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Preplay Negotiations in Non—-Cooperative Games

by Ehud Kalai

1. Introduction

In a one shot normal forw non-cooperative game, often the
outcome is not desirable from the point of view of all the
players. The classical example of such a situation is the
prisoners' dilemma game where the players get trapped into an
unfavorable situation because of their inability to communicate

binding agreements to each other.

This problem partially disappears in infinitely repeated
Zanes. In such games cooperative outcomes can be at equilibriun
due to the fact that future plays may be conditioned on past
plays. That is, unlike a one-shot game, a player who does not
cooperate in one play of the game may be punished for it in later
plays. These threat strategies, when played, tend to bring about
a cooperative outcome. However even in these games, some
outcomes which are at equilibrium can be uniformly dominated (for
all the players) by another feasible outcone. For an extensive

discussion and a survey of this literature, see Aumann [1978].

The purpose of this paper is to suggest an example of a
formal preplay negotiation procedure. The purpose of such a
procedure is to improve outcomes in a normal forwm game by
introducing formal process of early comumunications. When we test
this procedure on a prisoners' dilemma game we observe that with
any positive number of preplays all the perfect equilibrium of
the resulting extended game yield the cooperative payoff. In
another example we show that the perfect equilibria payoffs

converge to be Pareto optimal as the nuwmber of preplays increase.

The generality of these types of results for our proposed
procedure or for modified versions of it is an open problem at
this time. Another interesting open question is--what would be
the effect of formal preplay negotiations on games of incomplete

informatione.



The preplay procedure that we suggest here is attractive for
a few reasons. It is easy to explain to the players and the
payoff computations (unlike Nash [1953] or Kalai-Rosenthal [1978]
procedures) are trivial. Also (unlike Nash [1953]) these
conputations do not depend on any knowledze of the parameters of
the game being available to the referee who conducts the preplay
ganle. Another nice feature of the procedure is that the players,
individually or simultaneously, have the option (under the
procedure rules) to play in a way that will guarantee them a
payoff at least as big as the one shot payoff. Because of this
property we can expect that they would be willing to participate

in this extended game.

For an intuitive motivation of this procedure one may think
of the customary preplay game involved in buying a house in the
U.S. Usually in such a procedure the players, alternately, sign
one side of a binding contract until both sides of the sane
contract are signed. We modified this procedure in order to make
it symmetric (instead of one player moving first) and by fixing

in advance the number of preplays that will take place.

2. The Preplay Procedure and its Perfect Equilibria

For a positive integer m we let M = {l,Z,...m} denote the
set of players. For each i ¢ M let Si denote a finite set of
n .
strategies of player i, S = X 5,, and f': 8 » R denote the von-
i=1 *
Neumann Morgenstern utility payoff of player i. Thus this is a
standard m-person non-cooperative normal form gane. The extended
game with the preplays is described verbally as follow. Let n be
a positive integer; n denotes the number of preplays agreed upon
in advance and which is common knowledge. Initially every player
i chooses a strategy s, € Si yielding an m—tuple s" & S. These
choices are made simultaneously by all players and they are
announced publicly after the choices have been made. The players
may use randomization in choosing their strategies. Now there

will be n preplays numbered n, n~-l,...2,1. For every preplay j



titere will be two strategy m=—tuples sjeS and sj_leS.

sJ is the strategy leading into this preplay, which is conmon
knowledge, and sj_1 will be the strategy tuple coming out of the
preplay. sj_l will be the entering strategy into the j-1
preplay. At the end of preplay 1l strategy sVes will result and
every player i will be paid fi(so).

All the preplays are identical and are described as
follows. Let sJ be the entering strategy leading into the jth
preplay. Now all the players sinultaneously choose new
strategies sj’l = (sf’l,sg’l,...,sj;l). 1f sj’l = sj, i.e. no
changes took place, then the jth préplay ends and sj_1 is defined

to be sJ. However if some changes took place then let cl denote

the set of players who changed, i.e. C1= {ieM:si’l¢ si}, and
define si—l = si’l for every ieC’. In other words the revising

players will have their revised strategy as their eantering
strategies into the j-1 preplay. iow the players who did not

revise, i.e. those who belong to Il - Cl, simultaneously announce
strategies sg’z. These choices are made public and the same
procedure follows. Let C2 denote the players that made a
revision on this second trial, i.e. C2 = {ieM—Clz si’z # si’l}.
If ¢ = ¢ then for every ieti-c! sg-l = sg and the jth preplay

ends. Otherwise

let si_l = s?’z for every ieC2 and repeat the same procedure for
the players in M -~ C1 - CZ. Continuing this process, the

sequence of trials must end in at most m trials and sl s

determined and is public knowledge for the next preplay.

We are interested in the payoffs that are associated with
Selten's [1975] perfect equilibrium strategies of the extended
preplay game. By Selten's result the existence of such an
equilibrium is guaranteed. We will use only two necessary
conditions that perfect equilibrium strategies possess in order
to derive necessary conditions on the perfect equilibrium payoffs
of the preplay gaune. Thus our results in the following examples
are correct for any equilibrium concept which satisfies these two

conditions.



The first property is that weakly dominated strategies are

used with probability O at a perfect equilibriumn. That is for

every player  iel consider a pair of strategies si,tiesi with the
property

i i
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.inequality 1is strict in some cases, then ty will be used with

probability zero at every perfect equilibrium.

The second property is subgame perfectness (see Selten

{1975]). It states that if we look at equilibrium strategies for
the whole game and look at the strategies that they induce on a

"subgame"” (see Selten [1975]) then the subgane strategies should
be in equilibrium in the subgame. This property, in addition to
its game theoretic rationality, makes computation of equilibriun

much easier because it emnables us to use "backwards induction” in

our computations.

Consider for example the preplay gawme described earlier.
Suppose we want to compute the perfect equilibrium payoffs
associated with the game with two preplays left and when the
entering strategy to preplay 2 being sz. In order to compute
perfect equilibrium strategies and payoffs in the second preplay
we have to know only the perfect equilibrium payoffs associated
with preplay 1 with its various entering strategies. Similarly
we use our results for preplay 2 in order to compute preplay 3

and so on. We use this technique in the following examples.

3. Preplays and the Prisoners' Dilenna

We consider the following two person risoner's dilemma game
g P P b3

Player II

L R
Player I U 0,0 2,-1
D|-1,2 1, 1

Our computation of the perfect equilibrium payoffs are given



in the following table.

Perfect equilibrium payoffs

with entering strategies: in preplay nunber:

U,L U,R D,L D,R
0,0 2,-1 -1,2 1,1 0
0,0 0,0 0,0 1,1 1
1,1 1,1 1,1 1,1 2
1,1 1,1 1,1 1,1 n>2

The row associated with preplay 0 is just the payoffs from
the original matrix. HNow consider for example the 0,0 entry in

the
the

D,L column and preplay 1. The extensive form description of

resulting game 1is the following

’//,,—0 2, -1
(32— = 2, -1
| # 1T s
L
U i 0, 0
I
1
D 1 - 2 -l
\ k<
N 5 - b
LT —

For this game it is clear that (U,U), (L,L) are the only

perfect equilibrium strategies and these yield the payoffs of
(0,0).

Thus if the players play the game with one preplay only then

in their choice of initial strategis they face the following

matrix—-



L
U 0,0 0,0
0,0 1,1

Clearly, by the weak domination property, the only perfect

equilibrium strategies are (D,R) yielding a payoff of (1l,1).

If they play the game with 2 or more preplays then in their

initial choice of strategies they face the matrizx-—--

L R
U 1,1 1,1
1,1 1

4, A Game of Coordination

We consider the following 2-person game:

Player IIL

L R

Player 1 u 1,1 0,0
D 0,0 R

Perfect equilibrium payoffs associated with--

entering strategies: at preplay:

UL UR DL DR

1,1 0,0 0,0 1,1 0

1,1 1,1 or 1/2,1/2 1,1 or 1/2,1/2 1,1 1

1,1 1,1 or 3/4,3/4 1,1 or 3/4,3/4 1,1 2
n n I n

1,1 1,1 or 2L 2L 1 o 2 nl, 2 nl 1,1 n > 2
21 21 2 2

It follows that with n preplays the only perfect equilibrium
n+l_l 2n+l_

+ bl
2n 1 50

payoffs of this game are either 1,1 or 2 1 and thus a

+1



very fast convergence to Pareto optimality is achieved.
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