DISCUSSION PAPER NO. 510

VECTOR MEASURES ARE OPEN MAPS

BY

DOV SAMET*

NORTHWESTERN UNIVERSITY

NOVEMBER, 1981

The author acknowledges Zvi Artstein for a helpfull discussion.

VECTOR MEASURES ARE OPEN MAPS

BY

DOV SAMET

ABSTRACT

Nonatomic vector measures are shown to be open maps from the σ -field on which they are defined to their range, where the σ -field is equipped with the pseudo-metric of the symmetric difference with respect to a given scalar measure.

We prove the following:

Main Theorem: Let $\lambda, \mu_1, \dots, \mu_n$ be nonatomic, σ -additive, finite measures on a measurable space (I, Σ) , and let λ be a nonnegative measure. Then the vector measure $\mu = (\mu_1, \dots, \mu_n)$ is an open map from Σ to the range of μ , where Σ is equipped with the topology induced by the pseudo-metric d_{λ} defined by $d_{\lambda}(S,T) = \lambda[(S\setminus T) \cup (T\setminus S)]$, and the range of μ is equipped with its relative topology in \mathbb{R}^n .

Let us introduce the following notations. For S in Σ we denote by \overline{S} the complementary set I S. The symmetric difference of S and T, (SNT)U(TNS) is denoted by SAT. The Euclidian norm in \mathbb{R}^n is denoted by $\|\cdot\|$, and the scalar product of ξ and x in \mathbb{R}^n is denoted by $\langle \xi, x \rangle$. By the <u>relative boundary</u> of a closed set K in \mathbb{R}^n we mean the set of all points in K which are not in the relative interior of K. The <u>face</u> of a convex set K in the direction ξ , is the set $F(\xi) = \{x \mid x \in K, \langle \xi, x \rangle = \max_{x \in X, y \in Y} \}$. We say that a set K in \mathbb{R}^n is <u>strictly yek</u> convex if all the points on the relative boundary of K are extreme, or alternatively if for each $\xi \in \mathbb{R}^n$, $F(\xi)$ is either K or a singleton. For a scalar measure λ , we denote by $|\lambda|$ the sum of the positive and the negative parts of λ . For a vector measure $\mu = (\mu_1, \dots, \mu_n)$, $|\mu|$ is the sum $\sum_{i=1}^n |\mu_i|$. For each S we define $\mathbb{R}(\mu, S) = \{\mu(T) \mid T \subseteq S\}$. Clearly $\mathbb{R}(\mu, S) + \mathbb{R}(\mu, \overline{S}) = \mathbb{R}(\mu, I)$. By Lyapunov Theorem [1], $\mathbb{R}(\mu, S)$ is a convex and compact set.

A convenient way to describe $R(\mu,I)$ is as follows. Let f_i be the Randon-Nikodym derivative of μ_i with respect to $|\mu|$. and let $f=(f_1,\ldots,f_n)$. Then $\mu(S)=\int_S fd|\mu|$ and for $\xi\in R^n$, $\langle \xi,\mu(S)\rangle=\int_S \langle \xi,f\rangle\,d|\mu|$. Obviously $\mu(S)\in F(\xi)$ if an only if $\{t\mid \langle \xi,f(t)\rangle>0\}$ \subseteq $S\subseteq \{t\mid \langle \xi,f(t)\rangle>0\}$ almost everywhere with respect to $|\mu|$. It follows then, that $R(\mu,I)$ is strictly convex if and only if, the set $\{t\mid \langle \xi,f(t)\rangle=0\}$ is of $\overline{\mu}$ -measure zero for all

supporting hyperplanes ξ which do not contain $R(\mu,I)$, or alternatively if for each subspace V of R^n of dimension smaller than that of $R(\mu,I)$, the set $\{t,f(t) \in V\}$ if of $\overline{\mu}$ -measure zero.

We can prove now:

Lemma 1 There is a decomposition $R(\mu,I) = \sum_{i} R(\mu,S_i)$ such that $\bigcup_{i} S_i$ is a partition of I and $R(\mu,S_i)$ is strictly convex for each i.

Proof: The decomposition is built in n stages. In the stages $1, \dots, k-1$ a family of disjoint sets S_i^j , $1 \le j \le k-1$, $1 \le i \le i_j$ if defined (i_j is possibly ∞ or 0) such that $R(\mu, S_i^j)$ is strictly convex and of dimension j. Moreover, for each k-1 dimensional subspace of R^n , V, the set $\{t \mid t \in I \setminus U \mid S_i^j\}$, $\{t\} \in V\}$ is of $\bar{\mu}$ -measure zero. In the k-th stage we define the sets S_i^k , $\{t\} \in V\}$ which are all the subsets of $\{t\} \cup U \mid S_i^j\}$ of the form $\{t \mid f(t) \mid \epsilon \mid V\}$ which have positive $\bar{\mu}$ measure, where $\{t\}$ is a $\{t\}$ -dimensional subspace of $\{t\}$. The disjointness of the sets $\{t\}$ can be guaranteed since the intersection of such two sets is a set of $\{t\}$ for which $\{t\}$ belongs to a subspace of dimension less than $\{t\}$. The strict convexity of $\{t\}$ follows similarly.

Q.E.D.

Let us call a vector measure $\mu = (\mu_1, \dots, \mu_n)$ monotonic if each $\mu_i(1 \le i \le n)$ is either nonnegative or nonpositive. We will show now that it suffices to prove the Main Theorem for monotonic μ with strictly convex range 2^n $R(\mu, I)$. Indeed, there is a partition $I = \bigcup_{i=1}^n I_i$ such that the restriction of i=1 μ to each I_i is monotonic. We can decomposite, furthermore, each I_i

according to Lemma 1, to get eventually a partition $I = \bigcup S_i$ and a decomposition $R(\mu,I) = \sum_i R(\mu,S_i)$ such that for each i, μ is monotonic on S_i and $R(\mu,S_i)$ is strictly convex. For $\epsilon > 0$ and $S \in \Sigma$ denote

 $\Omega_{\mathbf{i}}(S,\varepsilon) = \{T | T \subseteq S_{\mathbf{i}}, \ d_{\lambda}(T,S \cap S_{\mathbf{i}}) < \varepsilon \} \ \text{and} \ \Omega(S,\varepsilon) = \{ \mathbf{U} \ T_{\mathbf{i}} | T_{\mathbf{i}} \ \varepsilon \ \Omega_{\mathbf{i}}(S,\varepsilon) \}.$ It is easy to verify that the family of sets $\Omega(S,\varepsilon)$ where S ranges over Σ and ε ranges over the positive reals, is a basis to the topology induced by d_{λ} on Σ . Moreover $\mu(\Omega(S,\varepsilon)) = \sum_{i} \mu(\Omega_{\mathbf{i}}(S,\varepsilon)).$

But $\mu(\Omega_{\hat{\mathbf{i}}}(S,\epsilon))$ **G** $R(\mu,S_{\hat{\mathbf{i}}})$, $R(\mu,S_{\hat{\mathbf{i}}})$ is strictly convex and the restriction of μ to $S_{\hat{\mathbf{i}}}$ is monotonic. Therefore by proving the Main Theorem for monotonic μ with strictly convex range we prove that $\mu(\Omega_{\hat{\mathbf{i}}}(S,\epsilon))$ is relatively open in $R(\mu,S_{\hat{\mathbf{i}}})$ which says that $\mu(\Omega(S,\epsilon))$ is relatively open in $R(\mu,I)$.

We assume now that μ is monotonic and that $R(\mu,I)$ is strictly convex. We start by proving the following lemma.

Lemma 2 If $x_0 = \mu(S_0)$ then for each $1 \le i \le n$ and $\epsilon > 0$ the set $\mu(S|d_{|\mu_i|}(S,S_0) < \epsilon)$ contains a set $\{x \mid x \in R(\mu,I), \|x - x_0\| < \delta\}$ for some $\delta > 0$.

We first prove the lemma in the case that x_0 is in the relative interior of $R(\mu, I)$, using lemma 3.

Lemma 3. If $x_0 = \mu(S_0)$ is in the relative interior of $R(\mu, I)$, then the intersection of the relative interiors of $R(\mu, S_0)$ and $R(\mu, \overline{S}_0)$ is not empty.

Proof of Lemma 3: Indeed, if this intersection is empty then there exists a hyperplane which separates the two sets and for at least one of them, say $R(\mu,S_0)$, contains only points from its relative boundary. Since $0 \in R(\mu,S_0) \cap R(\mu,\overline{S}_0)$ we conclude that there exists $\xi \in R^n$ such that

 $\langle \xi, \mathbf{x} \rangle \geqslant 0$ for $\mathbf{x} \in \mathbb{R}(\mu, S_0)$ and $\langle \xi, \mathbf{x} \rangle \leqslant 0$ for $\mathbf{x} \in \mathbb{R}(\mu, \overline{S}_0)$ and moreover for some \mathbf{x} in the relative interior of $\mathbb{R}(\mu, S_0)$, $\langle \xi, \mathbf{x} \rangle > 0$. Now let $\mathbf{S} \in \Sigma$ and denote $\mathbf{S}_1 = \mathbf{S} \cap \mathbf{S}_0$, $\mathbf{S}_2 = \mathbf{S} \cap \overline{\mathbf{S}}_0$. We have: $\langle \xi, \mu(\mathbf{S}_2) \rangle \leqslant 0 \leqslant \langle \xi, \mu(\mathbf{S}_0 - \overline{\mathbf{S}}_1) \rangle = \langle \xi, \mu(\mathbf{S}_0) \rangle - \langle \xi, \mu(\mathbf{S}_1) \rangle$ and therefore, $\langle \xi, \mu(\mathbf{S}) \rangle = \langle \xi, \mu(\mathbf{S}_1) + \mu(\mathbf{S}_2) \rangle \leqslant \langle \xi, \mu(\mathbf{S}_0) \rangle$. This inequality holds for each \mathbf{S} in Σ and moreover, for some \mathbf{S} the inequality is strict which shows that $\mu(\mathbf{S}_0)$ is in the relative boundary of $\mathbb{R}(\mu, \mathbf{I})$, contrary to our assumption.

Q.E.D.

Proof of Lemma 2: Assume first that x_0 is in the relative interior of Let \mathbf{E}_0 , \mathbf{E}_1 and \mathbf{E}_2 be the linear spaces spanned by R(μ ,I) R(μ ,S $_0$) and R(μ , \bar{S}_0) respectively, and denote by B $_0$, B $_1$ and B $_2$ the interesection of the unit ball in ${ t R}^{ t n}$ with ${ t E}_0$, ${ t E}_1$ and ${ t E}_2$ respectively. Since 0 ϵ R(μ ,S $_0$) Λ R(μ , \bar{S}_0), we find, using Lemma 3, a point w which belongs to the relative interiors of both R(μ , \overline{S}_0) and R(μ , S_0) and for which $\|\mathbf{w}\|<\frac{\varepsilon}{4}$. Choose now $0 < \eta < \frac{\varepsilon}{4}$ such that $w + \eta B_1 \leq R(\mu, S_0)$ and $w + \eta B_2 \leq R(\mu, \overline{S}_0)$. Clearly $E_0 = \frac{\varepsilon}{4}$ ${\rm E}_1+{\rm E}_2$ and therefore we can choose $0<\delta<rac{\varepsilon}{4}$ such that $\delta B_0 \subseteq \eta(B_2 + B_1) = \eta(B_2 - B_1)$. Now let $x \in R(\mu, I)$ with $\|x - x_0\| < \delta$ and denote $z = x - x_0$. Since $z \in \delta B_0$ there exist $z_1 \in \eta B_1$ and $z_2 \in \eta B_2$ such that $z = z_2 - z_1$. There exist also $S_1 \subseteq S_0$ and $S_2 \subseteq \overline{S}_0$ such that $\mu(S_1) = w + z_1$ and $\mu(S_2) = w + z_2$. Define $S = (S_0 \setminus S_1) \cup S_2$. We have $\mu(S) = \mu(S_0) - \mu(S_1) + \mu(S_2) = x_0 - z_1 + z_2 = x_0 + z = x$ and using the monotonicty of μ , $d_{|\mu_{z}|}(S,S_{0}) \leq \|\mu(S\Delta S_{0})\| = \|\mu(S_{1}) + \mu(S_{2})\| = \|2w + z_{1} + z_{2}\| \leq 2\frac{\varepsilon}{4} + 2\eta \leq \varepsilon.$ We continue now to prove Lemma 2 for x_0 on the relative boundary of $R(\mu,I)$. Consider a sequence $x_n = \mu(S_n)$ such that $x_n \to x_0$. We will show that $\mu(S_n\Delta S_0) \rightarrow 0$ which is more than we need to complete the proof of Lemma 3.

let $T_n' = S_n \cap S_0$ and $T_n'' = S_n \cap \overline{S}_0$. Since the sequences $\mu(T_n')$ and $\mu(T_n'')$ belong to the compact sets $R(\mu, S_0)$ and $R(\mu, \overline{S}_0)$ we can assume without loss of generality that $\mu(T_n') + \mu(T')$ and $\mu(T_n'') + \mu(T'')$ where $T' \subseteq S_0$ and $T'' \subseteq \overline{S}_0$. It follows that $\mu(T' \cup T'') = \mu(S_0)$ and since $R(\mu, I)$ is strictly convex $T' = \overline{S}_0$ and $T'' = \phi$ almost everywhere with respect to μ , which shows that $\mu(S_n \Delta S_0) = \mu(S_0) - \mu(T_n') + \mu(T_n'') + 0$.

Q.E.D.

To complete the proof of the Main Theorem we have to show that d_{λ} can replace $d_{|\mu_1|}$ in Lemma 2. There is a partition $I = S_1 U S_2$ of I such that the restriction of λ to S_0 is continuous with respect to $|\mu|$ and $|\mu|(S_2) = 0$. Define $\Omega_{\bf i}(S,\varepsilon) = \{T|T \subseteq S_{\bf i}, d_{\lambda}(T,S) < \varepsilon\}$ i=1,2, and $\Omega(S,\varepsilon) = \{T_1 U T_2 | T_{\bf i} \in \Omega_{\bf i}(S,\varepsilon), i=1,2\}$. Clearly $\mu(\Omega_2(S,\varepsilon)) = 0$. But $\Omega_1(S,\varepsilon)$ is open in the topology induced by $d_{|\mu|}$ on the σ -field $\{T|T \in \Sigma, T \subseteq S_{\bf i}\}$ and therefore by Lemma 2 $\mu(\Omega(S,\varepsilon)) = \mu(\Omega_1(S,\varepsilon))$ is relatively open in $R(\mu,S_1) = R(\mu,I)$.

<u>Corollary</u>: The projection $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ on the first n coordinates is an open map from $\mathbb{R}((\mu_1, \dots, \mu_{n+1}), \mathbb{I})$ onto $\mathbb{R}((\mu_1, \dots, \mu_n), \mathbb{I})$.

<u>Proof</u>: Denote $\mu = (\mu_1, \dots, \mu_{n+1})$. Then $\pi = (\pi \mu) \mu^{-1}$. The result follows from the continuity of $\pi \mu$ and the fact that μ^{-1} is an open map.

Finally let us remark that the Main Theorem in an extension of Lemma 2 in [2]. This lemma states for a nonnegative vector measure μ , that for each x in $R(\mu,I)$ there exists S with $\mu(S)=x$ such that any neighborhood of S (with respect to d_{μ}), is mapped by μ to a neighborhood of x. The Main Theorem is used in [3] where the weaker result of [2] in not enough.

REFERENCES

- [1] J. LINDESTRAUSS, A short proof of Liapuunoff's Convexity Theorem, J. Math, Mech. 15 (1966), 971-972.
- [2] Y. TAUMAN, A Characterization of Vector Measure games in pNA, <u>Israel</u>

 J. Math. (to appear).
- [3] Y. TAUMAN and J. REICHERT, The Space of Polynomials in Measures is Internal, Discussion paper of Everyman's University.