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ABSTRACT

We study games with incomplete information from a point of view
which emphasizes the empirical predictions arising from a model. We
prove four main theorems: (i) a mixed-strategy Nash equilibrium
existence theorem, (ii) a pure-strategy equilibrium existence theorem,
(iii) a pure-strategy €-equilibrium existence theorem, and (iv) a
theorem describing how the set of equilibria varies with the parameters
of a game. We illustrate the application of the distributional point of
view to the computation of equilibria and the determination of their

nroperties.



DISTRIBUTIONAL STRATEGIES FOR GAMES WITH INCOMPLETE INFORMATION
by

Paul R. Milgrom and Robert J. Weber

l. Introduction

In 1961, William Vickrey introduced games with incomplete
information into the mainstream of economic theory in a study of
competitive bidding [30]. The variety of applications of these games
has widened considerably over the years (as evidenced by [6, 13, 18, 21-
23, 25, 26, 31])), and many contributions have been made to the
underlying theory of information [15-17, 20].

Despite these advances, the most fundamental questions which arise
in applications remain unanswered. Do Nash equilibria exist for general
games with incomplete information? When will such games have equilibria
in pure strategies? How sensitive are equilibrium outcomes to modeling
assumptions? For example, can a small variation in the assumed
information structure lead to a large change in the equilibrium
strategies?

Our aim is to provide partial answers to all of these questions,
for one-stage simultaneous—move games. We prove an equilibrium
existence theorem for a broad class of these games. We also prove that,
with the appropriate concepts of closeness for information structures,
savoff functions, and strategies, the correspondence that maps the
specifications of a game into its set of Nash equilibria is upper-

hemicontinuous. The ideas underlying this continuity theorem have been



used elsewhere {13, 21] to simplify and unify the solutions of certain
bidding games and to gain insights into the nature of the equilibria of
these games; here we use them to study a game of timing that can serve
as a model of strike behavior, or competition between animals. For
games in which the players' informational variables have atomless
distributions, we show that each player's set of pure strategies is
dense in his complete set of strategies. For such games, mixed
strategies are empirically indistinguishable from pure strategies and so
the common objection that "one never observes people adopting mixed
strategies” has no force. Finally, we identify a large class of 3zzames
which always have pure-strategy equilibrium points.

The games which we study can be described as follows. Each
player 1 observes an informational variable (or type) £y whose
values lie in some complete, separable metric space T, . After
observing his type, player i selects an action a; from some compact

1

metric space Ay of feasible actionse.

To accommodate a large variety of applications, we allow each
player's payoff to depend on the actions chosen by all the players, on
all the players' types, and also on some environmental variablel to

chosen by Nature from the set Ty. We designate player 1i's payoff

by U;

i ® Uj(tgyeee,ty,a),000,a,), where n is the number of players.

Within this formulation, we define an information structure n for the

game to be a joint probability distribution on Ty xeeex T, (where the

measurable structure on each Ti is its collection of Borel subsets).



Thne conventional analysis of games involves three types of

strategies: pure, mixed, and behavioral. A pure strategy is a

measurable function Py* Ti *> Ai' This has the interpretation that when

player 1 learns that his type is t;, he selects the action pi<ti)°

Aumann [2] has observed that to define a mixed strategy properly (when

T; 1is "large”) a randomizing device must be introduced for each

player. Thus, let ;i be uniformly distributed on [O0,1]. A mixed

strategy for player 1 1is a measurable function g, (0,1] x Ti + Ai'
i

The interpretation is that when player 1 observes his type t, and

his randomizing variable s he selects the action ci(si,ti). Let

i

44 Dbe the collection of Borel subsets of Aj. A behavioral strategy is

a function Si: éi x Ti + [0,1] with these two properties: (i) For
every B ¢ éi’ the function Bi(B,-): 'I'i + [0,l] 1is measurable. (ii)
For every t; € Ti’ the function Bi(-,ti): Ap > (0,1] i; a probability
measure. The interpretation of a behavioral strategy is that when
nlayer 1 observes L he selects an action in A; according to the
measure Bi(°,ti).

These conventional characterizations of strategies are not well-

suited to our purposes. Instead, we define a distributional strategy

for player 1 to be a joint probability distribution on T; x Ay for

which the marginal distribution on T; 1is the one specified by the
information structure. We shall later show that distributional
strategies are simply another way of representing mixed and/or

behavioral strategies. While no meaningfully distinct strategies are

added or deleted through this representation, the representation is aore



convenient for studying the relationship between the data of a game and
the game's equilibria.

The remainder of this paper is organized as follows. In Section 2,
we present an example to illustrate the desirability of a distributional
view of strategic behavior. Section 3 contains a formal description of
our model and presents the Existence Theorem, which provides sufficient
conditions for the existence of an equilibrium in distributional
strategies. The Convergence Theorem, which is developed in Section 4,
asserts that when the data that specify a game are varied
"continuously,” the set of equilibria varies upper-hemicontinuously.

Two examples serve to clarify the conditions of the theorem.

We take up the matter of pure-strategy equilibria in Section 5.

Two theorems and a corollary summarize our results. Theorem 3 (the
Denseness Theorem) states that a player's set of pure strategies is
dense in the set of all his distributional strategies when his type has
an atomless distribution. 1Its corollary asserts the existence of
approximate equilibria in pure strategies. To study exact equilibria,

we need the following definition. A mixed strategy o¢ 1s said to have

a purification if there is a pure strategy ¢ with these two

properties: (i) o 1is a best reply to the opposing strategies whenever

g 1is, and (ii) for whatever strategies the other players may adopt, it
is always true that the expected payoff of each type of each opposing
plaver is the same against ¢ as against o¢. Theorem 4 (the

Purification Theorem) gives sufficient conditions to ensure that every

aixed strategy has a purification. When the conditions are satisfied,



every nixed-strategy equilibrium corresponds to some pure-strategy
equilibrium in which each player faces the same decision problem (at
equilibrium) and earns the same expected payoff as in the mixed strategy
equilibriume. Section 6 uses the distributional strategy approach to
solve completely the "War of Attrition” game introduced in Section 2,
and Section 7 indicates how the assumption that the type spaces are
metric can be relaxed and how the case of "inconsistent beliefs” can be

treated.

2. An Example: The War of Attrition

In this section, we present an example which illustrates how the
standard appreoach to games with incomplete information obscures the
important relationship between the data specifying a game and the game's
equilibria. The game we analyze 1s known as the War of Attricion.2 It
has been used to study conflict among animals [6)., although it applies
equally well to other conflicts, such as labor-management disputes
involving strikes.

In the animal conflict interpretation, two animals battle for a
valuable prize, such as food or the opportunity to mate. Animal i
(i = 1,2) would be willing to fight for up to t; minutes to acquire
the prize if he could be certain the battle would end with victory. If
he actually fights m wminutes and drives off his competitor, his payoff
is ty T @ If he fights m winutes and then retreats, his payoft
is -m. (Thaﬁ is, there is an opportunity cost associated with the time

spent in conflict.) Each animal, xnowing only his own type t;, aust

decide how long he is willing to perservere in the battle.



Formally, we have Ty = T = A = &9 =R, Also,

'Ui(tl’tz’al’aZ)

- ay otherwise |,

-~

where {i,j} = {1,2}. Suppose El and t, are independent and
identically distributed with common distribution F. Further suppose
that F 1is absolutely continuous, with continuous density F' = f. The
standard treatment of this game proceseds in the following manner.

Since the game is symmetric, it is natural to look for a symmetric

Nash equilibrium point3

in which both competitors use some pure strategy
7,
0. Assume animal | "believes" that an increasing, differentiable™

strategy ¢ will be used by animal 2. Then if 1's type is t and if

he plans to persevere until a, his expected payoff is

o (a) -1
i ([t = o(s)] £(s)ds - a[l - F(a "(a))] .
0
If o 1is to be a symmetric equilibrium strategy, this expected payoff

@must be maximized when a = og(t). The resulting first-order condition,

together with the boundary condition o(0) = 0, leads to

rtC S f(S)

(2-1) O(E) = JO ﬁ(—s—)—

ds

the strategy pair (o,0) 1is known to be the unique symmetric

equilibrium point of the game.



If, instead of assuming that F 1is continuous, we assume that F
concentrates all its mass at some value v, then no symmetric pure-
strategy equiiibrium point will exist. Consequently, we search for a
symmetric mixed-strategy equilibrium. Let G*(a) be the probability at
equilibrium that an animal will not perservere beyond time a. It is
straightforward to show that the distribution G* wmust be atomless and
that its support must be coanvex (cf. [6]).

Let w be the equilibrium expected payoff. Then, for every action

in the support of G*,

r o= fg (v = x) dG*(x) - a(l - G*(a))
(2.2)
= vG*(a) - [J (1 = G*(x))dx .

(The latter equality is obtained using integration by parts.) Since
G*(0) = 0 (because G* 1is atomless), setting a = 0 in (2.2) leads to
the conclusion w7 = 0. With = = 0, the unique solution of the integral

equation (2.2) is
(2.3) G*(a) = 1 = exp(=a/v) .

Thus the equilibrium strategy calls for an animal to randomize his
efforts using an exponential distribution whose mean v is the value of
the object.

These two variants of the War of Attrition appear rather different

on the surfacz. In the first gzame, there is a pure-strategy equilibrium



which specifies how long an animal should perservere as a function of
how hungry it is for the prize. In the second game, the animals
randomize over actions.

In order to compare the predicted behavior in these two variants,
we determine the distribution G of the first animal’': actions which is
induced by the equilibrium strategy in the first game. To compute G

from the data of the game we begin with the observation that

~

~ 'l s £(s)
(2.4) G(a) = Pr(d(tl) <a) = Pl‘(fo FH—S-)— ds < a) .

Assume that F concentrates its mass on a neighborhood (v-g, wvte).

Then the integrand in (2.4) is nonzero only if s < weg, and so

~

t
G(a) » Pr((v+e) IOl T§§%§7 ds < a)

- pr(F(El) < l-exp(-a/(v+e)])
= l-exp(=-a/(v+e)] ,

since the random variable F(El) has the uniform distribution on (0,1)
(cf. [8], page 38). Similarly, since the integrand is only nonzero if

s > v=¢, G(a) < l-exp{-a/(v-¢)}. From these two bounds on G(a), it is
clear that G approaches G* pointwise as € + 0. That convergence is
comforting to the behavioral theorist, since it would be quite
unsettling if a slight change in the specifications of the model led to

a large change in predicted behavior.



We shall return to this example in Section 6. There, we illustrate

now a direct distributional analysis of the game unifies the above

results, yields new insights into the nature of equilibrium behavior,

and clarifies the dependence of the equilibrium strategies on the

underlying parameters of the game.

3. The Formal Model and the Existence Theorem

There are six formal elements in our model. The first four are:

(1) the set of players: N = {l,Z,...,n}.

(i1) the set of types for each player: {Ti}isN . Each T I1is

a complete, separable metric space.

(iii) the set of actions available to each player:

Each Ay is a compact wmetric space.

(a;hey -

(iv) the set of possible states: To, a complete, separable

metric space.

Let T = T, XeeeX Tn and let A T A, XeeaX Au' Then the last two

0 1

elements are:

(v) the payoff functions: {Ui}isﬂ . Each Ui

measurable function from T x A 1into R.

is a bounded,

(vi) the information structure: n, a probability measure on the

3orel subsets of T.



Associated with the information structure n 1is a wmarginal distribution
on each T; which we denote by nje Thus, if S 1is a Borel subset

of T, then
nl(S) = n(TO x S x Ty Xeosx Tn) .

A pure strategy is a measurable function Pyt Ti +> Ai + In the

case where Ty is uncountable, it was observed by Aumann [2] that a
mixed strategy cannot be acceptably defined as a wmeasure on the set of

pure strategies. To find a more appropriate definition, he reasoned as

follows.

Let us recall the iIintuitive meaning of a mixed strategy: It is a
method for choosing a pure strategy by the use of a random

device. Physically, one tosses a coin, and according to which side
comes up chooses a corresponding pure strategy; or, if one wants to
randomize over a continuum of pure strategies, one uses a
continuous roulette wheel. Mathematically, the random device - the
sides of the coin, or the set of points on the edge of the roulette
wheel - constitutes a probability measure space, sometimes called a
sample space; a mixed strategy 1Is a function from this sample space

to the set of all pure strategies. In other words, what we have

here is precisely a random variable whose values are pure

strategies. We previously attempted to work with something
corresponding to the distribution of this random variable; now we

propose to use the random variable itself.>
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It is this idea which underlies the definition of a mixed strategy
for player 1 as a measurable function g, [0,1] x Ti > AL. Our
approach of defining a (distributional) strategy as a measure on

T; x A; provides another way of avoiding measurability problems.

Definition: A distributional scrategy for player i 1is a

probability measure H; on the Subsets6 of T; x A4, for which the

marginal distribution on T; 1is nye. Formally, this restriction on the
marginal distribution is that for all § c Ty, ui(S x Ai) = ni(S).
When the players adopt distributional strategies (ul,...,un), the

expected payoff T to player i 1is defined to be:

T uyseen,u ) = [ U (r,a) wy(dagfe)eeen (da le ) n(de) .

There is a simple correspondence between a player's behavioral
strategies and his distributional strategies. Given a behavioral
strategy Si, the corresponding distributional strategy My is defined

for each § x B C T; x 4y by7

u, (S x B) = £ 8, (B,r;) n (dry)
In the reverse direction, for any given distributional strategy My the
corresponding behavioral strategies are the regular conditional
distributions (see [7] for definitions): Bi(B,ti) = ui(Blti).
Aumann [2] has shown that there is a many-to—one mapping from mixed
o5 behavioral strategies that preserves the players' expected payoffs.

We have just seen that there is another amany-to-one wapping from

benavioral strategies to distributional strategies; this, too, »reserves



payoffs. Since any pair of distinct distributional strategzies will
generally lead to distinct payoffs and since distinct distributional
strategies represent different predictions about a player's behavior in
the game (when his type and selected action are observable),
distributional strategies give the most parsimonious representation
possible of a player's meaningful strategic options.

Consider the following regulariry conditions for the games we are

studying.

Rl: Equicontinuous Payoffs. For every player 1 and every

€ > 0, there is a subset E of T such that n(E) > l-¢ and such

that the family of functions {Ui(t,-)lteE} is equicontinuous.

R2: Absolutely Continuous Information. The measure n 1is

8

absolutely continuous® with respect to the measure

-

n = Ng Xe+eX M - We denote the demsity of n with respect to n

by f.

A principal requirement imposed by Rl is that for any ¢t the
players' payoffs must be continuous functions of their actions. This
aspect of the condition is genuinely restrictive: it rules out many
bidding games and games of timing. One cannot, however, préve an
existence theorem without some such restriction. For example, there are
bidding games for which no equilibrium exist:s.9

The following proposition indicates that a largze number of wodels

do meet the requirements of Rl.
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Proposition l: ©Each of the following three conditions is

sufficient to imply Rl.

(a) For each 1, A; 1is finice.

(b) For each i, U;s Tx A+ R is a uniformly continuous

function.

(¢) For each i, and for each t in T, Ui(t,-) is (uniformly)
continuous with modulus of continuity &(t,e), and for every

e >0, 6(+,e) 1is measurable.

The following important consequence of the continuous payoffs

condition can be proved using Lusin's Theorem.

Proposition 2: In a game with continuous payoffs, the following

condition is satisfied:

Rl*: For every player 1 and every ¢ > 0, there is a
continuous function VE: Tx A+ R and a subset K of T such
that (1) n(K) > 1-e, (ii) V_ has the same bound as Uj, and

(iii) V€ and U; agree on K x A.

Condition R2 is a fairly weak requirement on the joint information

-~ ~

of the players. It is always satisfied when the variables to,...,tn

are independent, as well as when T 1is finite. It is also satisfied in

many applied models.lo Nevertheless, 2 is a potent assumption. It



allows us to express the players' expected payoffs in a convenient
manner:
(3.1)  mGupyeee,u ) = [ U (r,a) £(r) np(de)dujeedu .
Tx A
The frequent applicability of R2 is emphasized by the following

proposition.

Proposition 3: Each of the following three conditions is

sufficient to imply R2.

(a) For each 1, T, 1is finite.

-~

(b) The variables EO""’tn are independent.

(¢) There exists some product measure X = AO XeooX xn on

™

[y Xeeox Tn such that n 1is absolutely continuous

with respect to .

Theorem l: (Existence Theorem) If a game has equicontinuous
payoffs and absolutely continuous information (i.e., if it satisfies Rl
and R2), then there exists an equilibrium point in distributional

strategies.

Proof: We verify that conditions hold that are suifficient for the
application of Glicksberg's existence theorem.ll

In view of the tightnessl2 of n (and hence of each ni) and the
compactness of the action spaces, each player's set of distributional

strategies is a tight set of probability measures; also, it is easy to

check that the set is closed in the weak topology. By Prohorov's
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Theoren, it follows that the strategy sets are compact metric spaces

in the weak topology. Convexity of these sets is also easy to check.

Since the density f of n with respect to n 1s n-integrable,

there exists a sequence {fb} of bounded continuous functions such that

f |f(t)-fb(t)| n(de) » 0 .
T

*
Also, using Rl , we can approximate any Ui by a continuous function

14

Va' Let B be a bound on U and let {(uT,...,ui)} be a sequence

i

of strategy n-tuples converging to (ul,...,un). Then using (3.1),

k k
Wi(ul’oa- ,un)
(3.2)

= [ v.(t,a) £.00) n.(dedpt . dn® + RN, e)
Txa € b 0 0 1 n

where

IR%(b,e)| < B [ [£(t) - £.(0)] n(do) + 268 .
T
An expression similar to (3.2) can be written for ni(ul,...,un).

Since the integrand in (3.2) is bounded and continuous, it follows for

all pairs (b,e) cthat

. k k
llmksup lni(;l,...,un) vi(ul,...,un)l

<28 [ J£(o) - fb(c)l n(dt) + 4eB .

For large b and small €&, this bound approaches zero. Hence, ™ is

continuous. From (3.1), ™ is linear.
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In summary, when distributional strategies are topologized by weak
convergence, the players' strategy sets are compact, convex metric
spaces and the payoff functions are continuous and linear. By

Glicksberg's theorem, an equilibrium exists. Q+E.D.

4, The Convergence Theorem

Having proved the existence of a Nash equilibrium we turn our
attention to sequences of games to study how variations in the
specifications of a game affect the game's equilibria. Throughout the
analysis, we hold the type space T fixed and we assume that Rl and R2

nold. We index games in the sequence by k. In the k-th game, nk is

the distribution of types, and we define nk = ng XeoooX ni and
fk = dnk/dnk. The set of actions available to player 1 1is a compact

set A? and his payoff function is U?. The corresponding items in

X Ak x K * Kk k
the *-game are n , n, f , Ay and Uje Let (ul,...,un) be an

equilibrium point of the k-th game.

Theorem 2: (Convergence Theorem) Suppose that each game has
equicontinuous payoffs (Rl) and absolutely continuous information

(R2). 1If for all 1 e N,

* ~r
(1) {ui} converges weakly to u., and hence ("}

converges weakly to n ,

1 *
(ii) {Ui} converges uniformly to U,

o - ) *
(iii) {f7} converges uniformly to £ on every compact subset



. X, .- * .
(iv) bi is continuous on T x A and f is continuous almost

~%
everywhere [n |, and

k . - . *
(v) (A7} converges in the Hausdorff metric to A:,
i g i

* *
then (ul,...,un) is an equilibrium of the *-ganme.

Proof: Suppose, contrary to the theorem, that player 1 has a pure
strategy o* in the *-game which raises his expected payoff by some
positive amount a over his payoff from playing u:. Notice that a
pure strategy in distributional form is simply a probability measure
concentrated on the graph of a classical pure strategy. Then, by
condition (v) of the theorem, there exists a sequernce {ck} of pure
strategies, viewed as functions, that converges uniformly to o*, where
ck is a feasible strategy in the k~th game.

Arguing as in the proof of the Existence Theorem, one can show

that:

. k, k k * % *
(a) lim wl(ul,...,un) = wl(ul,...,un) , and
ko
. k, k k k * * % *
(b) ‘!];12 TTl(O' ,uz,noo,un) TTl(O ,uz,oco,..ln .

Also, by assumption,

x k% * X % *
(c) wl(c ,uz,...,un) > wl(ul,...,un) +a .
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From (a), (b), and (c) it follows that for all sufficiently large Kk,
the strategy ok is better than uT in the k-th game, contradicting

1
our hypothesis that each (uf,...,ui) is an equilibrium point. Q«E.D.

Condition (iii) of the theorem is noteworthy: it is not sufficient

*
that the nk's converge weakly to n , as the following example shows.

Example l: A Bayesian statistical decision problem is a game

pitting one strategic player (the statistician) against Nature. We pose

the standard estimation problem in which the statistician must estimate

an unknown parameter tge Let
Tp = {0,1}, T =4, = [0,1] .

In this problem, one often supposes that there is a quadratic loss

function:
-t =n)2
U(to,a) = (eg-2) .

We define a sequence of games, in which the information structure for

the k—~th game is concentrated on 2k points:

pr{Eo =0, El = j/k} = 1/(2k) for j = l,eee,k

pr{EO =1, El = (25-1)/(2k)} = 1/(2k) for j = l,eee,k .
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The information structure for each game conveys perfect information

about EO' 1f ZKEl is even, then EO =0 ; if it is odd, then
EO = 1, Obviously, the optimal strategy in the k-th game 1is:
K 0 if 2ktl is even
g (tl) a
1 1if 2ktl is odd .

Passing to the weak limit, the information structure becomes:

Pr{EO =0, £, < a} = Pr{EO =1, t, <a} =a/2 .

1 1

For this information structure, t, and ¢t

9 are independent! Thus,

1

tl conveys no information about to. The optimal strategy under this

null information structure isl® c(tl) = 1/2. The weak limit o* of
the sequence {ok} is quite different (and nonoptimal), calling for the
player to choose his estimate to be either 0O or 1, each with

probability 1/2.
The following example highlights the role of assumption R2.

Example 2: Consider the following variant of the "Battle of the
Sexes” game. let T, = T, = {0,l] and let &; = Ay = {1,2}. Assume
that the payoffs are independent of the types, and are given by the

following table.
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Suppose that the information structure is gziven by

Pr{El < u, EZ < v} = min(u,v) ,

where u and v are numbers in [O,l1]. Thus, £ and these

lECZ,

variables are uniformly distributed. Now consider the pure strategies

K 1l 1f the integer part of kt is odd ,
o (t) =
2 otherwise .
If both players adopt the strategy ok, perfect coordination is achieved
and the strategy pair is an equilibrium point. The limit of this

sequence of pure strategies is the following distributional strategy for

player 1i:
. T < = = Py = = .
(4.1) Pr{ti u, a; 1} Pr{ti <y, a; 2} = u/2

Equation (4.1) asserts that the player ignores his information and
randomizes his choice of action, choosing each action with
probability 1/2. This "limit"” is not an equilibrium: a better
response for player 1 would be to choose action 1 with certainty.
Thus, the set of equilibria of this game is not closed in the weak

topology, and hence the Convergence Theorem cannot apply to this game.

3. Pure Strategies

Game-theoretic models are often criticized for their reliance on
mixed-strategy equilibrium points. Critics argue that mixed strategies
have no role in a behavioral theory: people do not base their decisions

on the roll of a die or the toss of a coine.



There are several kinds of responses one might make to such
criticisms. First, one can challenge the premise that mixed strategies
are not actually observed. Close decisions are often made on the basis
of minor distinctions or simple whimsy, factors which are hardly less
random than roulette wheels. Second, one can claim that the critics
have failed to show that there is any observable difference between
mixed and pure strategic behavior. Third, models without pure-strategy
equilibria may nevertheless have pure-strategy s—equilibria16 for every
positive €. If these are "close” to the mixed-strategy equilibria in
some appropriate sense, and if the e—-equilibrium concept seems
empirically justifiable, then mixed strategies can be viewed as a
convenient technical device for behavioral modeling. Finally, one can
accede to the critics and try to identify classes of games for which
pure-strategy equilibria exist.

The two theorems that we offer in this section address this whole
range of possible responses. The Denseness Theorem asserts that if a

17 then his set of pure

player's type has an atomless distribution,
strategies is dense in his entire strategy set. It then follows that if
one can only observe points in Ty x A4 subject to some continuous
measurement error, pure strategies and mixed strategies are empirically
indistinguishable. Moreover, starting at any mixed-strategy equilibrium
point, the Denseness Theorem implies that one can locate a nearby pure-
strategy e€-equilibrium point.

The Purification Theorem identifies a class of zames with the

property that every mixed strategy has a corresponding pure strategy



- 22 -

such that (i) the pure strategy is optimal whenever the mixed strategy
is, (ii) substituting the pure strategy for the mixed strategy leaves
the other players' decision problems unchanged, and (iii) an observer
seeing only ty and a would be unable to distinguish the pure

strategy from the mixed strategy.

Theorem 4: (Denseness Theorem) Suppose that U is atomless.
Then player i's set of pure strategies is demse in his set of

distributional strategies.

Proof: Fix a distributional strategy u for player i, and fix
€ > 0. Since Ay 1is compact, there exists a finite e-partition

Bi,see,B of Ay (i.e., a partition such that each Bz has radius

less than ¢€.) Since T;

; 1s complete and separable, n; is tight

([5], Theorem 1l.4). Therefore T; can be partitioned into {K,SO},

where K 1is compact and ni(SO) { €. Also, K has a finite

g-partition {Sl,...,Sm}. Since ny is atomless, each Sj can in turn

be partitioned into sets Sjj,«++,5y, such that ni(sz)/ni(Sj) =

U(Bllsj) for 2 = l,ese,k (cf. [12], or [8], Section 2.2, problem 23).
Fix any points b;,...,b  in Bj,...,B,, and define a pure

strategy o_: T, » Ay by oe(t) = bl for all t 1in § It is

e’ i je°

routine to verify that as e + O, g converges weakly to p (cf. [4],

Pgo 603])‘ QoEo Do

In the statement and proof of the Denseness Theorem, we have
assumed neither equicontinuous payorfs nor absolutely continuous
iaformation. In the course of proving the Existence Theorem, these two

conditions were shown to imply that each plaver's expected payoff is a
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continuous function of the n-tuple of strategies. Thus, these
continuity conditions, together with the Denseness Theorem, ensure that
there are pure-strategy e=equilibrium points arbitrarily near any
mixed-strategy equilibrium point. In view of the Existence Theorem, we

have the following result.

Corollary: If a game satisfies the equicontinuous payoffs and
absolutely continuous information conditions (Rl and R2), if each n;
is atomless, and if the action spaces are compact, then for every

€ > 0 there exists a pure-strategy e-equilibrium point.

Adapting terminology introduced by Radner and Rosenthal [27] to our

model, we say that a pure strategy o is a purification of the

1

strategy ul if two conditions are met:

(5.1) For almost every s dl(tl) lies in the support of ul(-ltl).
(Consequently, if My is a best response to some (n-1)-tuple of
strategies (uz,...,un) and if Rl holds, then g is also a best

1

response.)

(5.2) For every player i # 1 and every (n-l)-tuple (“2""’“n) of
strategies for players 2,...,n, substituting 9, for W, Ppreserves i's

expected payoff: ni(ul,...,un) = ni(ol,uz,...,un) .

It is clear from the definition that if (ul,...,un) is an
equilibrium point and 9, is a purification of Moo then

(cl,uz,...,uq) is also an equil. -ium point. Radner and Rosenthal have

shown that if (i) the plavers' types are mutually independent, (ii) each



Ny is atomless,l7 (iii) player i's payoff depends only on his own
type t, and the list of actions a (that is, U, = U;(c;,a)), and (iv)
the action spaces are all finite, then each strategy of each player has
a purification;

In a paper studying statistical decision problems, Dvoretsky, Wald
and Wolfowitz [1l1] proved that if Ty 1s a finite set and " is

atomless, then for every strategy y there is a pure strategy 9

satisfying condition (S5.1) and the following condition:

(5.3) Conditional on any t the distributions induced on A, by

O’

My and ¢ are identical, i.e., for any subset B of ar,

1

-1
n (o "B ley) = [ w (Ble,) ny(de le)

1 0

As a corollary to the Dvoretsky-Wald-Wolfowitz result and to the

Existence Theorem, we obtain the Purification Theorem.

Theorem 4: (Purification Theorem) If (i) conditional on to» the
players' types are mutually independent, (ii) each Ny is atomless,
(iii) player i's payoffs depend only on the state variable tO’ his own

type ti’ and the list of actions a (that is, Ui = Ui(to,ti,a)),
(iv) payoffs are equicontinuous (Rl holds), and (v) Ty 1is a finite
set, then each strategy of each player has a purification satisfying
conditions (5.1), (5.2) and (5.3). Furthermore, the game has an
equilibrium point, and hence has an equilibrium point in pure

strategies.



Proof: 1It is direct to verify that conditions (i), (iii), and
(5.3) imply (5.2), so the existence of purifications follows from the
Dvoretsky-Wald-Wolfowitz theorem. Also, it is direct to show that
conditions (i) and (v) imply R2, so existence follows from the Existence

Theorem. Q.E.D.

Theorem 4 extends the Radner—-Rosenthal result to include the case
of compact actions spaces and, more importantly, to allow some players
to have information about variables that appear in other players' payoff
functions. Models with this latter feature are known as "adverse

selection” models, and play an important role in information economics.

6. Applying the Distributional Point of View

In order to illustrate the insights into a problem which can be
gained through the distributional approach, and also to demonstrate the
computational techniques associated with the approach, we return our
attention to the War of Attrition. It warrants noting that neither the
Existence Theorem nor the Convergence Theorem applies to this game,
since the payoff functions are not continuous in the players' acts.
Hence, our analysis will demonstrate the applicability of our ideas in
an even broader setting than that in which those theorems were
developed.

To facilitate the distributional analysis, we shall reformulate the
War of Attrition game. In our new formulation, each animal 1 has a

tvpe Ei which is uniformly distributed on (0,1l). If animals 1 and 2
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resolve to perservere until times m; and my, respectively, then their

payoffs are given in the following table.

Condition Animal 1 Animal 2
m; > m, a(tl) - o, -my

@, > m - a(tz) - o
a; = my Ypa(t)) - m Ypa(t,) - o,

Here, a(ti) represents the value of the prize to animal i. To model
the case where the value (in the original formulation of the game) has
some strictly increasing continuous distribution F, we may take
a = F-l. If F concentrates all its mass at a point v, we may take
a = ve In general, for any desired value distribution F, there is some
nondecreasing function a such that a(Ei) has that distribution.18
Thus, we may assume without loss of generality that a is
nondecreasing.

Let ¢ :{0,1] *R, denote a symmetric equilibrium strategy for the
game. As in Section 2, we may take ¢ to be nondecreasing. Notice

that c-l is the distribution of quitting times for each animal. Thus,

if animal 1 with type tl fights until time a, his expected payoff is

(6.1) 3 (ale) = 8) doM(s) - all - g (@) .
The first-order optimality condition is:

-1
(5.7) 1 - do “/da ’

alt ) 1 - c-l(a)
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and equilibrium requires that a = o(tl), or equivalently, that

Pl o-l(a). Substituting the latter equality into (6.2) yields:
1 do”'/da
(6.3 s T oo
alo “(a)) 1 -9 (a)

The left-hand side of (6.3) is a nonincreasing function of a and
the right-hand side is the hazard rate of the distribution of individual
quitting times at equilibrium. From this, we obtain a new result: the
hazard rate of the duration of conflict is nonincreasing. This is an
empirical prediction of the model which is independent of the
specification of a.

Substituting a = o(tl) into (6.2) yields the differential

equation:
(6.4) o'(tl) z —

Since an animal of type t, = 0 has an expected payoff at equilibrium

1

of =0(0), and since he can obtain at least zero by never fighting, we
must have ¢(0) = 0. Together with (6.4), that yields the equilibrium

strategy:

a(s)

!
a(t,) = IO - ds .

“~~
N
.
w

~—

The analvsis presented here improves upon the traditional analysis

2iven in Section 2 in at least three respects. First, it offers a
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unified treatment of the game, independent of the character of F.
Second, because ‘B is precisely the distribution of choices predicted
at equilibrium, formulas such as (6.5) make it relatively easy to deduce
the empirical implications of the model. This fact has already been
illustrated by our discovery of the declining hazard rate property.
Third, in distributional form the dependence of equilibrium behavior on
the specifications of the model is clearly seen. For example, from
(6.5) we see that ¢ increases monotonically with the function a,
i.e., the distribution 0-1 of quitting times increases stochastically
with the distribution a-l of values. Also, ¢ varies continuously
with a (in the sense of almost-everywhere convergence), so o-l
varies continuously with a_l (in the sense of weak convergence).
These inferences are more difficult to draw from the traditional
analysis.

The kind of analysis employed in this section is especially useful
for studying incomplete information models in which the types and
actions are real numbers and the equilibrium strategies are monotone
functions. Models with these properties are common in economic

applications (6, 13, 21, 30, 31], and we have used the techniques

presented here to study several such models [13, 22, 23, 25].

7. Complements and Comments

Qur formulation of games with incomplete information contains the
assumption that an exogenously-specified metric on the type space T |is

available. It aight appear preferable to simply treat the players'
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types as points in a general measurable space, without assuming any
topological structure. Indeed, the critical conditions of
equicontinuous.payoffs (Rl) and absolutely continuous information (R2)
depend only on measure-theoretic properties of T. Yet the topology on
types was necessary in order to define the weak topology on
distributional strategies, and this topology played a crucial role in
the Existence, Convergence, and Denseness Theorems.

How might we have proceeded, if only a measurable structure on T
had been given? A natural approach would have been to define
endogenously a metric on T which reflects the nature of the game. In
general, a player's type has two aspects. First, it influences his
payoffs, as well as the payoffs of others. Additionally, it affects his
beliefs about the types of his competitors, and hence about their
behavior. As noted, for example, in [20] and [24], both of these
effects are metrizable. We here define two metrics (actually,
pseudometrics) on T which correspond to the two effects. For the sake
of expositional simplicity, our analysis will be in terms of the
canonical form of the game (cf. footnote l; we assume that the state has
been integrated out of the payoff functions, and that T = T} xeeex T ).

Assume that the players' payoff functions are bounded, and are
continuous on A for each t in T. For any player i and types

t! and t; in T,, define
i i i

d¥(t',tf)

.
i1

sup sup U (e',t ,a) - U (e",e ,a)l ,
it -1 g1t -1



_30_

and for t' and t" in T, define

With respect to the product topology on T x A 1induced by this metric
on T and the origimally-given topology on A, all of the players'
payoff functions are continuous. (Of course, this statement is trivial
if, for example, the metric d! induces the discrete topology on T.)
For any player i and type ty in Ty,
19

conditional distribution®” on T_; induced by n. For any ti and

let n (-|ti) denote the

-1

™

t" in T , define
i i

2
d t' t" = t| - B t"
L (ehe) = swp In_(led) - BleDI

BCT .
-1

and for t' and t” in T, define
n
2 . 2
d (e',e") = § d(t',t") .
1 i

i
i=]

The metric di might be termed the "continuous beliefs"” metric for
player 1i.

Given a metric d on T, we say that the d-topology is measurable
if all d-open sets are measurable. A probability measure n on T 1is
d-tight if the d-topology on T is measurable, and if for every

€ >0 there is a d-compact set of measure at least | - €.



Proposition 4:

(a) If n |is dl- tight, then the game has equicontinuous payoffs.

. 2
(b) If n is d°- tight, then the game has absolutely continuous

information.

A natural endogenously-determined topology on any T; 1is that

2

L All of the results of the paper could

induced by the metric di +d
have been derived in terms of these metrics. Since essentially all
proofs of the existence of equilibria for classes of games depend on the
compactness of the players' strategy spaces, and since the tightness of
n 1is required to ensure the compactness of the sets of distributional
strategies in a game with incomplete information, it seems unlikely that
our Existence Theorem can be substantially generalized.

A proof of Proposition &4 is given in [24]. That paper also
discusses the connections between this paper, [l], and [27]. Those
latter two papers approach games with incomplete information with
objectives different from ours, and contain, among other results,
special cases of our Existence Theorem.

Harsanyi [16] studied the perturbation of a complete-information
game by the introduction of payoff uncertainty, and showed that almost
any mixed-strategy equilibrium in the original game can be
distributionally approximated by pure-strategy equilibria in the

perturbed games. This may be viewed as a lower~hemicontinuity result

which complements our Convergence Theorem.
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Throughout this paper, we have assumed that all the players agree

on the information structure n. Let us now suppose instead that,

. . " . . . i
according to player i, the joint distribution on TO XeoeX Tn is n.
Let n = (nl +eeet 0 /n. It is straightforward to check that if each

i , . i .
n is an absolutely continuous information structure, then each n is

absolutely continuous with respect to n. Let £t = dnl/dn be the

density of nt with respect to n. If we replace f everywhere it
appears by f1 or fj, as appropriate, then all of our arguments retain

their validity. Thus, nothing essential is affected by the consistency

assumption used in Sections 1-5.



- 133 =~
FOOTINOTES

l1e is always possible to reduce a general game in which the
payoffs may depend on o (as well as on all the players' types and all
the players' actions) to a canonical game where the payoffs do not

depend on ty. Given a game with payoff function U for player i, the

i
payoff function V; 1in the canonical game is obtained by integrating

out tg, as follows:
vi(tl,ol.’tn,al,.-.’an) = E[Ui(EO,...’En,al,...’an)Itl,-..’tn] .

This canonical form is the one studied by Harsanyi [15]. It is usually
the appropriate form for the comparison of theoretical results, since it
eliminates from consideration such spurious generality as the inclusion

of chance events about which no information is available.

For applications, however, it is sometimes convenient to include
tg in the explicit formulation of the game. For example, the
assumptions in [25] are most easily stated and the economic insights are
most easily explained when ¢ty 1s included in the formulation. In
[26], a major portion of the analysis is devoted to studying the effects

of variations in the players' information about the state variable tg.

2This game is also known by various other names, including "Both-

Pay Auction” and "Dollar Auction.”

3The theoretical biologists call these "evolutionmarily stable

strategies” (ESS's).

/,
*It can be proved that these properties must hold at a symmetric
equilibrium point of the game. In [6], the assumption that ¢ is

increasing is motivated by the statement that "an animal is sometimes
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hungry and sometimes less so. It is common sense that it should be

willing to compete more strongly for food when hungrv.”

5Quoted from (2], page 633.

6’I‘hrOughout this paper, we deal only with Borel sets and Borel-
neasurable functions. The adjectives "Borel” and "measurable” - -:

suppressed hereafter.

7It is well known that a measure on a product space is uniquely
determined by the measure it assigns to "rectangles.” Thus, the

definition completely determines My

84 measure P {is absolutely continuous with respect to another

measure Q if for every set S, Q(S) =0 implies P(S) = 0. The
Radon-Nikodym Theorem then asserts that there is a density f of P

with respect to Q, such that for every S, P(S) = IS f dQ.

dconsider the two person game in which T; = {10}, T, = {10,201},
Al = AZ = [0,30], and

t, - a. if a, > a,
i i i j

= 1 - i =
Ui(ti, a, aj) /2(ti a,) 1if a a,

0 otherwise .

Suppose Pr{EZ = 10} = Pr{E2 = 20} = 1/2. This simple bidding game has

no Nash equilibrium.

0for an example in which R2 does not hold, let P be the uniform
distribution on the unit square and let Q be the uniform distribution
on the diagonal of the square. Then n = (P + Q)/2 1is not an

absolutely continuous information structure.
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lye refer to the following result, which can be extracted from
[14]; related results appear in [9] and [19]. Let the players' strategy
spaces be nonempty compact, convex subsets of convex Hausdorff linear
topological spaces. Let the payoff functions be continuous on the
product of the strategy spaces, and let each player's payoff function be

quasiconcave in his strategy. Then an equilibrium point exists.

12A set of probability measures on a metric space is called tight
if for every € > 0 there is a compact set K such that for every P
in the set of measures, P(K) > 1 - €. Any single probability measure on

a complete separable metric space is tight. See [5], Theorem l.4.
135ee [5], Theorem 6, page 240.

141t suffices to comsider sequences (rather than nets) because the

domain of "j is a finite product of metric spaces.
151t is well known that in an estimation problem with a quadratic
loss function, the optimal estimate is the posterior expectation of the

unknown parameter (cf. [10], page 228).

1640 e-equilibrium point of a game is an n-tuple (“1""’“n) of

players' strategies, such that for every player i and every alternative

: N} LR J + ) . LN ) ! LR N J L]
strategy Hyo vl(ul, ,un) € Wl(ul, s My ,Un)

l7A probability measure n is atomless if for every B with

n(B) > 0, there is a C ¢ B for which n(B) > n(C) > 0.
1850e (8], page 38, problem 4.

L9We assume that a regular conditional distribution exists - as it

does, for example, if T 1is a Borel space (see [7], chapter 4).
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