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VECTOR MEASURES ARE OPEN MAPS

DOV SAMET

ABSTRACT

Nonatomic vector measures are shown to be open maps from the o-field on
which they are defined to their range, where the o-field is equipped with the
pseudo—metric of the symmetric difference with respect to a given scalar

measure.



We prove the following:

Main Theorem: Let X,ul,...,un be nonatomic, o-additive, finite measures on a

measurable space (I,Z), and let A be a nonnegative measure. Then the vector
measure M = (ul,...,un) is an open map from I to the range of u, where I is
equipped with the topology induced by the pseudo—metric dk defined by
dA(S,T) = A[(S\T)V(T\S)], and the range of u is equipped with its relative
topology in RT,

Let us introduce the following notations. For S in I we denote by S the
complementary set T S. The symmetric difference of S and T, (S\T)U(T\S) is
denoted by SAT. The Euclidian norm in R" is denoted by I !, and the scalar

product of & and x in R" is denoted by <&,x>. By the relative boundary of a

closed set XK in R™ we mean the set of all points in K which are not in the

relative interior of K. The face of a convex set K in the direction &, is the

set F(E) = {xlx € K, <&,x> = max <g,y>}. We say that a set K in R® is strictly
yek

convex if all the points on the relative boundary of X are extreme, ot

alternatively if for each £ € R", F(£) is either K or a singleton. For a

scalar measure A, we denote by |A| the sum of the positive and the negative

n
parts of A. For a vector measure ju = (ul,...,un), lul is the sum ) |u,l.

L i
For each S we define R(u,S) = {u(T)ITS S}. Clearly R(u,S) + R(ufgi = R(p,I).
By Lyapunov Theorem [l1], R(u,S) is a convex and compact set.
A convenient way to describe R(u,I) is as follows. Let f; be the Randon-
Nikodym derivative of uy with respect to |u|. and let f = (£1,¢¢+,£,). Then
u(s) = fsfdlul and for £ e R%, <&,u(S)> = fs<a,f> dlul. Obviously
u(S) € F(&) if an only if {t| <€,f(t)> > 0} g S & {t| <&,f(t)> > 0} almost

everywhere with respect to lul. Tt follows then, that R(u,I) is strictly

convex if and only if, the set {tl|<E€,f(t)> = 0} is of u-measure zero for all



supporting hyperplanes § which do not contain R(u,I), or alternatively if for
each subspace V of R? of dimension smaller than that of R(u,I), the set

{t,f(t) € V} if of pu-measure zero.
We can prove now:

Lemma 1 There is a decomposition R(u,I) = I R(u,Si) such that Y Si is a
i i

partition of T and R(u,Si) is strictly convex for each i.

Proof: The decomposition is built in n stages. In the stages 1,...,k-1 a
family of disjoint sets Sg, 1< jsk-1, 1 <1iK< ij if defined (ij is possibly
@ or 0) such that R(u,Sg) is strictly convex and of dimension j. Moreover,

for each k-1 dimensional subspace of R%, V, the set {t|t e I\}).Sg, f(t) ¢ v}
is of p-measure zero. In the k-th stage we define the sets Sit,i < i< ik
which are all the subsets of I\}J'Sg of the form {t{f(t) € V} which have
positive u measure, where V is ;,£~dimensional subspace of R®. The

dis jointness of the sets S? can be guaranteed since the intersection of such

two sets is a set of t's for which f(t) belongs to a subspace of dimension

less than k. The strict convexity of R(u,SE) follows similarly.

Q.E.D.

Let us call a vector measure U = (ul,...,un) monotonic if each
ui(l < 1 € n) is either nonnegative or nonpositive. We will show now that it

suffices to prove the Main Theorem for monotgnic p with strictly convex range
2
R(u,I). Indeed, there is a partition I = V Ii such that the restriction of
i=1
U to each I; is monotonic. We can decomposite, furthermore, each I



according to Lemma 1, to get eventually a partition I = LJSi and a
i

decomposition R(p,I) = Z R(u,Si) such that for each i, M is monotonic on §;
and R(u,Si) is strictly zonvex. For ¢ > 0 and S € I denote

szi(s,e) = {TIlT ¢ S:» dA(T,SnSi) < e} and Q(S,e) = {;} TiITi € szi(s,e)}. It
is easy to verify that the family of sets R(S,e) where S ranges
over T and € ranges over the positive reals, is a basis to the topology
induced by dA on L. Moreover u(Q(S,e)) = ? u(Qi(S,e)).
But u(Qi(S,e)) [} R(u,Si), R(u,Si) is striztly convex and the restriction of

M to S; is monotonic. Therefore by proving the Main Theorem for monotonic

p with strictly convex range we prove that u(Qi(S,e)) is relatively open in
R(u,Si) which says that p(Q(S,e)) is relatively open in R(u,I).

We assume now that p is monotonic and that R(u,I) is strictly convex. We

start by proving the following lemma.

Lemma 2 If X, = u(So) then for each 1 € i € n and € > O the set u{SldIu |(S,So) < e}
i

contains a set {x|x € R(u,I), lx - on < 8§} for some § > O.

We first prove the lemma in the case that x is in the relative interior

of R(u,I), using lemma 3.

Lemma 3. If Xy = u(SO) is in the relative interior of R(u,I), then the

intersection of the relative interiors of R(u,SO) and R(u,§0) is not empty.

Proof of Lemma 3: Indeed, if this intersection is empty then there exists a

hyperplane which separates the two sets and for at least one of them, say
R(u,So), contains only points from its relative boundary. Since

0« R(u,SO)n R(u,§0) we conclude that there exists & € R® such that



E,x> 2 0 for x ¢ R(u,SO) and <€,x> < 0 for x € R(u,§o) and moreover for some
x in the relative interior of R(u,SO), <,x> > 0. Now let S € T and denote
S1 = SI)SO, 82 = Sf\SO. We have: <E,u(82)> <0< <£,u(SO S1
aud therefore, <&,u(S)> = <£,u(Sl) + u(Sz)> < <€,u(SO)>. This inequality

» = <£,u(SO)> - <£,u(sl)>

holds for each S in I and moreover, for some S the inequality is strict which
shows that u(SO) is in the relative boundary of R(u,I), contrary to our
assumption.

Q.E.D.

Proof of Lemma 2: Assume first that Xg is in the relative interior of

R(u,I). Let Ey, E; and Ep be the linear spaces spanned

by R(u,I) R(u,SO) and R(u,§0) respectively, and denote by Bj, B; and By the
interesection of the unit ball in R" with EO, Ey and E) respectively. Since
0¢ R(u,So)ﬂ R(u,§0), we find, using Lemma 3, a point w which belongs to the

relative interiors of both R(u,go) and R(u,So) and for which Iwl < %« Choose

now 0 < n < % such that w + nBl < R(u,SO) and w + nB2 < R(u,go)- Clearly Eg =

E; + Ey and therefore we can choose 0 < § < %—such that

§B, € n(B2 + Bl) = n(B

0 - Bl)' Now let x € R(u,I) with lIx ~ on < § and

2

denote z = x - XQe Since z ¢ GBO there exist z] € nBl and zy € nB2 such that

z =29 = 2z, There exist also Sl = SO and 52 c §O such that u(Sl) =w + zZy

and u(Sz) =w + z9. Define S (SO\SI)U Sy« We have

u(s) = U(SO) - U(Sl) + M(Sz) =%y "2 tzy =%y tz=x,
and using the monotonicty of u,
€
= ( =
dluil(S,SO) < Hu(SASO)H uu\sl) + u(Sz)H 12w + zy + z2H <2 7t 2n < €.

We continue now to prove Lemma 2 for Xy on the relative boundary of R(u,IL).
Consider a sequence X, = u(Sn) such that X > Xg. We will show that

u(SnASO) + 0 which is more than we need to complete the proof of Lemma 3.



' = " —..' ' "
let Tn Snr\S and Tn snr\so Since the sequences u(Tn) and u(Tn) belong to

0
the compact sets R(u,SO) and R(u,§0) we can assume without loss of generality
that u(Té) + u(T') and u(T;) > p(T") where T' € Spand T" & §0. It follows

that p(T'VT") = u(SO) and since R(u,I) is strictly coavex T' = §0 and T" = ¢

almost everywhere with respect to i, which shows that

u(SnASO) = u(so) - u(Tﬂ) + u(T;) + 0.
Q.E.D.

To complete the proof of the Main Theorem we have to show that d, can

A

replace dlui| in Lemma 2. There is a partition I = S;U Sy of I such that the
restriction of A to SO is continuous with respect to |u| and |u|(52) = 0.
Define Qi(s,e) = {TiT g 8.» dA(T,S) <e} i =1,2, and

Q(s,e) = {TlU T2! T, € Qi(s,e), i =1,2}. Clearly u(,(s,e)) = 0. But
Ql(s,a) is open in the topology induced by d|u| on the o-field

{TilTe Z, TE Si} and therefore by Lemma 2 u(Q(S,c)) = u(Ql(S,e)) is
relatively open in R(u,Sl) = R(u,I).

n+l

Corollary: The projection m:R + R"™ on the first n coordinates is an open

map from R((ul,...,un+1),1) onto R((ul,...,un),l).

Proof: Denote pu = (ul,...,un+1). Then w = (nu)u_l. The result follows from

the continuity of mp and the fact that u_l is an open map.

Finally let us remark that the Main Theorem in an extension of Lemma 2 in

[2]. This lemma states for a nonnegative vector measure M, that for each x in
R(u,I) there exists S with p(S) = x such that any neighborhood of S (with
respect to du), is mapped by u to a neighborhood of x. The Main Theorem is

used in {[3] where the weaker result of [2] in not enough.
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