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In their 1969 paper, Shapley and Shubik introduced the

concept of a totally balanced n-person cooperative game with side

payments. These are games in which the core of the game itself
as well as those of all its induced subgames are not emptye. They
showed that the family of totally bananced games can be generated
by a certain class of market games with side payments and
investigated several properties of the Von Neumann Morgenstern
solutions of such games. Scarf [1967] and Billera and Bixby
[1974], studied similar issues for the more general class of
games without side payments.

In this note we consider totally balanced games with side
payments. We show that every game in this class can be expressed
as a minimum of a finite collection of trivial games (additive
games). Thus, totally balanced games have a very simple
structure. Next, we introduced a family of games that are
generated by problems of flows in a network and which we call
flow games. These games are useful for modeling problems of
profit sharing in an integrated production system with
alternative production routes. We show that the family of flow
games coincides precisely with the family of totally balanced
games. The key—-elements in our proof are the observation about
the structure of totally balanced games and the max flow--min cut

theorem of Ford and Fulkerson [1962].



I. Preliminaries and Definitions

For a positive integer n let N = {1,...,n} denote a set of

players, and N - {s N : S # @} the set of coalitions of

players. An n-person characteristic function game (game for

N .
short) is a function V : 2 =+ R+,(the set of nonnegative real

numbers). The core of V is defined by

-~ n. -
CORE(V) = {x € R : (Ey g = V(YD)
N
p-1 r
and igsxi V(S) for every S € 2 }

A game is called balanced 1f CORE (V) # @§. For a game V and
coalition S consider the obvious [S! - players
subgame, VS, obtained by restricting V to coalitions contained in

S. A game V is called totally balanced if CORE (VS) # ¢ for
every S € 2N.

A game V is called additive 1f there exists a set of non-
negative real numbers ays8g5eeesa such that for
every S € 2N V(S) = iés a, . For a collection of n-person

games {V we define the minimum game generated by the

. t}teT
collection by (min Vt) (s) = ?%% {Vt(S)}.

It is easy to see that every additive game 1is totally
balanced and that the minimum game of every finite collection of
totally balanced games 1is also totally balanced. It is

interesting that the additive games, together with the minimum

operation, span the entire class of totally balanced games:



Theorem . A game V is totally balanced if and only if it

is the minimum game of a finite collection of additive games.

Proof. The "if" 1is obwvious. To show the converse we define

a collection of (n-person) games {VS}SEZN with the properties

(i) VS is an additive game
(ii) VS(T) > V(T) for every T EZN
(iii) VS(S) = V(S).

It is obvious that (ii) and (iii) imply that for every

(T) = v(T), i.e. V is the ninimum game

coalition T min VS(T) = VT

of the family {VS}SEZN'

To define the games V_ we use the following construction.

S

N
For every S € 2 let be a point in the core of the (ls]

{ajhies
person) game VS. For i € S let ay be any real number larger than

V(N). Define the game V_, to be the additive game generated by

S

ajy 8gysees a - It is easy to verify that VS satisfies
properties (i), (ii) and (iii) which completes the proof of
Theorem 1.

In Shapley-Shubik (1969) they characterized the totally
balanced games to be exactly the games that are generated by a
certain type of exchange economies. We shall describe here a
family of cooperative games that occur very naturally in probleﬁs
of revenue sharing in integrated production processes with many

alternative production possibilities. We then show that this

family also span the family of totally balanced games.



I1. Flow Games

Consider a directed Network G with node and arc
sets M = {l...m}, and L = {l...l} respectively. As before, we
let the set of players be N = {l,...,n}. We associate with each
are 1 € L, a 4-tuple of labels Hi, Ti’ Ui and Pi which
collectively define the structure of G. The interpretation of
the labels 1is as follows. Hi and Ti describe the "head"” and
"tail"” nodes of the (directed) arc i. Thus, H:.L,'T:.L e M for
every 1 € L. Ui is a real number which describe the "capacity"”
of arc i. Thus, Ui may be any non-negative real number.
Finally, for each 1 € L, we let Pi € N be the identity of the

player which "owns™ the arc. The reader may note that our
formulation allows for multiple arcs between a given pair of

nodes.

Two nodes, 1 and m, play a special note in our

formulation. We let node 1 be the "initial"” or "scurce” node of
the network. Similarly, m is the "terminal” or "sink"” node. One
may think about the network in terms of a certain "input” which
corresponds to {or is available at) node 1 and which is being
converted into an output which correspond to node m. The other
nodes of G correspond to intermediate “"states"” in the process of
conversion. The transition from state to state is carried out by

arcs which are in turn owned by the players. It is customary to

model such production systems in terms of a certain "material” or

"fluid” which "flows™ throughout the network. Naturally, in



order to achieve maximum utilization of a given system, one would
like to find a flow in the corresponding network which is as
large as possible subject to the capacity constraints of the
individual arcs. There exist numerous extremely efficient
algorithms capable of finding a maximum flow through a given
network. For the pioneering work in this context, see Ford and
Fulkerson [1962].

To define a game on a network G assume that each unit of
flow is worth 1 (say $). For coalition S € 2N,' let GS be the
Network which is restricted to the arcs owned by the members of
S. Let F(S) be the maximal amount qf flow throughout that
Network. We call a game V a flow game if there exists a network

N

G such that for every coalition S ¢ 2 V(S) = F(S). Two lemnmas

follow immediately.
Lemma l. Every additive game is a flow game.

Proof. ©Let V be an additive game generated by the
numbers ays @pyece, . We construct a network with two nodes 1
and 2 and nm arcs connecting ! to 2 with the ith arc belonging to
player 1 and having capacity a;- It is obvious that

F(S) =igsai for every coalition S.

Lemma 2. If V and W are two flow games then min (V,W) is a

flow game.

Proof. If V is generated by a network G1 and W by a second



network G2 we combine the two networks in series by identifying

the terminal node of G1 with the initial node of GZ. Otherwise
we leave all the arcs, capacities and ownerships of arcs the
same. The initial node of the combined network is the initial
node of G1 and the terminal node of the combined network is the

terminal node of GZ' Thus, for a coalition S to facilitate flow
through the combined network, they must first flow it

through G, and then through G Thus, the level of flow that

1 2°
they can sustain is the minimum of the levels of flow that they
can sustain through the individual networks. It follows that the

combined network gives rise to the minimum game.

Theorem 2. A game is totally balanced if and only 1if it is

a flow game.

Proof. Theorem 1 together with lemmas 1 and 2 imply that
every totally balanced game is a flow game. To show that every
flow game is totally balanced it suffices to show that every flow
game has a non—-empty core (subgames of a flow game are flow
games ).

We need to recall some facts from the theory of network
flows (see Ford and Fulkerson, [1962]). A cut in a network is a
set of nodes C with the property that 1 € C and mlj C. The

capacity of a cut C is the sum of the capacities of all the arcs

i with Hi € C and Ti g C. It is known that--



(1) for every cut C the capacity of C is greater
than or equal to the maximal flow in the
network, and

(i1) there exists at least one cut, called the min
cut, with capacity equal to the maximal flow
in the network (max flow-min cut theorem).

To show that every flow game V has a non empty core we take
a network that gives rise to the game. We fix a min cut, C*, and

* * R
consider the set of arcs E = {i e L ¢: H, ¢ € and T i ¥ C }. For

i
every player j we let xj be the sum of the capacities of the arcs

*
in E that belong to him. To see that x € CORE(V) we observe

that igV xi = V(N)by the max flow-min cut Theorem. Now let S be

R L S . .
an arbitrary coalition and let G be its corresponding network.

%
We note that C is a cut in GS with capacity (relative
*
to GS) given by US = Z Ui such that i € E and Pi e S.
< . 3 > \=‘f\-
Clearly US igs X By (i) US F(S) V(S

Hence x € CORE (V), which completes the proof of Theorem 2.



The components of the flow games described above can be
generalized in order to facilitate the modeling of more
complicated real life situations. For instance, one may wish to

include costs per unit of flow on the individual arcs as well as

nultiplicity of "sources” and "sinks.’ It can be shown that the
games which result from this richer class of network problems are
totally balanced. In addition, the connection between core
allocations and cuts in the network G is deeper than what 1is
revealed by the proof of Theorem 2. However, these issues

require the introduction of different concepts and therefore are

left for a later paper.
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