 50.8 | 89.4 | 89.3 | 9.6

| I | [ [

| June 1976 (1034, 1278) [ ] | I I

| [ | f |

] Y 11 0.144 ! 0.129 Il 0.466 1 0.023
| [ | bl |

| t I (2.75) | (2.77) | (9.45) | (0.39)
| 2 [ [ i |

[ X | 91.9 | 54.8 I 113. { 5.6

! [ | L |

I i1 I I |
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Table 11 (continued):
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Table 12: German Data. Prices and Business Conditions._ Adaptive Expectations.
Conditional Models: {P*{P* ,P } and {G*Ith, A}. Bivariate Component Gamma and
t-Ratio. Configuration Chi-square.

Bivariate Interaction

Period. Number of N Il N %

| Il I
I I * % I _ ! * _ |
| Observations. Item. 1] P x P_1 | P x P 11 G x G_1 ] G x A |
| I | 1 | |
| [ | I | |
t April 1977 (3456, 2581) [] | ] |

| Y | 0.530 i 0.692 i i 0.786 | 0.465 |
| [ ! {1 | |
| t {1 (5.57) i (12.7) It (24.0) | (11.1) |
| 2 | | I ] ]
| X 11 60.9 | 116. [{ 384, | 239, |
| ] | - [ | |
| July 1977 (3278, 2633) [ | I I |
| Y 11 0.474 | 0.685 I 0.673 | 0.416 |
[ I | i | |
| t i (4.53) | (1l1.1) It (16.8) I (9.05) |
| 2 [ | I | |
i X I 68.8 | 277. |} 385. |  200. f
| I | [ | |
| October 1977 (3206, 2405) }| | il | |
i Y I 0.675 | 0.562 I 0.741 i 0.423 |
| | | I ] ]
i t [ (8.61) | (7.03) it (19.3) I (9.05)

| 2 [ | i1 | |
i X | 80.6 | 173, i1 314. | 220. |
I Il J i | |
| January 1978 (3575, 2652) || | |} | |
| Y I 0.591 i 0.764 | 0.729 | 0.343 |
! [ | [ | {
| t [l (5.82) I (11.22) 1 (18.13) | (7.50)

] 2 [} I [ | |
| X I 57.5 | 203. 11 374. | 169. I
| [ | Il ! |
| April 1978 (3597, 2802) | 1 | |1 | i
| Y il 0.576 | 0.663 | 0.721 ! 0.453 ]
| I | [ i |
| t | (7.27) | (1l1.55) by (19.11) I (10.89) |
| 2 I | [ | |
| X 1 97.7 | 160. Il 426. | 227. I
| i1 | I | |
| July 1978 (3656, 2864) [ | |1 | |
| Y | 0.536 | 0.773 Il 0.713 | 0.432 ]
| I [ 1 | |
! t I (5.24) | (12,71) It (18.18) | (10.32)

! 2 I | [ | !
| X [ 88.6 | 143, Il 369. | 197. |
| I | ! f I
| October 1978 (3586, 2748) || | (1 | I
| Y I 0.711 | 0.760 I 0.614 | 0.472 |
| [ | I f |
I t I (7.76) I (12.50) 1l (13.62) I (12.55) |
! 2 11 I I | |
| X I 72.8 | 213, i1 325. | 199. |
| [1 ! il ! !
| I ! I | |




Table 13: French Data. Prices and Demand. Adaptive Expectations. Conditional
Models: {P*|P* P } and {D*|D* , D}. Bivariate Component Gamma and t-Ratio.

Configuration—&hi—square. -1

i | Bivariate Interaction |
| Period. Number of [ . * I N I * % ! *

| Observations. Item. 1] P x P_1 | P xP || D x D_l | D x D |
! [ ! I f !
[ I I I | |
| November 1974 (728, 939) [ i I [ |
I [ ! [ | |
| Y | 0.132 | 0.165 | ] 0.434 | 0.612 |
! i | I I |
| t i (2.44) | (3.18) P (4.23) | (10.7)

I 2 il | Il | |
i X | 30.7 | 55.1 [ 37.9 | 140. |
| [ | I | |
| March 1975 (764, 1004) | | | ] | |
| |1 I I | |
] Y I 0.218 | -0.010 I 0.419 | 0.378 ]
! [ ! I ! |
i t I (3.57) | (0.140) |} (4.92) | (4.92)

| 2 [ | [ I !
| X | 26.0 | 67.7 |l 42.5 | 52.7

| I | I | |
| June 1975 (911, 1268) | | [ | |
! I I [ I |
| Y | ] 0.214 | 0.124 | 0.556 | 0. 447 ]
I [ ! [ | |
| t | (3.49) ] (1.61) (1 (10.4) | (7.46)

| 2 [ [ [ ! |
i X 11 67.4 | 37.2 11 123. | 96.2 [
I i1 I [ | I
| November 1975 (1018, 1386) |! I [ | I
| I | [ | !
| Y |1 0.411 ] -0.105 [ 0.325 | 0.381

I [ f ! | I
l t I (8.39) I (1.58) I (5.34) 1 (7.57) |
| 2 [ | [ [ I
| X 1 121, | 65.7 ( 64.9 | 85.9 |
| [l | I | |
| March 1976 (1046, 1326) [ | [ ! i
f Il | I | |
| Y |1 0.278 ] -0.217 I 0.304 ] 0.247 i
[ I | I | |
| t | (5.13) | (3.57) I (5.05) | (4.56)

! 2 i1 | Il | |
| X [ ] 71.2 | 50.0 | 48.6 | 70.5

f Il | 11 | |
| June 1976 (976, 1231) ] | I | |
! I [ I ! !
i Y Il 0.263 | 0.032 | 0.540 i 0.309 |
I P | b ! !
I t 11 (4.74) | (0.515) 11 (9.22) | (5.11)

I 2 I} | I ! [
i X [ 82.7 | 61.5 [l 128. | 58.7

I I | [ | |
| I I Il I |




Table 13 (continued):

Bivariate Interaction
l
|
[
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Number of
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Table 14: German Data. Prices and Business Conditions. Error-Learning Model: {AP*IEE}
and {AG*|EA}. Bivariate Component Gamma and t-Ratio. Configuration Chi-
square.

Bivariate Interaction

!

Period. Number of

i | I
| ! _ _ |
| Observations. Item. | AP* x EP i AG* x EA

| I I |
I ! | I
| April 1977 (3456, 2581) | | |
| Y [ 0.729* [ 0.727 l
| I f !
| t | (30.1) | (27.3) |
l 9 { | |
| X | 321. | 347, 1
| I | [
| July 1977 (3278, 2633) | { {
| Y | 0.845 ] 0.687 |
| | | |
| t | (23.8) | (22.3) |
| 2 | I !
| X | 610. | 341, |
| | | i
| October 1977 (3206, 2405) | | |
| Y | 0.808 | 0.673 |
| | | i
| t | (19.06) | (21.74) |
! 2 | I !
| X i 394, i 331, |
I I [ |
| January 1978 (3575, 2652) I ] |
| Y | 0.845 | 0.620 |
| | | |
[ t | (19.25) | (18.81) [
| 5 | | |
| X { 196. | 290. [
| | | I
| April 1978 (3597, 2802) | | I
| Y ] 0.859 | 0.708 |
[ | I I
I t | (27.94) | (26.02) |
! 2 f i I
| X | 213, i 329. I
| | | |
| July 1978 (3656, 2864) | I |
| Y | 0.923 l 0.661 |
I { I ]
| t | (35.90) | (20.59)

[ 2 | [ |
! X | 580. | 302. |
| | I [
i October 1978 (3586, 2748) | | |
[ Y | 0.890 [ 0.669 |
| [ I I
[ t | (30.46) ] (23.59)

| 2 | i !
| X [ 491. | 281. |
| | | !
J I | [

*
Partially estimated configuration. 1 degree of freedom.



Table 15: French Data. Prices and Demand. Error-Learning Model: {AP*|EP} and
{AD*|ED}. Bivariate Component Gamma and t-Ratio. Configuration Chi-square.

Bivariate Interaction

Period. Number of

| | |
[ | !
| Observations. Item. ! AP* x EP | AD* x ED |
! [ | I
| | | |
| November 1974 (728, 939) | | !
f [ { [
| Y | 0.770 | 0.788 |
| | I |
I t | (18.0) [ (20.2) !
| 2 ! I |
| X | 142, i 258, i
| f | |
| March 1975 (764, 1004) | | |
| [ | |
[ Y | 0.630 | 0.696 |
| [ I |
| t | (10.14) | (14.5) |
| 2 [ | !
| X | 138. | 165. |
| | | {
I June 1975 (911, 1268) | | [
| I I ]
] Y | 0.635 | 0.781 |
I | { |
| t | (9.17) | (20.2) |
| 2 | ! |
| X | 200. | 254, |
| | l |
I November 1975 (1018, 1386) | | |
| | | |
i Y | 0.686 | 0.693 |
[ | | I
| t | (12.87) | (19.6) |
[ 2 | ! |
| X | 120. ] 234. |
| [ | |
[ March 1976 (1046, 1326) | | [
I I | [
| Y | 0.468 | 0.663 [
[ | | |
[ t | (8.34) | (18.1) i
! 9 | | [
| X | 89.7 | 186. |
[ [ [ f
! June 1976 (976, 1231) | | !
| | [ |
| Y | 0.553 | 0.602 |
[ | i |
| t | (8.38) | (13.6) |
I 2 | [ I
J X | 88.1 | 146, |
| | ! [
[ | | J




Table 15 (continued):
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Period. Number of

Bivariate Interaction

|

| [

[ !

| Observations. Item. ] AP* x EP | AD* x ED
l | I

| f I

{ November 1976 (913, 1247) f |

| f |

I Y | 0.392 ! 0.725
| [ I

| t [ (6.35) | (16.3)
I 2 | 1

| X | 58.5 | 242,

| | f

| March 1977 (818, 1097) [ [

| | |

[ Y | 0.645 [ 0.702
| | |

I t | (11.99) | (17.8)
I [ |

| 2 | 111. | 213.

[ | I

I June 1977 (1087, 1325) | |

l | |

| Y | 0.738 I 0.672
[ | I

| t | (15.35) i (17.1)
] | |

| N | 170. | 177.

| | |

| November 1977 (1013, 1345) | I

| I |

| Y | 0.534 | 0.727
I I !

| t | (8.70) | (21.4)
I 2 | |

| X | 83.3 | 267.

| I |

[ March 1978 (1039, | |

} I |

| Y [ 0.473 | 0.577
| I |

[ t I (9.25) [ (13.5)
f 2 | |

I X | 67.9 | 169.

I I [

| June 1978 (1063, 1473) | |

I | |

| Y | 0.579 | 0.746
| I |

| t l (10.63) | (23.8)
I 2 I |

! X [ 132, ! 249,

l I |

| | |
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"5% <." This recategorization makes use of the quantitative information on price
realizations and price expectations/plans supplied in the French surveys and
eliminates the concentration in the "+", category for both variables, caused by
general inflation.

Table 10 and 11 present results for extrapolative models for price
expectations/plans and demand expectations. For German firms there is a strong
positive and highly significant relation betﬁéen the anticipated change in price
or in demand and the immediately preceding realization but the relation

* -
between P and P_ is much weaker, more unstable, and frequently

1

insignificant. Although the relation between G* and K—l is weaker than between
¢* and & , 1t is stable and always significant. The results for the
German firms contrast sharply with those for the French firms. For the latter,
there is a very unstable, often negative relation between P* and P. While the
relation between P* and P_l is positive, except for March 1977, it is unstable
and usually insignificant. On the other hand, the relation between D* and D is
always positive and significant for the French firms.

The results for the unrestricted adaptive expectations model are presented
in Tables 12 and 13. The relation between P and between G* and A is only very
slightly weakened for German firms by introducing Pil and Gil respectively; on

* * % %
the other hand, the "serial correlation (P and P_, or G and G—l) is strong

1

and stable. In the case of French firms price expectation/plans, the

* * *
interaction P x P dominates the relationship, the association between P and

-1
P is usually insignificant and frequently negative when significant. This
finding contrasts sharply with the results reported in Table ll. On the other
hand, the results for demand are very similar to those found for the German

firms.

*
The relative stability and strength of the relation between P* and P__l and
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* *
between D and D_,, together with the persistence of positive association between

1
anticipations and immediately past realizations for both demand and prices in the
case of the German data and for demand in the case of the French data suggest
that the adaptive expectations model is to be preferred to the extrapolative.
However, the negative association between P* and Py for the French data suggests
that the adaptive expectations may be explosive. When price data, which have not
been recategorized, are used, this result is ﬁot found: The association between
P* and P is positive, usually significant and usually greater than the

*

*
association between P and P_ It is difficult to find an explanation for why

B
the elimination of a high concentration in the "+,+" category should cause the
association to change sign in an unreasonable way.

Additional restrictions in a model sometimes aid in achieving more
reasonable and stable results. This is the case here. Results for the error-
learning models are presented in Tables 14 and 15. The associations between
AP* and EP and between AG* and FA are strongly positive, highly significant, and
very stable over time for the German data. The same result is obtained for the

* *
association between AP and EP and between AD and ED for the French data,
although the price results are less stable over time for the French than for the
German data.

I conclude that the error-learning model of the formation of price and
demand expectations is well supported by the data and better than either the
simple extrapolative model or the unrestricted adaptive-—expectations model. It

is the best explanation of anticipation of both prices and demand I have found so

far.
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4, Estimates of a Joint Model of Price Expectations and Production Plans

As Koenig, Nerlove, and Oudiz (198la) note, price expectations may be more
in the nature of plans than of forecasts. To the extent that this is true there
should be a relation between the two processes of expectation/plan revision. Not
only should revisions in expectations/plans fo; prices and production be related
in the current period, but, if revisions of each are related to past surprises
(or non-fulfillment) of the same variable, we would expect cross—effects as well;
i.e., we would expect changes in production plans to be related to surprises in
price expectations and changes in price expectations to be related to lack of
fulfillment in production plans. A simple test of this hypothesis involves

fitting the model

* *

{ap", aq | EP, EQ]

to the German data and the model

* *

{ap, 8 | EP, EQ}

to the French data. The results are summarized in Tables 16-17. Of course,

* - *
AP is strongly positively associated with EP or EP, and AQ is strongly
positively associated with Ea or EQ . That much could have been expected from
previous results. Moreover, there is a weak but generally significant positive

* *
association between AP and AQ for the German data. But in both cases a
* -
remarkable result occurs: The association between AP and EQ 1is negative and
*

usually significant for the German data and the association between AP and EQ
is erratic and almost always insignificant for the French data; there is no

* -
significant association between AQ and EP or EP for either the German or French

data.
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Clearly common factors influencing revisions in production plans and price

expectations could account for the positive association between
* *
AP and AQ for the German firms. These factors may not operate as powerfully
for French firms. 1 established that an error-learning model fits well for price
expectations above; that it also fits well for production plans is not remarkable
although the production planning model gives a more economically appealing
explanation. The important point is that, to the extent that one can describe
revisions of price expectations and of production plans by error-learning models,
one can do so nearly independently of each other. The lack of independence
* -

arises from the negative association between AP and EQ for the German data,
which is all the more unexpected since one would anticipate a greater upward
revision in price plans/expectations given a positive surprise in production on
the hypothesis that shifts in demand drive the system. If on the other hand,
supply bottlenecks are largely responsible for short—falls in production and if

German firms, but not French, respond by revising prices upward to protect

inventory levels, the observed results would follow.

5. Estimates of a Model of Expectation or Plan Fulfillment

The theoretical discusson of Part 1 suggests that a firm’s plans and
expectations will be revised when unexpected events occur. A simple version of
this theory is that when demand increases, perhaps unexpectedly, prices and
producton plans are revised upward. The theory of the imperfectly competitive
firm does not, of course, predict what will happen to prices and output given an
upward shift in the demand function that a firm faces. If demand is higly

elastic or if firms are reluctant to raise prices once announced, one can be
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reasonably confident that the quantity supplied will increase. The response of
prices remains conjectural, but the more competitive are firms, the greater the
likelihood of some increase in prices when demand increases.

In the previous section, I argued that the results for the joint model of
revisions of price expectations/plans and production plans were consistent with
the hypothesis that production surprises, i.e., nonfulfillment of production
plans, are largely the result of supply bottlénecks but that French and German
firms respond differently when revising price expectations/plans. As a partial
test of this hypothesis, 1 present estimates of a model relating surprises in
price expectations/plans and surprises in production plans to a measure of
surprise in demand expectations (EA for the German data and ED for the French
data). Tables 18-19 report the results.

Surprises in demand are strongly and significantly associated with failures
to fulfill production plans for the German data; surprises in demand are less
strongly, but always positively and significantly, associated with surprises in
price expectations or with failure to fulfill price plans. For the French data,
on the other hand, one observes only the strong positive and significant
association between surprises in demand and failure to fulfill production
plans. The association between price expectations/plans and surprises in demand
is weak, erratic and usually insignificant.

These results suggest that unexpected changes in demand are indeed important
for both French and German firms, but French firms revise their price
expectations/plans largely in response to previous errors in fulfillment of these
same expectatins or plans, independently of an unexpected deviations of
production changes from planned changes. Unexpected changes in demand are
assoclated with these last—-mentioned deviations but not with deviations of

realized price changes from expected or planned price changes.



Table 18: German_Data.
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Prices and Production.

Fulfillment Models:

{EP|EA}

and {EQ|EA}. Bivariate Component Gamma and t—-Ratio. Configuration Chi-square.
| | Bivariate Interaction
| Period. Number of | _ _ ] a _
| Observations. Item. [ EP x EA ! EQ x EA
[ f |
| | |
| April 1977 (2543, 2487) | |
| Y | 0.229 | 0.751
| | |
| t | (5.54) | (32.9)
| 2 | |
| X i 31.2 | 530.
J | |
| July 1977 (2601, 2543) | ) |
| Y | 0.161 | 0.677
| | |
| t | (2.87) | (25.0)
| 2 | |
| X | 9.37 | 421.
| | |
| October 1977 (2401, 2304) ] |
| Y | 0.350 | 0.710
| | |
| t | (5.93) | (26.36)
| 2 | |
| X | 38.1 | 419.
| | |
| January 1978 (2614, 2509) | i
| Y | 0.196 | 0.718
! | |
| t | (4.41) | (28.83)
I 2 | |
I X | 21.2 | 523.
[ | |
| April 1978 (2757, 2674) | ]
| Y | 0.170 | 0.678
| | !
i t | (3.91) | (20.95)
| 2 I |
| X [ 15.4 l 475,
| | |
| July 1978 (2834, 2733) | |
] Y | 0.115 | 0.672
I | |
| t | (2.36) | (25.82)
| 2 | I
| X | 5.83 | 492.
| | [
| October 1978 (2726, 2579) | |
i Y | 0.191 | 0.697
I | |
| t | (3.58) | (28.37)
| 2 | |
| X | 13,1 | 521.
[ | |
| ] |

!
I
!
I
[
I
!
l
I
!
I
!
!
|
I
|
I
|
I
I
!
|
I
|
I
I
I
I
[
I
|
I
I
i
|
!
I
I
I
!
I
I
I
I
I
I
|
I
[
I
!
!
I
[
I
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Table 19: French Data. Prices and Production. Fulfillment Models: {EP|ED}
and {EQ]ED}. Bivariate Component Gamma and t—-Ratio. Configuration Chi-square.

Bivariate Interaction

Period. Number of

I | I
I | |
| Observations. Item. | EP x ED | EQ x ED

[ i I |
| | | i
| November 1974 (687, 939) | | I
[ [ | ]
f Y ! 0.052 | 0.764 |
| | | |
[ t [ (0.618) | (18.3) |
| 2 I I I
I X | 4.36 [ 238. |
I ! - | |
| March 1975 (755, 985) | f

! [ I I
| Y [ 0.036 | 0.738 I
[ | I f
| t { (0.438) | (16.3) !
i 2 | | !
! X | 2.26 | 251, |
! ! ! I
! June 1975 (943, 1240) ! ]

| ! I I
| Y [ -0.033 f 0.824 |
| | | |
| t f (0.317) | (26.2) |
| 9 ! I |
! X [ 11.6 | 395, |
I | | I
[ November 1975 (1033, 1348) ] l ]
! ) ! ! |
f Y | 0.086 | 0.878 i
| ! I |
| t | (1.24) | (40.9) [
[ 2 | I |
| X 1 13.5 | 502. |
I l | |
| March 1976 (1057, 1318) | |

! I | I
| Y ! 0.076 | 0.813 |
| I ! [
| t | (1.21) | (29.0) [
I 2 | ! |
I X | 7.30 I 406, !
| i ] !
l June 1976 (973, 1217) | | !
[ | ! !
| Y | 0.159 | 0.840 i
| { | |
| t [ (2.25) | (30.8) [
! 2 ! ! !
I X | 10.7 | 338. |
| | | [
I I ! f




Table 19 (continued):
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Period. Number of

Bivariate Interaction

| |

| |

] Observations. Item. | EP x ED | EQ x ED
I | |

| ! |

[ November 1976 (974, 1231) | I

I | |

| Y | 0.122 | 0.827
i | |

| t | (1.87) I (29.1)
| 2 | |

! X | 5.11 | 366.

| | I

] March 1977 (810, 1076) i - |

| | |

[ Y | 0.063 I 0.846
| J |

i t | (0.85) | (27.8)
| 9 | |

| X | 2.2 | 330.

| | |

| June 1977 (1072, 1307) | I

J | I

| Y | 0.216 | 0.812
! f f

| t | (2.91) | (26.9)
I 2 | |

| X | 15.3 | 393.

| | |

| November 1977 (1095, 1317) | I

[ | |

| ~ | -0.044 | 0.862
| | |

| t | (0.642) | (34.2)
| 2 | |

| X I 2.29 | 409.

| | |

[ March 1978 (1095, 1497) | |

| | |

| Y | -0.062 | 0.743
I i |

| t | (1.01) | (23.2)
] 2 | |

| X | 8.20 | 424,

| | |

| June 1978 (1106, 1438) | |

| ] [

| Y | 0.027 | 0.808
I | |

I t | (0.394) | (29.0)
| 2 | !

[ X | 1.55 | 426,

| I |

| | |
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Clearly the groups of French and German firms are not homogeneous. If it
were possible to divide firms into subgroups, it is likely that somewhat
different and possibly sharper conclusions would emerge for the different

subgroups.

SUMMARY OF RESULTS AND DIRECTIONS FOR FURTHER RESEARCH

I have stressed the importance of analyzing individual data on expectations,
plans, and realizations for the study of how such expectations and plans are
formed and the extent to which they are fulfilled. The conclusions that can be
drawn from the analyses in this paper are limited by the categorical nature of
the data and the short time periods for which the data are available. Throughout
there are important differences between the results for French firms and for
German firms. The reason for such differences is an important topic for further
research.

In the first series of reported empirical investigations, firms’
expectations or plans are much more concentrated in the no-change category than
are the realizations that they forecast. This means that firms understate the
proportion of realizations in the increase and decrease categories, but the net
effect of such underestimation differs markedly between French and German
firms. For prices, German firms consistently overestimate the balance between
increases and decreases; they consistently underestimate, in absolute terms, the
balance between increases and decreases for demand (measured by incoming new
orders) and production. For French firms, on the other hand, there is no such
consistent bias; moreover, the firms’ forecasts are much better, on the whole,
than those of the German firms.

The conditional distributions of realizations given prior expectations or
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plans estimated from past data may be used to correct the firms’ forecasts.

These distributions are quite stable over time for German firms and the corrected
forecasts are quite close to marginal distributions of the realizations. But the
conditional distributions for the French firms are unstable over time and the
corrected forecasts are sometimes worse than the firms’ own forecasts. The
nature of the instability suggests that economy-wide changes affecting all firms
simultaneously may be responsible. Finding éuch variables and measuring their
influence is a topic for further investigation.

In the second reported investigation of a simple conditional probability
model for production plans, I find what one would expect to find. Firms that
report a recent increase in incoming orders or demand, report that they regard
their inventory levels as too low or their backlog of orders as too high, and
also report that they expect demand to increase {(or business conditions, so
called, for their products to improve), are much more likely than firms that
report the opposite to report that they plan to increase production. The
importance of this finding is not so much to verify the obvious, but, first, to
give us some confidence in the data for analyzing less trivial hypotheses, and,
second, to yield quantitative measures of the effects of different variables.
With respect to the latter, the most quantitatively important influence on
production plans are expectations of future demand or business conditions;
moreover, the magnitudes of the parameters attached to these variables in the
conditional distributions for the French and German firms are so similar as to
suggest that the two variables, based on responses to two quite different
questions, measure roughly the same thing. Lagged production plans, while
significant, do not reduce the significance of the economic variables
perceptibly. Mechanical models of production plan formation, such as the error-

learning model, fit well, but not better than models with more economic content.
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The third series of empirical investigations deals with the formation of
price and demand expectations. Of the models considered, the error-learning
model, which relates changes in expectations to surprises in the same variable,
gives the best and most parsimonious explanation of the data. The model,
however, has relatively little economic content; in continuous form, it has been
widely used in studies of supply, investment behavior, and the like. .

The fourth investigation looks at a join; error—learning model of price
expectations and production plans. As noted the univariate error-learning model
for production plans has little economic content but fits the data well.
Consequently it may be viewed as a description of the process., When a joint
model of the two processes is estimated, the remarkable conclusion emerges that
they are almost independent of each other for both the sample of French firms and
the sample of German firms, although some negative association between changes in
price expectations/plans and deviation of changes in actual production from
planned changes for German firms is found. This is consistent with the
hypothesis that supply bottlenecks are largely responsible for short-falls in
production. But this hypothesis is contradicted by the additional finding that
unexpected changes in demand are strongly associated with deviations of
production from planned levels. An important topic for further research is
whether the same finding will emerge when more economically meaningful models,
especially for production planning, are related to one another.

The final series of investigations deals with the fulfillment of plans and
expectations. The simple hypothesis tested is whether deviations between prior
expectation of demand and realizations in the current period affect the
deviations between price expectations and production plans from their respective
realizations. They do)except for French firms’ price expectations. That

surprises affect fulfillment of production plans for both French and German firms
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but fulfillment of price expectations only for German firms, suggests that German
industry may be more competitive on the whole than French industry. This,

however, is obviously a topic requiring much further research.



FOOTNOTES

Many people have attempted to replace the word "expectations" to avoid
confusion with the same word used to mean the mathematical expectation. This
nicety seems doomed to failure by usage; in this paper I use the terms
"expectations" and "anticipations" interchangeably.

Hicks himself was clearly not happy with this solution; see Hicks (1977, pp.
vi-vii).

In Nerlove, Grether, Carvalho (1979, Chapter 14), I and others have applied a
simplified version of this method to analyze the behavior of U.S. cattle

producers.

The analysis of Modigliani and Cohen has been applied, inter alia,

to the study of investment decisions by Eisner (1978) and McKelvey (1980).
Mincer (1969) has considered this class of expectation-formation model in
great detail.

For example, the minimum mean-square error (MMSE) forecasts of a time series
with rational spectral density can be expressed this way. These are also the
conditional expectations (mathematical) of the future value given the
infinite past up to the time the forecast is made.

Other explanations are possible: Regressivity will be observed, for example,
if the forecast is an unbiased estimate of the future value; the latter can
be represented by the forecast plus an error uncorrelated with it.

See McCallum (1980).

Frydman and Schankerman have argued in an unpublished paper that the
unbiasedness test is not an appropriate test of the rationality of forecasts
because nonrational expectations, based on an incomplete or erroneous set of

exogenous variables, may also be unbiased. Unbiasedness is thus a necessary
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11

12

13

14

but not a sufficient condition for rationality in this weak form.

See Zellner and Palm (1974) and Wallis (1977). An intermediate form
expresses each variable in terms of its own past and the past of other
variables entering the model. It is in this form that Nerlove, Grether and
Carvalho (1979) use the result in formulating quasi-rational expectations for
prices in their study of the U.S. beef cattle industry.

See Jacobs and Jones (1980, p. 272). Miécer (1969) argues that it is also
necessary to observe forecasts for several successive future periods at a
given time.

Elsewhere, in collaboration with Koenig and Oudiz (1979, 198la, 1981b,
1981¢c), I have studied production plans and their formation, models of price-
expectation formation and the forecasting properties of expectations and
plans using microdata from the Ifo and INSEE business test surveys. The
present paper grows out of this work. See also Theil (1966, pp. 417-24),
Eisner (1978), Koenig (1980), and McKelvey (1980).

Although the surveys are conducted at the establishment rather than the firm
level, the information collected refers to that level and the questionnaire
is filled out by a respondent at the establishment level. Some initial
experiments in which multiple-product firms were eliminated, suggest that the
establishment responses may be treated as independent observations.

For the French firms, responses are obtained separately by product line. In
the case of multiple-product firms, only the information for the principal
product was used, because we could not consider responses for different
product lines to be independent. Since it 1s possible to match the responses
to the business-test survey with surveys of investment plans and expenditures
and financial circumstances, which reflect decision plans, and expectations

at the level of the firm rather than the product line, it will be necessary
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16
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to devise methods of analysis aggregating product lines or treating them as
nonindependent observations in order to link the various bodies of data.

In the case of prices, the French survey asks for a percentage increase or
decrease, actual or expected. We have made use of this information only to
re-categorize the responses in order to mitigate the problem of general
inflation. Besides the difficulties involved in combining categorical and
non-categorical data in the same analysis; we have observed that when asked
for quantitative data, particularly with reference to expectations, firms
tend to respond categorically. Hence, it may be preferable to use the data
in categorical form even when the response is quantitative. The categorical
character of quantitative responses may be due to the uncertainty attached to
a single-valued response.

The order of responses for the appraisal of inventory levels is reversed in
the German and French survey instruments: + corresponds to '"too small" in
the German data and "above normal" in the French data. We have left the
order as is, so that the signs of measures of association between inventory
appraisals and other variables are reversed between the two bodies of data in
the results reported in Part II.

In the German survey reported realizations describe monthly changes of
variables, whereas reported expectations or plans are for a three or a six
month period (three for prices and production, six for business conditions, a
variable which can be interpreted as demand for the product). This
difference in the unit period of observation creates problems in the analysis
of the relation between expectations or plans and realizations. The approach
used here aggregates the data on realizations for three consecutive months
into a new variable having a unit period of three months. A discrepancy in

the unit period for business conditions remains.



18

19

20

The French data are collected every three, four or five months but the
unit periods to which the expectations or plans refer are always identical to
the periods for which the realizations are reported on the subsequent survey.

The method of aggregating the German data is as follows: Let X, be a
realization reported on the survey taken at date t; it refers to the change

over the preceeding month. Let it be the aggregate referring to the

preceding three months. The method of aggregation is as follows:

If the sign of Xt—i’

i=0,1,2 is identical, set it equal to that
sign.

If the responses differ in sign for each survey, the firm is
deleted.

If the sign of X._1, i=0,1,2 is equal for two periods and the sign
for the third period is not opposite in sign, set it equal to the sign of
the categories reporting changes; otherwise the firm is deleted.

In principle, a five-category variable could have been defined by making the
categories in the far southwest and far northeast corners separate
categories. Thus, we might have a '"4++' category for the combination

X_y = "-" and X = "+"' and a "--" category for Xil = "' and X = "-",

The Goodman~Kruskal Gamma coefficient for the table is -0.2, indicating a
weak negative association between forecast and outcome. (See Goodman and
Kruskal 1979.) Kawasaki (1979) has extended the Goodman-Kruskal gamma to a
measure of partial bivariate association in a multivariate context,
Kawasaki’s extension is extensively employed below.

A rigorous definition of the random variable Xi, for which

Z%(X I Xil)P(Xil) is the marginal distribution, may be given although I will

not attempt one here., Since the marginal distributions may be misleading, a

more interesting possibility is to define a random variable



Xi with the same marginal distribution but also a complete joint

distribution with the realization X. In the 3x3 case this may be done as
follows: For each firm n we observe X(n); according to whether the firm
reports an increase = category 1, no change = category 2, or a decrease =

~ *
category 3, we place that firm in a set Fl’ FZ’ or F3. Using P(X X ) we

-1
*

may find for each firm having a particular response X_l(n) on the previous

survey a vector of probabilities (pl(n), pz(n), p3(n))’that it will

experience a realization in category 1,2, or 3. The joint distribution is

estimated as

Xf
c
+ = -
+ neFlp (n) neF pz(“) neF p3(n)
X = nEszp(n) nng pz(n) neF p3(n)
- p,(n) (n) (n)
neF3 1 ne F3 ne F3

A rigorous definition of this random variable Xi may be given, but I will not
attempt it here. 1 owe this suggestion to Seiichi Kawasaki.

See footnote 18.

In an earlier paper (Koenig, Nerlove, Oudiz, 198la), we estimated the joint
distributions on pairs of consecutive survey dates and tested whether the
main effect parameters and whether the bivariate interaction effect
parameters were the same for the two pairs. Estimation of the conditional

*
model { X X_1 ,T } and the test indicated is not only simpler but no
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assumptions need be made about interactions between expectations reported on
two survey dates or between realizations reported on two survey dates.
However, recent work of Vuong (1981) shows how suitable restrictions can lead
to structural models within the log—-linear model framework.

Results reported in this section are drawn from a more extensive discussion
in a joint paper with H. Koenig and G. Oudiz presented at the 15th CIRET
Conference, September 30, 1981, Athens, Greece.

Note that this does not mean that we would also find stability of

(P(a ( Qil) if we took more widely separated pairs of surveys.

This section reports revised analyses similar to those reported in Koenig,
Nerlove, Oudiz (1979). The main differences are (1) the greater number of
periods, and (2) the use of temporally aggregated incoming new orders as a
measure of demand in the previous period (see footnote 17).

A similar set of results is available for firms that do not carry inventories

of finished products, based on the model

*

],

Since the results are broadly similar, I do not report them here.

{Q* | & or p, s3, ¢" or D

The component gamma coefficient is based on a decomposition of the joint
probability of several ordered categorical variables by the configurations in
a log-linear probabhility model. 1If one considers a model involving only main
effects and bivariate interaction effects, the component gamma for a pair of
variables is obtained from the table of exponential bivariate effect
parameters for that pair, normalized to sum to one, by the usual formula. In
the conditional probability models, estimates of which are reported here, I
limit interactions between Q* and the conditioning variables to no higher
order than bivariate, although the interactions among conditioning variables

are unconstrained.
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The maximum—-likelihood estimates for the parameters of a particular
configuration in a hierarchical log-linear probability model do not exist if
the marginal table corresponding to that configuration contains one or more
zero cells which are not a priori zero. Note, however, that it is not
sufficient for estimability for all the cells of the corresponding marginal
table to be filled.

In the case of the German data for July 1978 a zero occurred in the
marginal table for Q* x L2; consequently, all four parameters of the
bivariate interaction configuration for Q* and L2 could not be estimated.

The basis vectors corresponding to all but the first parameter, 812(1,1) s
were arbitrarily suppressed. Thus the xi-value given is associated with only
one degree of freedom. The same problem occurred for the French data for
November 1976 in the marginal table for Q* X D*.

It is perhaps particularly important not to attribute any causal significance
to this relationship since the same, latent, variables may cause both a high
probability of a planned increase in production and an expectation of
increased demand for the product.

The error-learning model for changes in production fits the best and is more
stable, particularly for the French data, than the others. However, these
results are not inconsistent with those from the models with more economic
content.

Space limitation precludes even a summary of the numerical results here. I
hope to include them in a subsequent paper.

The results for prices presented here draw on Koenig, Nerlove, Oudiz

(198la). Those for demand or business conditions are wholly new. Estimation

procedures are different.

This formation differs somewhat from the usual one in that it refers to rates
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of change rather than levels and changes in rates of change rather than past
changes.

This is the counterpart of collinearity.

The same set of models were fit to production plans and realizations in
order to verify that the models with economic content presented above were
more stable. Although the mechanical models fit well, the results were not

as stable or as intuitively appealing as those from the economic model

presented in the previous section.
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Technical Appendix to "Expectations, Plans and Realizations

in Theory and Practice"

l. Characteristics of the Business-Test Data

Categorical data encountered in typical economic contexts frequently present
a number of peculiarities not encountered in other applications. Some of these
in this paper are as follows.

First, there are not only many cells which are empty (cell count equal zero)
but there is also considerable clumping, particularly in the no-change or "="
categories. Such clumping and the presence of a large number of zero cell counts
for category combinations, which may be implausible but not of a priori zero
probability, cause particular difficulty in the analysis of business-test data as
compared with other types of categorical survey or biomedical data.

A second characteristic of the business-test data, which is of considerable
importance in their analysis, is that the categories are ordered, that is, the
variables are ordinal. In many other types of surveys or other contexts in which
categorical data are collected, there is no particular order to the data. The
respondent is male or female; the member of a particular occupational class;
agrees, disagrees or has no opinion with respect to a certain statement; etc. In
contrast, expecting demand to increase is more than expecting it to remain the
same, which, in turn, is more than expecting it to decrease. For such variables
it is meaningful to consider measures of ordinal bivariate association, e.g.,
does the statement that inventories are too low tend to be associated with a

statement that planned production is to be increased and vice versa? If so we



would say there is a positive association between inventory appraisals (too low,
"+"  etc.) and planned production (increase, "+", etc.).

A third characteristic of categorical data encountered in economic contexts
is that in the analysis of such data we are often interested in distinguishing
between exogenous or explanatory variables and jointly dependent categorical
variables, that is, our models may often be formulated in terms of conditional
probabilities. In the business-test this characteristic may be illustrated by an
hypothesis with respect to the conditional probability of reporting planned
production in a certain category, given responses with respect to order backlogs,
expected future demand, and inventory appraisals. An example in which the
distinction between jointly dependent and explanatory variables is still more
explicit is our earlier analysis (Nerlove and Press, 1973, 1976, 1980) of the
adoption of several modern agricultural practices by Filipino farmers. The
primary purpose of the investigation was to assess the relative importance of
factors associated with the adoption of high-yielding rice varieties (HYV) in the
crop vear 1967-68. 1In his original investigation, Mangahas (1970) treated the
agricultural practices as purely explanatory variables and did not attempt to
explain the joint occurrence of the simultaneous adoption of a number of modern
agricultural practices. In the analyses presented earlier, and also reported in
Nerlove and Press (1980), we attempt to treat the complex of modern agricultural
practices, including the adoption of HYV, simultaneously. The joint
possibilities of simultaneous adoption or non-adoption were treated as
conditional upon such variables as the age, educational attainment and tenancy
status of the farmer, the area of the farm and the type of irrigation facilities
available, if any, and whether the farmer was a cooperator with the local
Experiment Station. Some of these variables, such as area of farm, age and

schooling, are continuous, whereas the others are categorical.



2. General Discussion of the Log=-Linear Probability Model

Methodological problems of the analysis of cross-classified data areAthe
subject of considerable current interest (Reynolds, 1977; Fienberg, 1977; Upton,
1978). I and collaborators have dealt elsewhere at some length with a particular
methodological approach especially useful in the analysis of categorical data of
the kind we encounter in the German and French business-tests (Nerlove and Press,
1976, 1978; Koenig and Nerlove, 1979; Koenig, Nerlove, and Oudiz 1979a and
1979b). The approach is based on a parameterization of the probabilities
characterizing large multi-dimensional contingency tables, which was developed by
Birch (1963), Mosteller (1968), Bishop (1969), Haberman (1974b), and Goodman
(1978). Good expository accounts are contained in Everitt (1977, pp. 80-107),
Fienberg (1977), Haberman (1974 and 1978-79), Payne (1977), and Plackett
(1974). More abstract accounts are contained in Collombier (1980), Haberman
(1974b), Kawasaki (1979), Link (1982), Nerlove and Press (1978), and Vuong
(1981). The approach also lends itself to a suitable generalization of measures
of ordinal bivariate association in analyses involving more than two categorical
variables.

Briefly the parameterization of the log—-linear probability model may be
described as follows: Let Cz = { Al Heeey Aq } be a set of categorical random
variables, which may take on, respectively, Il’ . ’Iq possible values. If we
have a sample of N observations on the q categorical random variables, we might

arrange these in an I;xIyx ... qu table of counts corresponding to a similar

arrangement of the probabilities



Alternatively, order the logarithms of the

k=1 k

probabilities (1) into a Qxl vector by some principle, e.g., lexicographically,

log p ..}
(2) log p = .

log py .1

L :

The vector log p may be thought of as a point in PQ. Let M be a linear manifold
in RQ of dimension m, 0 < m € Q . The class of models for which the Qxl vector
Up consists entirely of ones is in M and

(3) log p € M such that < p, U > =1,

0
where p is the vector of probabilities corresponding to log p and < x,y >
denotes the inner product of x and y, is defined as the class of log-linear
probability models. Since M is a linear manifold in RQ, there exist m
independent vectors, not necessarily orthogonal, which span M, one of which may
be UO as defined above. Because log p is contained in M, it may be represented
in terms of the basis vectors Ul’ cee ’Um-l and Um = UO.

There are clearly many possible choices of a basis for M, One of the most

interesting and useful of these is the choice that, in the case M = RQ, allows us



to represent the logarithms of the probabilities in a traditional analysis-of-

variance format

log p. . . .
cee = + ees +
11 i = v a1(11)+ aq(lq)
+ 812(11,12) + .. + Bq—l,q(lq-l’lq)
(4)
wl, .ea ,q(il’ Tt ’lq)’
where al( )y eee e ( ) satisfy the usual constraints:
, eee
al(.) = az(.) = 4ee = aq(.) = 0,
812(11,.) 0, 812(.,12) = 0, uas ’Bq—l,q(°’lq) = 0,
(5)
W 1, ... ’q(ll, oo 1 _l,.) =0, .o ,wl’ e (.,12, ces ,1q) = 0.

The dot used in place of an index denotes summation over that index. The

parameters al(il), cee LW q(il, ces ,iq) have the usual analysis-of-
’

1’ LN 4

variance interpretation: u denotes an overall effect; al(il) denotes an effect

due to A, (at "level™" 1i,); B denotes a bivariate interaction effect
1 17

12¢1))
between A} and A, (at "levels" i, and i,, respectively); and

w (i (at

, e+« ,1 ) denotes a q—-order interaction among Ay, «ee LA
1, «o. ,q9 1 q

q
"levels" iy, ... ,iq, respectively). Because of the constraints imposed, this

characterization is frequently called the deviation-contrast basis. It is the

one used in this paper. In general, it makes no use of any order among the



m_st

categories of a categorical variable (e.g., '"+" is greater than is greater

than '"-"),

In terms of the vector log p defined in (2) and the vector of parameters

-

B = (al(l), cee u(I ,Iq)) ,

DIRRE
a design matrix A, Qx {Ij + ... + IjI, + ... + Q >, may be defined such that
(6) log p = AB.

The number of independent elements of B, however, is only equal to Q, which is

the number of probabilities. To express log p in terms of the basis vectors,

arranged in a Q x Q matrix
U= [Ug, «-- ’UQ—I]’
a matrix L of rank Q is defined such that

(7)

(o]
1]

LB

is a Q x |l vector, whose elements are a subset of the elements of B such that

together with the restrictions (5) they are sufficient to determine all of

the parameters. In terms of ©

(8) log p

Uo



Any basis which allows decomposition into main and interaction effects can
legitimately be called an analysis—of-variance parameterization, but even within
this class there are many different choices (Bock, 1975, pp. 239-43). An
alternative to the deviation—-contrast basis is based on assigning scores to
ordinal categories, and 1s useful in interpreting directions and other
characteristics of association among ordinal variables. (See Goodman, 1979).

Kawasaki (1979, Chapter 2) shows how the basis for a general multivariate
log-linear probability model may be generated from so-called elementary bases for
univariate models by direct (Xronecker) product operations, provided the main and
interaction effects are reordered in a certain way. For example, in the case of
the univariate dichotomy, the elementary basis consists of the columns of the

matrix

The basis for the bivariate dichotomy consists of the columns of

IR U U G RS G G
1 -1 1 -l 11 -1 -l
U=y @ug = 1 1 -1 -1 |reordered toU = 1 -1 1 -l



which yields the representation for log p = (log PI]> log Pigs log Pyp» log pzz)‘as

where p corresponds to the overall effect, a) to the main effect for the first
variable, a, to the main effect for the second variable, and 812 to the
bivariate interaction effect. The values of the parameters for other
combinations of indices are recovered from the restrictions (5).2

The bivariate trichotomous case is only slightly more difficult, TFor the
deviation—contrast basis, the elementary basis for a single trichotomous variable

consists of the columns of



*
Thus, for the bivariate trichotomy we have U = Uy % UB and

— = s e e e s

where log p = U® and $ is the vector

fou
&1(1)
a1 (2)
az (1) |
ap(2) ‘
B12(1,1)
Bi1o(1,2)
B12(2,1)
812(292)

L g

SR |

*
U is the appropriately reordered version of U .3

The remaining parameters al(3), a2(3), 812(1,3), 812(2,3), 812(3,1), 812(3,2)

and 812(3,3) are recovered as before, from the restrictions (5).



In general, the elementary basis for a single g—category variable is

1 I
U = =9 q-1
1 -1° ’
=q

where lq is a column vector consisting entirely of ones and I is an identity

q-1’
matrix of order gq-1. Taking the Kronecker product of any number of these yields
a matrix of basis vectors for the corresponding multivariate case; the order of

the vectors does not correspond to the order of the effects parameters in © , but

re-ordering them appropriately is not difficult.4

In general, we have the following result for the gq-way case:

h=.0

(9) log p; = . ro, |

1’ °°° ’i Jl’ G k=1 Uk (lk’ Jk) T (Jl, P Jq)}’

where k=1, ... ,q are the q categorical variables, ik takes on the values

1, ... ,I and jp takes on the values 0,1,... ,I -l for the kth categorical
variable, r(jl, oo ,jq) represents an effect of order corresponding to the
number of non-zero indices (thus, r(jl, 0, «oo ,0), jl =1, ... ’Il’ is the
first main effect), and where

uk(ik’ jk) =1, if jk = 0 or i = jk .

-1, if 4 =TI,

0, otherwise.

r(jl, ces ,jq) with indices in a different order clearly represents the

conventional ordering of the effects, Equation (9) is a generalization of



Theorem 1 of Nerlove and Press (1976, p. 13).

Haberman (1974a) suggests an alternative basis derived from scores
constructed from orthogonal polynomials. (Plackett, 1974, Chapter 8, also
mentions scoring for ordinal variables, but does not develop the idea.)

In current terminology, the collection of parameters characterizing a main

or interaction effect is called a configuration; thus the general g-variate case

has, potentially, main effects or univariate configurations, bivariate
interaction configurations, and so on up to the gq-way interaction

configuration. A log-linear probability model which contains all possible
configurations is called saturated. In general, saturated models are not very
interesting since such models place no restrictions on, and therefore, simply
represent an alternative description of, the probabilities underlying the
contingency table. Moreover, if there are anv sampling zeros at all, it will not
be possible to estimate the parameters of a saturated model. Instead, one
normally wishes to consider models involving only a subset of many possible

configurations; the most important class of such models is called hierarchical.

A model is hierarchical if the inclusion of any interaction configuration
implies the inclusion of all lower-order interaction configurations involving
only the variables in the higher order cmfiguration. Equivalently, exclusion of
any configuration implies exclusion of all higher-order configurations that
include all of the variables included in the lower-order configuration.
Hierarchical models are generally more plausible in the log—-linear probability
context than nonhierarchical models (Payne, 1977). The rationale is most easily
explained in the context of a 2-way table, In this case, there are only five

models in the hierarchical class. Let A and B be the two categorical variables;



in an obvious notation, some of the models are

Saturated model: A, B, AB;
Independence model: A, B (only main effects).
A model which is not hierarchical is
One main effect eliminated: A, AB.

As shown elsewhere (e.g., Koenig, Nerlove, Oudiz, 1979a, 1979b), the main
effects essentially reflect proportional variations in the probabilities for each
variable across categories; leaving cut a main effect would place the burden of
explaining such a proportional variation affecting all categories of a particular
variable on the interaction(s) of that variable with another or others. This is
clearly unreasonable., A similar argument may be given for higher-order
interactions in relation to lower-order interactions.

Hierarchical models have some special properties related to estimation as
well. In the paper, I generally make use of the class of models involving only
main and bivariate interaction effects, that is, the simplest hierarchical model

which allows dependence among the variables.

3. Measures of Partial Bivariate Association

One of the most important topics in the analysis of categorical data is the
measurement of association among ordinal variables, especially partial
association, controlling for the influence of additional variables when more than
two variables are considered at the same time. This is analogous to the
estimation of regression coefficients or partial correlations in multiple
regression analysis, if attention is restricted to conditional log-linear

probability models. As shown in Nerlove and Press (1976) and elsewhere, one can



always interpret joint probabilities in terms of a series of conditional
probabilities, and vice versa. Thus, the analogy may be carried over to
situations in which joint dependence among several categorical variables, some of
which may be ordinal, is of interest. Besides Haberman (1974a), extensive
discussions of measures of bivariate association between two ordinal categorical
variables are contained in Davis (1967), Wilson (1974), Hildebrand, Laing and
Rosenthal (1977), Reynolds (1977, Chapter 3), Upton (1978, pp. 34-8), and Goodman
(1979). An important and frequently used measure is the Goodman-Kruskal gamma
coefficient, developed in a series of four papers, reprinted as Goodman and
Kruskal (1979). This measure has been generalized by Kawasaki (1979, Chapter 6;
1980), in the context of multivariate log-linear probability models, to a so=-
called component gamma coefficient, vy , which is a measure of partial bivariate
association based on the bivariate-interaction parameter estimates from a joint
or a conditional log-linear probability model., Davis (1967) extends the Goodman=—
Kruskal coefficient to the multivariate case in a manner based directly on the
observed contingency table and without reference to the log-linear model
representation of the contingency table probabilities. Haberman (1974a)
suggests that his proposed scoring technique also yields useful measures of
bivariate association in the multivariate case. This idea has been developed in
detail for log-linear probability models in unpublished papers by Quang Vuong
(1979a, 1979b).

The Goodman-Kruskal gamma coefficient is defined for 2-way tables; to
generalize it to the multivariate case in order to measure partial bivariate
association, Kawasaki (1979, 1980) shows that the joint probability for any log-
linear model can be written as a constant times the product of probabilities
associated with each configuration, i.e., each main effect, each bivarite

interaction effect, etc. Thus, for example, neglecting trivariate and higher



order interactions, a gamma coefficient defined on a particular bivariate
component probability configuration represents the '"pure' partial bivariate
association '"cleansed" of main effects and other bivariate interactions.

Kawasaki (1979) calls such a measure of partial association a component gamma

coefficient. Asymptotic variances of the component gamma coefficient may be
obtained from the values of, and variance-covariance matrices for, the underlying
parameters of the configurations.

To illustrate Kawasaki’s decomposition consider the case of two ordinal
variables A and B, indexed by iA and iB’ respectively. The restrictions
) =0,

GA(-) = 0, GB(-) =0, 8 (-,iB) = 0, BAB(

AB e

are assumed to hold. One may write

(1) piAiB = C exp [aA(iA)] ] exp [aB(iB)] . exp [BAB (iA,iB)]
T exp [aA(JA)I L exp faB(iB)] _?. exp fBAB(SA,JB)T,
Ja Jg Jals
where
I exp [aA(jAWJ . I exp [aB(jB)] e I  exp [BAB(jA,jB)]
C = JA JB JAJB

is a constant when all the parameter values are given. Each of the remaining

three terms can be thought of as a 'probability'" associated with a particular



configuration, each depending on the relevant index or indices, positive, and
summing to one over those indices. Think of it as the multiplicative
contribution of that particular configuration to the over-all joint probability
when the contributions of all the other configurations are isolated in like
manner. In contrast, the marginal probability represents the gross contribution
of a variable, or variables, operating through all main and interaction effects.
Denoting each of the component probabilities, as they are called by Kawasaki
(1979, p. 154; 1980), by a subscript referring to the effect configuration with

which the probability is associated, we rewrite (1) as

5 - . . .
(2) piAiB o pl(lA) pz(lg) p12(lA’lB)'

In general, the g-variate log-linear probability model may be decomposed in a

similar manner

(3) P i1 T Cp ) yde e Ay e 1)
As noted above, in most economic contexts it is rarely possible to include
higher-order than bivariate interaction configurations. When, however,
trivariate and higher-order interactions are included in the model, definition
and measurement of partial association becomes difficult. Perhaps the simplest
way to proceed is to regard the measure of bivariate association between two
variables, say A and B, as a function of the level of a third variable C, or of a
third and a fourth variable, etc.

The component probabilities have an associated contingency table of the
dimensionality of the configuration; thus, the Goodman-Kruskal gamma can be

computed for that table associated with a bivariate configuration just as it can



for an ordinary two-way table. Moreover, if the parameters of the configuration
have been estimated by maximum-likelihood, one has an asymptotic variance-
covariance matrix for those parameters; since the component probabilities are
functions of the parameters associated with the configuration, the Goodman-
Kruskal gamma is too; thus, an asymptotic standard error may be calculated by the
delta method (Kawasaki, 1979, pp. 161-63).

Note that the component gamma, Y , is not equal to the Goodman-Kruskal gamma
even in the case of a two-way table (except in the 2x2 case), because the latter
depends on main effects as well as the bivariate interaction, whereas Y depends
only on the bivariate interaction. I find this a desireable feature of the
component gamma in an economic context: Economic variables affecting all
individuals observed will have the effect of concentrating certain responses in
specific categories, different at one time than at another; an ordinary gamma
would be affected by such variations, yet the underlying association between the
two variables might well be unaffected; thus one might prefer a component gamma
for ascertaining stability or instability of association over time.

As suggested by equations (1)-(3), the parameters of an interaction
configuration may be associated with a "component probability'; thus the
bivariate interaction configuration corresponds to a two-way contingency table.
For example, in the 3x3 case, one can arrange the bivariate interaction
parameters, of whichh only the four in the upper;left corner cells need be

estimated, in a 3x3 table:

+ 3 -—
+ 81, | 8(1,2) (1L,
= D B(2,1) 8(2,2) B(2,3)

_B(3,1) B(3,2) B(3,3)




"_1nt

I have used category 1 to indicate '"+", 2 to indicate , and 3 to indicate
"-", It is clear that, if one set 8(1,2) = 8(2,1) = 8(2,2) = 0, the table would
have B8(1,1) = 8(3,3) = -8(1,3) = -8(3,1) and would indicate strong positive or
negative association. A large positive value of B(2,2) indicates concentration
in the no-change categories; whereas a negative value indicates its absence. The
presence or the absence of significant concentration in the no-change categories
is particularly important in econometric applications. Large positive or
negative values for the off-diagonal elements 8(1,2) and 8(2,1), 1in relation to
the diagonal, reflect variation in the degree of concentration of one variable
with respect to changes in the other and tend, given the corner values and the
center, to lower the degree of bivariate association, positive or negative.

Using a priori information and/or assumptions related to the ordinal
character of the data may become important when some of the bivariate
configurations are not estimable due to a very large number of sampling zeros.

This point is considered in more detail in Section 5 below.

4., Conditional Log-Linear Probability Models

The conditional probabilities in the log-linear model are also log-linear of
simple form, but the marginal probabilities are more complex except in the case
of independence. It is this result which makes the log-linear probability
representation useful if conditional probabilities have a natural and intuitive
interpretation. They are less useful when the marginal probabilities are of
particular interest or significance. I suggest in the Filipino farmer example,
described in Section 1, that conditional probabilities are indeed of special
interest in econometric applications. Moreover, often some of the conditioning

variables are continuous, as they were in that example.



The subject of log-linear conditional probability models may be usefully
introduced by the following result proved in Nerlove and Press (1976, pp. 19-
21). Let the set of random variables CZ,, described at the beginning of Section
2 above, be partition into two nonoverlapping subsets a,and Ql such that a' Ua{"'a-

, 1s defined to be the set of indices associated with the q

If n = {il, cen ,iq}
variables in a_ , the set of indices may be partioned accordingly into two

parts n,; and N, such that " Un, =n. Let

S} = the sum of all main effects and interaction effects
1
with indices in nl;
On n = the sum of interaction effects having at least one
172
index in ™ and one index in nz.

Then, the conditional probabilities associated with the log-linear probability
model are also log—linear probabilities, but involve a reduced set of main and
interaction effects. In particular, the conditional probability of the random
variables in a' given those in a, involves only the main effects pertaining
to a' themselves and between those random variables and the random variables
in az, but not the main effects pertaining to a,tor any interactions involving

only random variables in Qz. More formally,

Prob [Al = ap, ... ’Ak =a, ‘ Ak+1 =3y e ’Aq = aq]

= p, . . . +
(1 1y eee iy l Ligpr oo q n

Although it is not apparent from (1), the fact that the conditional



probabilities must sum to one means that these probabilities also depend
implicitly on the main and interaction effects for the random variables in 621.
(See Kawasaki, 1979, pp. 61—6).5 In particular, this dependence has implications
for the estimation of joint and conditional log-linear probability models,

In Nerlove and Press (1976, pp. 29-32), we prove a special case (limited to
discrete random variables) of a general result proved by Gourieroux and Monfort
(1979); for any joint probability distribution, which is strictly positive over
the set (discrete or continuous) on which it is defined, the univariate
conditional probabilities taken together uniquely determine the joint probability
distribution from which they arose. This result may tempt one to estimate
conditional probabilities rather than joiat probabilities, particularly if some
of the interaction configurations among conditioning variables are nonestimable,
a subject discussed in the next section. Unfortunately, because these
probabilities depend implicitly on the nonestimable parameters, one cannot avoid
the problem in this manner.6

Note also that, if main effects and/or interaction effects are functions of
some continuous or discrete variables, these functional forms are exactly
preserved in the conditional probabilities. In this case, however, maximum-
likelihood methods based on fitting certain marginal tables cannot be used;
instead one must resort to other iterative procedures of the sort employed by
Nerlove and Press (1973 and 1976).

A fundamental result concerning conditional probability models is related to
estimation (Kawasaki, 1979, pp. 71-3). Essentially, it is that maximum-
likelihood estimates of the parameters of a conditional probability model,
subject to any constraints, are exactly the same as those derived from a joint
probability model which contains among its parameters also all those in the

conditional model that involve the conditioning parameters subject to the same



constraints. The result holds ony when all variables are categorical and when
all interactions among the conditioning variables are included in the joint
model. The result is difficult to prove in an elegant fashion and I do not
attempt a proof here. Kawasaki’s (1979) proof has been put more rigorously and

elegantly in recent unpublished work by Quang Vuong (1979a and 1979b).

5. Estimation and Partial Estimation

The theory underlying maximum—-likelihood estimation of the parameters in the
log-linear probability model was developed for the three-way case by Birch
(1963). Bishop, Fienberg and Holland (19735, Chapter 3) give an exhaustive
discussion for hierarchical models. The maximum-likelihood estimates are
functions of the marginal frequencies corresponding to the highest-order
configurations included in the model. (I neglect here the possibility that some
parameters may depend upon continuous explanatory variables.) Birch (1963) aand
Bishop, et al. (1975) show that a number of different sampling schemes lead to
the same maximum-likelihood estimates.

Provided attention is restricted to the class of models which are
hierarchical, it can be shown that the marginal tables corresponding to the
highest-order interaction configuration in the model are sufficient statistics
for the interaction configuations (Bishop, et al. 1975, pp. 64-73). The cell
frequencies are unbiased estimates of the expected frequencies of the model so
that the marginal tables corresponding to the configurations included in the
model are fit exactly. Thus, it is not necessary to compute estimates of the
actual interaction parameters since the expected frequencies of the model can be
computed by the iterative proportional fitting algorithm introduced by Deming and

Stephan (1940). Birch (1963) showed this for the three-way case but assumed



positive cell counts in the full table, which is too restrictive in the case of
unsaturated models.

In his review of Bishop, et al. (1975), Haberman (1976) complains that the
restriction to hierarchical models is too severe, that the parameters and
estimates of their asymptotic variances and covariances are useful to compute,
and that proceeding directly to estimated frequencies for calculation of the
values of the likelihood function and tests of goodness-of-fit of one model
against another is misleading. Moreover, proceeding directly to maximum-
likelihood estimates of the expected frequencies leads Bishop, et al. (1975,

p. 218) into error in stating rules for the calculation of appropriate degrees of
freedom in various Chi-square tests (Haberman, 1976, p. 820). The reason feor
this difficulty is closely related to the fact that Bishop, et al., rarely
compute parameter estimates. Indeed, most analyses using log-linear probability
models in fields other than econometrics usually specify which configurations are
to be included and test the model against various alternatives directly. 1If a
marginal table for a given configuration contains a sampling zero, then the
maximum—-likelihood estimates of the corresponding cell frequency will be exactly
zero; in this case, the full table will also contain some zero estimates. It
follows that the maximum-likelihood estimates of the parameters of the log-linear
model in question, which assumes strictly positive probabilities, do not exist.
It may, however, be possible to estimate some of the parameters of the
configuration and the parameters of other configurations for which the
corresponding marginals have no sampling zeros if the model is suitably
restricted.

The fundamental result on estimability is given by Haberman (1974b, Theorem
2.2, p. 37), who states a necessary and sufficient condition for the existence of

maximum—likelihood estimates for any log-linear probability model, not merely



those which are hierarchical, in relation to the observation vector (location of
zeros in the full table). Haberman’s condition does not make use of the fact
that the model under consideration belongs to the hierarchical class, if indeed
it does. For hierarchical models the following condition is true:

If a maximum-likelihood estimate exists for a hierarchical

log—-linear probability model, then any marginal table corres-

ponding to a configuration contained in the model has no

empty cells.7
Note that this does not mean that a table which has all the sufficient marginal
tables filled is estimable. It is perfectly possible for the appropriate margins
to be filled without a maximum—likelihood estimate existing for the parameters of
the model.

Kawasaki (1979, pp.84-121) has developed an algorithm to determine the
estimability of any given model for any given observation vector. Unfortunately,
at least as it has been possible to program Kawasaki’s algorithm, this
computation is often more time consuming than simply estimating the model (Link,
1980). I am tempted to recommend that the minimally sufficient set of marginal
tables be examined. If a zero appears, one knows the model is not estimable; if
no zero appears, try to estimate the model. However, since convergence is
occasionally slow and because, in any case, the criteria by which convergence 1is
decided is, to some extent, arbitrary, I hesitate to recommend this procedure.
The question of deciding estimability remains unresolved at this time.

The suggestion is sometimes made that, to make a nonestimable model
estimable, one simply add a small number to sufficiently many empty cells in the
full table. I would expect the parameter estimates of those configurations which
would have been nonestimable to be quite sensitive to exactly what small numbers

were added, particularly so, if the corresponding marginal table contained a
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zero. Not only is this true, but, as Kawasaki (1979, pp. 111-18) ShOWs,_glL of
the estimates-and their standard errors are highly sensitive. Thus, the problem
of nonestimability cannot be resolved in this way.

When there are one or more empty cells in a marginal table corresponding to
a configuration, then a log-linear probability model in the hierarchical class of
models is not estimable. However, the model may become estimable if we suppress
some of the parameters of the configuration and the corresponding basis
vectors. For example, consider a model involving four trichotomous variables,
A,B,C, and D, and suppose the marginal table (AB) contains a zero. Then a
hierarchical model containing all main effects and all bivariate interaction
effects but no higher-order effects is not estimable. A hierarchical model
omitting the bivariate configuration AB but containing main effects for both A
and B is estimable (except for a pathological case neglected here). The
interaction configuration AB is determined by four parameters and four associated
basis vectors in any analysis—of-variance representation; it is possible that if
one deleted one or more of these parameters and their associated basis vectors
the resulting model containing a partial bivariate interaction configuration
would become estimable. Indeed, this frequently occurs; thus, the question
arises as to which parameters and associated vectors to suppress to make optimal
use of the data.

It may be thought that, if, the suppression of one parameter renders the
model estimable, then it would not matter which of the four parameters was
included for the value of the maximized likelihood function. Unfortunately, as
Kawasaki (1979, p. 139) shows, the value of the maximized likelihood function is
affected significantly. Thus, in principle, one could find that suppression
vielding the largest value of the maximized likelihood function and choose that
as the estimate of the model containing the partial configuration. The

implications of such a procedure in an econometric context are, mind-boggling,



since manv marginal tables are likely to contain at least one zero. It is one
thing to search over four parameters (characterizing a bivariate configuration
among two trichotomous variables); it is quite another to search over the 16
possibilities for two nonestimable interaction configurations, or 64 for three.
And what 1if some marginal tables have more than one zero? Obviously, the option
of searching is not a viable one in situations in which many, many zero cells are
encountered, as is the case in the econometric applications considered in this
paper. In the results reported in the text, in those cases in which a bivariate
configuration was not fully estimable, only the parameter 8(1,1) was retained,
the remaining three were suppressed.

A final point to be made here is one alluded tc in the preceding section.
One may think that, if a nonestimable configuration were to be found among the
conditioning variables in a conditional log=—linear probability model, there would
be no cause for concern since such interactions do not appear explicitly in the
conditional model. Unfortunately, this conjecture is false since the parameters
of these configurations enter the conditional probabilities implicitly. Thus one
might as well estimate a joint probability model containing all of the
configurations among conditional and conditioning variables that one needs to
define the conditional probability model in question. Given a joint model in the
hierarchical class with no nonestimable configurations, the efficient Deming-
Stephan algorithm may be employed. However, if some configurations are only
partially estimable, a modification of this algorithm must be used, which is much
less efficient computationally. An alternative calculation using a form of the
Newton-Raphson algorithm may be preferred, in which case direct calculation of
the parameters of the conditional, rather than the joint, probability model may
be considered. In any case, such calculation is necessary if any of the

conditioning variables are continuous, as in the Filipino farmer example.
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Footnotes for Appendix

The material in this appendix is drawn partly from M. Nerlove and S.J. Press,
Invited General Methodology Lecture, 1980 Meeting of the American
Statistical Association, Houston, Texas, August 11, 1980.

The reordering necessary is that the columns of the U matrix appear in order
of the effects parameters rather than the indices attached to the
probabilities in lexicographic order. This principle requires us to
interchange the second and third column of UA(:)UB in the 2x2 case. See
Kawasaki (1979, pp. 37~56).

The Kronecker product of the elementary basis matrices gives the basis
appropriate to the parameters in the following order: Let T be a vector

with elements

T[jl) s 9jq]9

Jk = O, eee Ik—l, such that T[jl, oo ,jq] is an effect parameter
of the order indicated by the number of nonzero arguments, at the "level”

given by the wvalues of those arguments; thus, for example,

-
~
—

-
o
-
.
-
-

-
(&)
~—
1]

al(l)

—
T
—

-
N
-
.
.
.

-
o
N~
1]

B,(1,2),

etc. Then, log p = U*T, but the elements of T are arranged

lexicographically, which does not place together all main-effect parameters,
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all bivariate interaction effect parameters, etc.
In this case the Krongcker product {%\CD UB gives the vectors corresponding to

the parameters in the following order:
2 "
(s 0, (D), ay(2), a (D), B,(1,1), B,(1,2), a/(2), 8,,(2,1), 8,,(2,2))

to obtain U from U* requires interchanging the second and fourth columns, the

third and seventh, etc.
See footnote 2.

This relationship depends on including all interaction configurations, not
assumed zero, in both the conditional and joint models. Thus, if three-way
and higher order interactions are assumed absent in the conditional model
they are also assumed absent in the joint model and vice versa.

This should be intuitive by analogy to multiple regression: To obtain
estimates of the regression coefficients, the variance-covariance matrix of
the independent variables must be estimable. (See also footnote 5 above.)

Furthermore, the MLE exists if and only if there exists an observation vector
such that it has positive frequencies in every cell that agree with the
given observation vector on the margins corresponding to included

configurations.
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