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Abstract

We consider a statistical decision problem faced by a two player organization

whose members may not agree on outcome evaluations and prior probabilities.

One player is specialized in gathering information and transmitting it to the

other, who takes the decision. This process is modeled as a game. Qualitative

properties of the equilibria are analyzed. The impact of improving the quality

of available information on the equilibrium welfares of the two individuals is

studied. Better information generally may not improve welfare. We give

conditions under which it will.
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I. INTRODUCTION

When a decision is made by a group rather than an individual, the twin tasks of

acquiring information on the one hand, and choosing a course of action on the other,

are often delegated to separate sets of individuals. If all members of the group share

common evaluations of the outcomes and have identical prior beliefs, then there is no

conflict between the information-gatherers and the action-takers. Information will be

accurately transmitted by the former and optimally utilized by the latter.

Here we study the situation that arises when interests do not coincide. When

interests diverge, complete transmission may result in actions that are suboptimal

from the information-gatherers’ point of view. The situation is one of partial conflict.

We model it as a game in which each of the two functions is executed by a single

rational individual, neglecting conflicts among information-gatherers or among agents

controlling different aspects of the group’s action. We examine the Nash equilibria of

the resulting two-person game. In particular, we look at the effect on the expected

utilities of the two players of improvements in the available information.

The two individuals will be called the agent and the principal. Their joint decision

problem is to choose an action, ak, from the set A = {a1, . . . , aK}. The von Neumann-
Morgenstern utility levels of the two participants depend upon the chosen action and

the realization of the state of nature, θm, from the set Θ = {θ1, . . . , θM}. These
utilities can be represented by K ×M matrices U = [ukm] and U

0 = [u0km] for the

principal and the agent respectively, where the elements are the utilities realized if

ak is chosen and θm occurs.

The agent receives an observation which is statistically related to the true state

in Θ, and transmits the observation to the principal. He might not do so truthfully.

There are N possible observations, yn, in the set Y = {y1, . . . , yN}. Allowing random-
izations, his strategies can be represented by an N × N Markov matrix R = [rnn0 ],
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where rnn0 is the probability that yn0 is transmitted given that the actual observation

is yn.

The principal chooses the action ak ∈ A given that the observation yn0 has been
transmitted to him. Again, allowing randomization, his strategy is an N×K Markov

matrix Z = [zn0k] where zn0k is the probability that ak is chosen given that yn0 was

transmitted.1

The statistical relationship between states and observations is called the informa-

tion structure. It is represented by an M ×N Markov matrix Λ = [λmn], where λmn

is the probability that yn is observed if the true state is θm. The interpretation of yn

depends on the prior beliefs of the individual in question. We allow different beliefs,

π = (π1, ..., πM) ∈ ∆M and π0 = (π01, ..., π
0
M) ∈ ∆M for the principal and agent respec-

tively, where ∆M is the set of all M-dimensional probability vectors. The principal’s

posterior probabilities, given an observation, can be derived from π and Λ by Bayes

rule. These posteriors are denoted
¡
pP1 , . . . , p

P
N

¢
, where pPn ∈ ∆M is his posterior if yn

is observed, for n = 1, ..., N. The probability of observing each yn is also implied by

π and Λ. Thus we have a distribution of the posterior which is simply the measure

over ∆M assigning the corresponding weight to each of the pPn . A similar argument

applies for the agent.

If the strategy choices are Z and R, the expected utilities for the principal and

agent respectively are:

trUΠΛRZ, and (1.1)

trU 0Π0ΛRZ, (1.2)

where Π and Π0 denotes the square matrices with the vectors π and π0 on the diagonal

1Whenever possible we will try to follow the convention of labeling typical actions and states

with indices k and m, and the true and transmitted observations with n and n0.
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and zeros elsewhere.2

In this paper we examine the Nash equilibria of this game. A pair of Markov

matrices (Z,R) is a Nash equilibrium if Z maximizes (1.1) and R maximizes (1.2).

The main results of the paper can be viewed in the tradition of comparative statics.

We are interested in the consequences of changes in the information structure (Y,Λ)

on the equilibria of the game. Specifically, it is well-known that a partial ordering

of information structures according to the criterion of informativeness can be given

a precise mathematical characterization. This is an ordering based on single-person

statistical decision theory. An information structure (Y,Λ) is said to be more infor-

mative than (Y 0,Λ0) if, for any U and any π, the decision problem under the former

has at least as high a value as that under the latter. Using the notation developed

above, this can be restated as

max
Z
trUΠΛZ = max

Z0
trUΠΛ0Z 0,

where the maximum in each case is taken over all Markov matrices of the appropriate

dimension. Blackwell (1951) has shown the following:

Λ is more informative than Λ0 if and only if

there exists a Markov matrix B such that Λ0 = ΛB.

We want to study the relation between this condition and conditions sufficient

for the improvement of the welfare of one or both of the players in our two-person

organization. Because of the compounding of game theoretic aspects with the usual

2The principal’s expected utility is

EUP =
X
m

πm
X
n

λmn
X
n0
rnn0

X
k

zn0kukm,

and a similar expression holds for the agent. The interpretation is straightforward. We simply

sum up all the ways in which each action could occur given each possible state, by multiplying the

conditional probabilities of observations given states, transmissions given observations, and actions

given observations, and weighting by the prior probabilities.
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decision theoretic issues, the welfare of the two players may not be monotonic with

respect to the quality of the information structure. Several types of complication

arise.

First, as in most games, there may be multiple equilibria. We have found it hard to

analyze all of them. However, a natural classification of equilibria can be given, and

one type, which we call partition equilibria, have a rather regular behavior. More-

over, we will give some arguments to the effect that these equilibria have desirable

properties, and are hence “more likely” to be observed.

Second, as in the case of general equilibrium theory, the set of equilibria is lower

hemi-continuous with respect to changes in the parameters. Comparative static re-

sults therefore tend to be only local. Hence we focus on “small” improvements in the

information structure, suitably defined.

Third, and finally, the comparative static results turn out to be different for the

two players. For the agent, any small improvement in the information structure will

improve his expected utility in a partition equilibrium. For the principal this may

not be the case. His welfare can be guaranteed to be monotonic only when a very

special kind of improvement in information is considered.

We define a success-enhancing improvement in information as one in which the

probability that the observation is uninformative decreases, with a corresponding

equiproportional increase in the probabilities of each of the other observations. If in

the original information structure there is no such observation, that is if the poste-

rior is unequal to the prior for every possible observation, then no success-enhancing

improvements are possible. We show that small success-enhancing improvements in

information necessarily improve the welfare of the principal at any partition equilib-

rium.

The remainder of the paper is organized as follows:

Section 2 covers the classification of types of equilibria and presents some genericity

5



and stability-like arguments to bolster the case for considering partition equilibria.

Section 3 contains the main comparative static results mentioned above.

Section 4 contains several examples, primarily designed to illustrate directions in

which our results cannot be extended.

II. TYPES OF EQUILIBRIA AND THEIR PROPERTIES

A. Basic Classification

We begin by examining some general features of the set of equilibria. First we need

the following definition.

We will call an M ×N 0 information structure Λ0 a partition of Λ if Λ0 = ΛPDP 0,

where P and P 0 are permutation matrices and D is an N×N 0 block diagonal Markov

matrix in which each block has rank one. When Λ0 has this form, it is as if there is

a partition of the signal space Y . Under Λ0, if signal value yk occurs, the partition

element containing yk is reported. Thus P rearranges signal values so that those in a

common partition element are clustered together; each block along the diagonal of D

corresponds to the report for one partition element; and P 0 rearranges the new signal

values in any arbitrary way.

Of prime importance in our later analysis are equilibria in which ΛR, the infor-

mation the agent transmits, is a partition of Λ, the information he receives. These

will be called partition equilibria. In addition there are two types of non-partition

equilibria, distinguished by whether the principal uses pure or mixed strategies. It is

useful to begin with an example that illustrates all three types.

Example 1: There are two states, two actions, and two observations: K =M =

N = 2, and

Λ = I, U =

 1 0

0 1/2

 , U 0 =

 1 0

1 2

 , π = π0 = (1/2, 1/2) .
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The agent knows the true state. Both parties prefer action a2 in state θ2. The principal

strictly prefers action a1 in state θ1, but the agent is indifferent between the two

actions.

One equilibrium of this game is the pair of strategies Z = I, R = I. Since the in-

formation transmitted by the agent is a partition (the complete refinement partition)

of the space of observations, this is an example of a partition equilibrium.

Another equilibrium is one involving no transmission of information. This equilib-

rium is represented by any pair (Z,R) with:

Z =

 1 0

1 0

 , R =

 α 1− α

α 1− α

 , α ∈ [0, 1] .

Note that for any α, RZ = Z. Clearly Λ0 = ΛR is a partition of Λ (the partition

consisting of one set, equal to the whole space), so that this is another example of a

partition equilibrium.

Another type of equilibrium is the pair

Z = I, R =

 1− ε ε

0 1

 , 0 < ε ≤ 1/2.

Since Λ0 = ΛR is not a partition of Λ, this is not a partition equilibrium. Because the

principal uses two distinct, nonrandomized actions, we call this a determinate action

equilibrium. Note that randomization by the agent occurs only because in state θ2 he

is indifferent between the two actions a1 and a2. Clearly this situation is non-generic.

The last type of equilibrium is given by:

Z =

 1 0

δ 1− δ

 , R =

 1/2 1/2

0 1

 , δ ∈ (0, 1) .

As in the previous case, Λ0 = ΛR is not a partition of Λ. However, in contrast to

the previous case, the principal is playing a mixed strategy. We call this a random
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action equilibrium. All equilibria of this form are non-robust to perturbations in U 0.

As long as Z has distinct rows the agent will not remain indifferent between actions,

following a perturbation of U . In this sense, these equilibria are non-robust for the

same reason as the previous type. However, in more general models the determinate

action equilibria, with non-randomized actions by the principal in all cases, is always

non-robust, whereas the random action equilibria may behave continuously in the

parameters. These differences are explored more fully below.

Returning to the equilibria with both players randomizing, we note that they are

all unstable in the sense that the agent has many optimal responses to Z, namely all

R of the form

R =

 α 1− α

0 1

 , α ∈ [0, 1] ,

and the principal has many optimal responses to R, namely all Z of the form given

above. But if the principal misperceives R even slightly, his optimal response is a

non-randomized strategy, a Z matrix composed of zeros and ones, and the outcome

would depart markedly from the equilibrium outcome.

B. Robustness of Partition Equilibria

In the rest of this section we will define partition, determinate action, and random

action equilibria precisely, and argue that partition equilibria are robust in ways that

the others are not. Specifically, we will show that determinate action equilibria are

non-generic, and that random action equilibria are unstable against small perturba-

tions in either player’s strategy.

Formally we will say that an equilibrium pair (Z,R) is a partition equilibrium if

Λ0 = ΛR is a partition of Λ; a determinate action equilibrium if Λ0 = ΛR is not a

partition of Λ, and each row of Z receiving positive weight under R has only a single

positive element; a random action equilibrium if Λ0 = ΛR is not a partition of Λ, and
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some row of Z receiving positive weight under R has two or more nonzero entries.

Roughly speaking, we are presenting a “structural stability” argument to eliminate

determinate action equilibria from consideration and a “dynamic stability” argument

to eliminate random action equilibria. Of course, since we do not present any ad-

justment process, we do not actually have any dynamics. The objection to random

action equilibria is only meant to be suggestive. Nevertheless, partition equilibria will

generically pass both of these tests.

Theorem 2.1: The set of all (U 0,Λ) for which there is any determinate action

equilibrium is closed and null.

Proof: The existence of a determinate action equilibrium requires that for some

observation the agent is indifferent among some of the actions in A. It therefore

suffices to show that the set of (U 0,Λ) for which this indifference holds is closed and

null. But this property is obvious: unless two rows of U 0 are identical (i.e. two actions

are really the same) the set of posterior probabilities under which there is more than

one optimal action is of lower dimensions than ∆M . Hence the set of all Λ matrices

for which these posteriors arise is null. Closedness is obvious. ¥

Theorem 2.2: Let (Z,R) be a random action equilibrium. Then generically in

(U,U 0,Λ) there exists a sequence of Markov matrices {Rν} converging to R, such that
i) each Rν is an optimal response by the agent to Z;

ii) the set of optimal responses by the principal to each Rν is bounded away from

Z.

Proof: Since (Z,R) is a random action equilibrium there exists yn ∈ Y and n1,
n2 such that

a) rnn1 > 0, rnn2 > 0, n1 6= n2;
b) the row vectors zn1· and zn2· are distinct; and

c) the row vector zn1· has at least two positive entries.
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Since R is an optimal response to Z, it remains an optimal response if rnn1 is increased

by ν and rnn2 is decreased by ν. Let Rν be the matrix with this change. Generically

in Λ, this change in the agent’s strategy alters the principal’s posterior beliefs when

the signal yn1 is transmitted. Generically in U , this change in his posterior beliefs

destroys the equality of the expected utilities under the actions represented in the

mixture in the nst1 row of Z. Hence Z is not a best response to Rν. Letting ν → 0

establishes the claim. ¥

Theorem 2.3: Generically in (U,U 0,Λ), if (Z,R) is a partition equilibrium, then,

i) every row of Z for which the corresponding column of R has a positive entry

is uniquely determined in the optimal response to R;

ii) R is the unique optimal response to Z and is itself a partition.

Proof: Obvious. ¥

The main comparative static results of this paper apply to the generic instance of

partition equilibria with the properties stated in Theorem 2.3. To delineate this class

of equilibria more sharply, we give the following definition.

A partition equilibrium (Z,R) is called an essential equilibrium if the following two

conditions hold:

i) if Z 0 is an optimal response to R then RZ 0 = RZ;

ii) if R0 is an optimal response to Z then R0Z = RZ.

The idea of essential equilibria is that the strategies of each player are “essentially”

unique, in the sense that choosing a different strategy from the optimal set does not

alter the statistical relationship between the observations and the action taken. An

essential equilibrium remains an equilibrium when either player chooses a different

element in his set of optimal responses. Essential equilibria also possess a kind of

“stability” in that they are robust to small deviations from optimal responses.

The distinction between partition equilibria in general and essential equilibria can
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be seen in the following example, to which we will return in Section 3.

Example 2: There are two actions, two states, and two signals, K =M = N =

2, and

U = U 0 = I,

π = (0.4, 0.6) , π0 = (0.6, 0.4) ,

Λ =

 0.6 0.4

0.4 0.6

 .
Consider Z = R = I. It is straightforward to verify that this is a partition equilibrium.

The principal’s posterior probabilities are

pP1 =

µ
1

2
,
1

2

¶
, pP2 =

µ
4

13
,
9

13

¶
,

and, symmetrically, the agent’s are

pA1 =

µ
9

13
,
4

13

¶
, pA2 =

µ
1

2
,
1

2

¶
.

Therefore, the agent is indifferent between both actions when he receives the obser-

vation y2, and the principal is indifferent when the agent transmits y1. The choices

of Z = R = I are mutually fortuitous, and neither requirement in the definition of an

essential equilibrium holds. The non-genericity of non-essential partition equilibria is

responsible for their peculiar comparative static properties, as we will see below.

III. IMPROVEMENTS IN THE INFORMATION STRUCTURE

In this section we present the main comparative static results of this paper. We ask

the question: When can one be sure, independent of a knowledge of the preferences

and beliefs of the two individuals, that one information structure is better than an-

other in the sense of providing a higher level of expected utility in equilibrium? The

answer depends on whose welfare is being considered. Broadly speaking we find that
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the agent benefits from any improvement in the information structure. The princi-

pal, however, can well be hurt. Only for one very special, though interesting, type of

improvement can we be sure that the principal benefits.

One further qualification is important to emphasize. As in many games, and as we

have seen in the examples of Section 2, there are often multiple equilibria. Because

they can be regarded as fixed points of a suitable mapping, they are continuous in the

parameters of the problems for almost all parameter values. However, at some critical

points the set of equilibria changes radically. Non-essential partition equilibria, for

example, are likely to occur at such points.

For this reason our results are “local” in nature. We define a concept of “small”

changes in the information structure. The comparative static results described above

apply to changes in information that are sufficiently small, at an equilibrium that

moves continuously in this change.

The concept of small changes or, mathematically, a topology on the space of

information structure, is given by the following definition of convergence. It is

natural to say that a sequence of information structures {Λν} converges to Λ0 if

for any decision maker with utility matrix U and prior π, the sequence of val-

ues {V (U,π,Λν) = maxD∈M trUΠΛνD} converges to V (U,π,Λ0). Obviously this is
equivalent to the weak convergence of the distribution of the posteriors for any strictly

positive prior. Information structures representing a small improvement in informa-

tion from Λ0 are those in a neighborhood of Λ0 which are also more informative in

the sense of Blackwell.

It is important to point out that the dimensionality of the likelihood matrices, that

is to say the number of possible observations Nν, is not held constant. We are able

to compare information structures in which the qualitative nature of the signals are

quite different.

We will now show that essential equilibria have an invariance property that is
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responsible for the comparative static results that we will obtain.

Theorem 3.1: Let {Λυ} be a sequence of information structures converging to Λ0,
and let (Z0, R0) be an essential equilibrium for Λ0. There exists a sequence {(Zυ, Rυ)}
of equilibria corresponding to {Λυ} with the property that {ΛυRυ} converges to Λ0R0.
Proof: The proof is by construction of a sequence {(Zυ, Rυ)} having the required

properties.

For each ak ∈ A, let Bk ⊆ ∆M be the set of posterior beliefs for which the principal

strictly prefers ak to the other actions in A. Note that these sets are disjoint. Since

(Z0, R0) is essential, the principal’s posterior given any signal from Λ0R0 lies in the

interior of one of the sets Bk.

Let A0 ⊆ A be the subset of actions receiving positive weight under Z0, and for
each ak ∈ A0, let Ck ⊆ ∆M be the set of posterior beliefs for which the agent strictly

prefers ak to the other actions in A0. Since (Z0, R0) is essential, the agent’s posterior

given any signal from Λ0 lies in the interior of one of the sets Ck.

Let Ẑ be any matrix of appropriate dimension whose distinct rows are precisely

the distinct rows of Z0 receiving positive weight under R0. Select a subset J of these

rows containing all the distinct rows of Ẑ and no duplicates. Let Rυ be any response

to Ẑ that is optimal for the agent, given the information structure Λυ and subject to

the constraint that only signals in J are transmitted. By construction Rν is also an

unconstrained optimal response for the agent, given Λν and Ẑ.

Since {Λυ} converges to Λ0, as υ → ∞, with probability approaching one the
agent’s posteriors given the signals in Λυ lie in the interiors of the same sets Ck as

they do under Λ0. Hence {ΛυRυ} converges to Λ0R0.
Finally, note that by construction the number of distinct signals transmitted under

ΛυRυ is the same as the number transmitted under Λ0R0. Hence for υ sufficiently

large the principal’s posterior under any signal from ΛυRυ lies the interior of the set

Bk corresponding to the action selected by ΛυRυẐ. Hence Zυ = Ẑ is an optimal
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response for the principal, and the sequence {(Zυ, Rυ)} has the required properties.
¥

Theorem 3.2: Let (Z0, R0) be an essential equilibrium for the information struc-

ture Λ0. Let {Λυ} be a sequence of information structures, each element of which is
more informative than Λ0 (in the sense of Blackwell), and such that {Λυ} converges
to Λ0. Let {(Zυ, Rυ)} be the sequence of equilibria whose existence is established in
Theorem 3.1. Then, for υ sufficiently large, the agent is better off under Λυ with the

equilibrium (Zυ, Rυ) than under Λυ with the equilibrium (Z0, R0).

Proof: As the rows of Zυ are precisely the distinct rows of Z0, by construction

the agent is facing a fixed decision problem and hence his welfare cannot diminish

under any improvement in the sense of Blackwell. ¥

The next example illustrates the role of the hypothesis that the equilibrium is

essential.

Example 3: There are four actions, four states, and three or four signals, K =

M = 4, N0 = 3, and Nε = 4. The utilities are

U =


1 −b b 0

0 a −a 0

0 b −b 1

1 0 0 1

 , U 0 =


0 d −d 0

0 c −c 0

0 −d d 0

−e −e −e −e

 ,

where

0 < a < b, 0 < c < d, 0 < e.

Both agents have a uniform prior, π = π0 = (1/4, 1/4, 1/4, 1/4) , and the information
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structures are:

Λε =


1 0 0 0

0 (1 + ε) /2 (1− ε) /2 0

0 (1− ε) /2 (1 + ε) /2 0

0 0 0 1

 , Λ0 =


1 0 0

0 1 0

0 1 0

0 0 1

 .

States θ1 and θ4 are perfectly revealed under both information structures. The more

informative system Λε is useful only in distinguishing state θ2 from θ3.

Under Λ0 the posteriors are

p10 = (1, 0, 0, 0) , p20 = (0, 1/2, 1/2, 0) , p30 = (0, 0, 0, 1) ,

so both the principal and the agent are indifferent among the actions {a1, a2, a3} if
y2 is observed: each is a fair bet. Thus,

R̂ = I, Ẑ =


1 0 0 0

0 1 0 0

0 0 1 0

 ,
is a partition equilibrium. The agent accurately reports the observation, and the

principal chooses an if yn is reported, for n = 1, 2, 3. The principal’s expected utility

is 1/2 and the agent’s is 0.

This equilibrium is not essential, however. The principal is indifferent between Ẑ

and the strategy of taking action a4 all the time,

Z0 =


0 0 0 1

0 0 0 1

0 0 0 1

 .
There is another partition equilibrium under Λ0, the no communication equilibrium.

The principal uses the strategy Z0 and the agent uses any Markov matrix R0 with

rank one. The principal’s expected utility is again 1/2, but the agent’s is −e. This
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equilibrium is essential: RZ0 = R0Z0 for any Markov matrix R, so the agent cannot

affect the outcome; and the principal’s best response to R0 is unique.

For ε > 0, the only equilibrium is the no communication equilibrium. The principal

uses the strategy Zε that puts probability one on a4 in response to any report, and

the agent uses any Markov matrix Rε with rank one. The principal’s expected utility

is again 1/2 and the agent’s is −e.
To see why there are no other equilibria note that the posteriors under Λε are

p1ε = (1, 0, 0, 0) , p2ε = (0, (1 + ε) /2, (1− ε) /2, 0) ,

p4ε = (0, 0, 0, 1) , p3ε = (0, (1− ε) /2, (1 + ε) /2, 0) .

Thus, the agent strictly prefers a1 to a2 if y2 is observed, and strictly prefers a3 to a2

if y3 is observed: the former involves increasing the size of a favorable gamble, and the

latter involves comparing an unfavorable gamble with one that is favorable. Suppose

the principal were to use the strategy of playing a1 if y1 is reported, a2 if y2 or y3 is

reported, and a3 if y4 is reported, which under Λε and accurate reporting is the analog

of Ẑ. The agent would never report y2 or y3. Instead he would report y1 or y4, which

gives him an expected utility of dε/2 instead of the 0 he gets by reporting accurately.

This would reduce the principal’s expected utility, however, and since the principal

can always guarantee himself an expected utility of 1/2 by ignoring the reports and

taking the action a4, he would do so. Therefore, the analog of the
³
R̂, Ẑ

´
equilibrium

does not exist for ε > 0, and a sequence of the type described in Theorem 3.1 does

not exist.

We now consider the principal’s welfare. Further conditions are required to guar-

antee that better information raises the principal’s equilibrium expected utility. A

modification of Example 2 is useful in gaining insights to the results.

Example 4: As in Example 2, K = M = 2, and for Λ0 the number of distinct

signals is N0 = 2. However, for all υ there are three possible observations, with the
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likelihood matrices

Λυ =

 .6− ευ 2ευ .4− ευ

.4− ευ 2ευ .6− ευ

 ,
where {ευ} converges to zero. Clearly {Λυ} converges to the information structure of
Example 2,

Λ0 =

 .6 .4

.4 .6

 .
Moreover {Λυ} is a sequence of improvements, in the sense of Blackwell. We modify
the priors so they are slightly more diffuse:

π = (0.45, 0.55) , π0 = (0.55, 0.45) .

The other data of the example are unchanged, U = U 0 = I. Let y1 and y2 denote the

signals under Λ0, and y1, y2, y3 denote those under Λν.

Under Λ0 it is straightforward to verify that Z = R = I is an essential partition

equilibrium. It results in an expected utility of 0.6 to each player.

For εν sufficiently small, the game with information structure Λν has an essentially

unique partition equilibrium (other than the no-transmission equilibrium). The agent

transmits the partition {y1, y2} , {y3} , and in response the principal chooses a1 and
a2 respectively. Thus action a1 is taken when y2 is observed, as the agent prefers. The

expected utilities at this equilibrium are 0.6 − εν and 0.6 + εν for the principal and

the agent respectively. Although the principal would rather have the agent transmit

the partition {y1} , {y2, y3} , there is nothing he can do to enforce this. Complete
communication is not an equilibrium because the principal would choose a2 after y2,

making complete communication irrational for the agent. In this example the better

information structure entails a positive probability of a signal that causes the two

players to disagree. The principal loses because at equilibrium the information is

used by the agent in a way opposite to what the principal would like.
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Our positive comparative static results rely on a condition that we will call success-

enhancing.

The motivation for examining success enhancing improvements is that there are

many situations where one hopes to receive an informative observation but in fact

nothing happens. Either the experiment “fails” or the outcome is not available soon

enough to be useful in making the decision. Since many improvements in information

reduce the failure rate or cut the average delay time without affecting the quality

of the experimental procedure itself, these results are of considerable interest. The

formal definition is as follows.

We will say that Λ is in standard form if

Λ =


α
...

α

(1− α)Γ

 ,
where α ≥ 0, Γ is an M × (N − 1) Markov matrix, and no two columns of Γ are
proportional to each other.

The first signal of an information structure in standard form represents the totally

uninformative observation: “dropping the test tube.” A success-enhancing improve-

ment lowers the probability of this observation and raises all others proportionately.

We will say that Λ is a success-enhancing improvement of Λ0 if.

Λ =


α
...

α

(1− α)Γ

 , Λ0 =


α0

...

α0

(1− α0)ΓP

 ,
where

0 ≤ α < α0 ≤ 1, and P is a permutation matrix.
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Note that Λ0 and Λ0 are related by the garbling matrix

B =


1 0 · · · 0

β
... (1− β)P

β

 , where β ≡ α0 − α

1− α
.

Finally, a small success-enhancing improvement is one in which α0 and α are close.

Whenever Λ is a success-enhancing improvement of Λ0 we can reorder the columns

of Λ0 so that the permutation matrix P referred to in the above definition is the

identity. For the rest of this section we will suppose that this is the case, as this in

no way changes the structure of the game. With this normalization we can write

Λ0 = ΛD,

where D is the diagonal matrix whose diagonal entries are

d1 =
α0

α
, dn =

1− α0

1− α
, for n = 2, ..., N. (3.1)

We will make use of this representation in the proof of the main theorem, which

follows.

Theorem 3.3: Let (Z,R) be an essential equilibrium for Λ0 and let Λ be a small

success-enhancing improvement of Λ0. Then (Z,R) remains an equilibrium for Λ and

the principal’s expected utility cannot decrease.

Proof: That (Z,R) remains an equilibrium follows from an argument parallel

to that used in the proof of Theorem 3.1 The assertion that the principal’s expected

utility cannot decrease will be proven using the special structure of success-enhancing

improvements. We will express Λ0 and Λ in standard form and note that Λ0 = ΛD,

where the elements of D are given by (3.1). The principal’s expected utility under Λ

is tr UΠΛRZ and under Λ0 it is tr UΠΛDRZ. Thus, the gain in going from Λ0 to Λ is

∆ = trRZUΠΛ (I −D) . (3.2)
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This quantity will be proven to be necessarily non-negative.

Using (3.1) we see that

I −D = (1− dn) I − (d1 − dn)C
=

α0 − α

1− α
I − α0 − α

α (1− α)
C,

where

C ≡


1 0 · · · 0
0
... 0

0 0

 .

Substituting into (3.2) we have

∆ =
α0 − α

1− α

·
trRZUΠΛ− 1

α
trRZUΠΛC

¸
. (3.3)

Since Λ is in standard form its first column is the constant α, and we have

ΛC = αJ, (3.4)

where J is the M ×N Markov matrix

J ≡


1 0 · · · 0
...
...
. . .

...

1 0 · · · 0

 .
Substituting (3.4) into (3.3) we obtain

∆ =
α0 − α

1− α
[trRZUΠΛ− trRZUΠJ ]

=
α0 − α

1− α
[trUΠΛRZ − trUΠJRZ] , (3.5)

where the second line uses the commutativity of matrix multiplication under the

trace. The two terms in brackets in (3.5) have straightforward interpretations. The
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first is the equilibrium expected value of the principal under the better information

structure. The second is the expected utility he would obtain if he used the action

matrix Z in a decision problem with information structure JR. But this information

structure is totally uninformative: it is an M ×N Markov matrix that contains the

first row of R repeated M times. Therefore the second term in brackets is at most

the expected value the principal could obtain by optimizing in a situation where

no information is available. This cannot exceed the first term, so the expression in

brackets is nonnegative. Since α0 − α ≥ 0, it follows that ∆ ≥ 0.
We note that ∆ is zero only if the principal is indifferent, in equilibrium, between Z

and a rank one matrix composed of a repeated row. Otherwise ∆ is strictly positive.

¥

IV. COMMENTS AND FURTHER EXAMPLES

In this section we gather a few comments showing why the results above cannot

be strengthened and addressing some conjectures about the qualitative nature of the

Nash equilibria.

1. Success-enhancing improvements in information have the property that the set

of posterior beliefs that can arise after seeing the observation remains fixed. One

might imagine that this property alone is responsible for the beneficial nature of the

change.

An improvement in information from Λ0 to Λ can be called posterior-preserving if

Λ0 = ΛD, where D is a diagonal matrix, and Λ0 = ΛB, where B is a Markov matrix.

Note that a non-informative signal may not exist. If (Z,R) is an equilibrium for the

information structure Λ0, then we know that R is among the agent’s best responses

to Z under Λ. The following example shows, however, that the principal’s welfare

may decrease if he plays Z and, moreover, that there may be no possibility for him

to achieve the former level of utility.
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Let K = 2, M = 3, and N = 4. Consider the information structures

Λ =


.8 0 0 .2

0 .9 0 .1

0 0 .8 .2

 , Λ0 =


.6 0 0 .4

0 .8 0 .2

0 0 .6 .4

 .
It is easy to see that Λ is a posterior-preserving improvement of Λ0. The first three

signals in either case are perfect predictors of the state, while the fourth carries some

information but does not limit the set of states that are possible.

Let the utilities and priors be such that

UΠ =

 −1 1 −1
0 0 0

 , U 0Π0 =

 1 1 −2
0 0 0

 .
The finest partition equilibria convey {y1, y2} , {y3, y4} . For example, the strategies

Z =


1 0

1 0

0 1

0 1

 , R =


1 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0


constitute an equilibrium. In it expected utility for the principal is .2 under Λ0 but

.1 under Λ. More information has therefore been harmful.

Notice that even thoughΛ is strictly more informative that Λ0, ΛR is non-comparable

to Λ0R. For this particular utility function it is worse.

2. Even if the improvement in information is success enhancing, a discrete change

from Λ0 to Λ may be such that (Z,R) is no longer an equilibrium. R remains a best

response to Z, but Z may not be best against R.

An example, available from the authors on request, shows that all the equilibria

under Λ may be inferior for the principal to a given partition equilibrium for Λ0.

Theorem 3.3 relies on the changes being small enough so that (Z,R) persists as an

equilibrium.
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3. We investigated the conjecture that the common refinement of the partitions im-

plicit in two partition equilibria always corresponds to another partition equilibrium.

A counterexample to this conjecture is also available on request.

4. Recent work by Crawford and Sobel (1982) shows that some further generality

can be attained in our results if a smaller set of decision problems is considered.

Specifically, they show that improved information always benefits the principal if

utilities are concave in actions and states and both the state space and the signal

space are one dimensional. Moreover, in that situation there are no equilibria other

than partition equilibria.

5. Finally, it should be emphasized that the main results of this paper are crucially

dependent on the finiteness of the set of possible actions. These results are local in

nature, as noted above in point (2). The structure of our model is such that within a

neighborhood of a given information structure, partition equilibria are locally constant

with respect to success-enhancing or posterior preserving improvements. This enables

us to evaluate welfare changes by examining the effect of the improved information

in a fixed equilibrium.

If there were a continuum of actions the neighborhood of local constancy might

vanish. Changing information would induce locally continuous shifts in the equilibria.

Welfare effects would then depend upon the nature of these shifts, as well as on the

difference in the quality of the information.

Andrew Postlewaite (1980) has provided us with an example of a game with a

unique partition equilibrium in which the principal’s welfare declines, for this reason,

in response to a success-enhancing improvement in the agent’s information.

V. CONCLUSIONS

We have examined a simple two-person game designed to represent the separation

of functions in an organization. It has been argued that although this game may have
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multiple equilibria, there is one type of particular note. In analyzing the comparative

statics of individual welfare with respect to improvements in information, we have

concentrated on this type of equilibrium.

In general, improvements in information may be harmful for one or even both

players. We therefore tried to find restrictions on the nature of the improvement in

information that imply that it is surely beneficial.

For large shifts in the information structure, nothing can be said, in general. Lo-

cally, an arbitrary improvement in the information structure will generically benefit

the agent, but the principal may be hurt. To guarantee that neither player is hurt by

a small improvement in information, the change must be “success-enhancing.” That

is, it must represent a decrease in the probability of receiving an uninformative obser-

vation and, correspondingly, proportional increases in the probabilities of receiving

all other observations.

There are many possible extension of this model. We will mention only two of them

here.

Our analysis concentrated on restricting the information structure. An alternative

is to look for restrictions on utilities and priors. In this regard the paper by Crawford

and Sobel (1982) cited above is relevant.

Our model is related to, but distinct from, the principal-agent problem that has

been widely discussed in the literature. There the agent plays the role of both informa-

tion gatherer and decision maker. The principal is present only to help offset risks by

making contingent payments of a transferable resource. We have no such resource, the

essential feature of our model resting in the separation of the information-gathering

and decision-making functions within the organization. The possibility of making

such conditional payments would add an entirely new dimension to the analysis. The

principal might, for example, set up a payment schedule that would coax a more

accurate transmission out of the agent. Paralleling the principal-agent literature, it
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is probably best to model this as the Stackelberg, rather than Nash, equilibrium of a

game in which the principal is the leader. We begin the study of this solution concept

in a companion paper, Green and Stokey (1981), retaining the structure presented

here in all other respects–including the absence of transferable utility.
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