AN AXIOMATIC CHARACTERIZATION OF COMMON KNOWLEDGE

Paul Milgrom

August, 1979
(Revised: November, 1979)

*I owe a debt of thanks to an anonymous referee whose comments led me to a clearer exposition of the applications of common knowledge.
An Axiomatic Characterization of Common Knowledge

by

Paul Milgram

(August, 1979)

ABSTRACT

An event A is common knowledge among a group of agents if each knows A, each knows that all know A, etc. An event B is call a public event if, whenever B occurs, every agent necessarily knows that B occurs. It is shown that an event is common knowledge if and only if it is a logical consequence of a public event that occurs. Moreover, public events and events which are common knowledge provide a convenient perspective for thinking about rational expectations trading models.
AN AXIOMATIC CHARACTERIZATION OF COMMON KNOWLEDGE
by
Paul Milgrom
Department of Managerial Economics and Decision Sciences
J.L. Kellogg Graduate School of Management
Northeastern University
Evanston, Illinois 60201
(August, 1979)

Intuitively, an event A is common knowledge among a group
of agents if each agent knows A, each knows that all know A,
each knows that all know that all know A, etc. In this case,
the "etc." encompasses an infinite sequence of conditions,
each more stringent than the one before. In a recent paper,
Aumann [1] formalized the idea of common knowledge in the
following simple way.

Let (Ω, P) be a finite probability space and let P and Q
be partitions of Ω representing the information of two agents.
Let R be the meet of P and Q, i.e. the finest common coarsen-
ing of the two partitions.

(1) \[R = P \land Q \]

By the notation P(ω) (resp. Q(ω), R(ω)) is meant that element
of P (resp. Q, R) which contains ω.

Definition: An event A is common knowledge at ω (ω ∈ Ω) if
R(ω) ⊆ A.

Aumann used this definition to state and prove a theorem
asserting that two experts cannot "agree to disagree."
Theorem 1
Suppose that for some event Ω and some ω it is common knowledge at ω that $p(\Omega|\Omega) = \alpha$ and $p(\Omega|\Omega) = \beta$. Then $\alpha = \beta$.

Thus, when two experts have identical prior beliefs and each obtains some private information about Ω, if each knows the other's posterior beliefs, each knows that the other knows his beliefs, etc., then these posterior beliefs must be identical. Coasakoplos and Polakarchakis [2] extended this result by showing that if two experts simply communicate their posterior beliefs back and forth, then they "will be led to make revisions that converge, in finitely many steps, to the common, equilibrium posterior."

These results are set in a non-economic context, but they suggest interesting economic questions. When traders exchange a risky security on the basis of private information, are they not "agreeing to disagree" in some formalizable sense? What sort of informational exchange leads to equilibrium beliefs in various trading mechanisms?

Recently, the idea of common knowledge has been extended to the case of many agents and applied to the analysis of a rational expectations trading model [3]. Formally, let partitions P_1, \ldots, P_n represent the information of agents 1 through n, respectively, and let R be the meet of these n partitions.

\[R = P_1 \wedge \ldots \wedge P_n \]

Then common knowledge is defined just as above, with R interpreted according to (2).
In the study of trade among self-interested rational traders in uncertain environments, one cannot gain a good intuitive grasp of the standard results simply by recognizing that each trader knows that the others may be basing their decisions on private information. It is also necessary to recognize that each trader knows that the others know that each is using his information, etc. Let us see how this point of view is used.

Suppose that there are \(n \) traders and \(4 \) commodities. States of the world are points in the finite set \(\mathcal{S} \subset \mathbb{R}^4 \times X \). Each trader \(i \) is characterized by a strictly concave von Neumann-Morgenstern utility function \(U_i : \mathbb{R}_+^4 \to \mathbb{R} \), a random endowment \(\xi_i : \mathcal{S} \to \mathbb{R}^4 \), and a probability measure \(p_i \) on \(\mathcal{S} \). Note that although states of the world have the form \(\mathcal{S} = \{ (\emptyset, x) \} \), traders' endowments depend only on \(x \). Thus, \(\mathcal{S} \) can be regarded as the "payoff-relevant" aspect of the environment. Of course, full or partial knowledge of \(x \) may convey useful information about \(\mathcal{S} \).

A \(\emptyset \)-contingent trade is defined to be an \(n \)-tuple \(t = (t_1, \ldots, t_n) \) of functions \(t_i : \mathcal{S} \to \mathbb{R} \). Each trader's information is represented by a partition in the usual way.

Now suppose the traders trade to an ex ante Pareto optimum before observing their private information. When the private information arrives, the marginal conditions will, in general, be disturbed, and markets might therefore be reopened. But can risk-averse traders really agree to a trade based solely on differences in information? A negative answer to this question is given in (J), and a slightly specialized version of that theorem is stated below.
Theorem 2

Suppose that the traders have identical prior beliefs \(p_1, \ldots, p_n \) and that the initial allocation \(q_1, \ldots, q_n \) is Pareto optimal \textit{ex ante} (before any information becomes available) relative to \(\beta \)-contingent trades. Let \(\tau \) be a proposed \(\beta \)-contingent trade \textit{ex post} and suppose it is common knowledge at some \(\omega \) that (3)-(5) hold (i.e., that the trade is feasible and acceptable to each trader).

\[
\sum_{i=1}^{n} \tau_i \leq 0
\]

\[
\forall i \quad e_i + \tau_i \geq 0
\]

\[
\mathbb{E}[U_i(q_i + \tau_i) | p_i] \geq \mathbb{E}[U_i(q_i) | p_i]
\]

Then \(\tau_1(\omega) = \ldots = \tau_n(\omega) = 0 \).

Additional applications of the common knowledge idea arise frequently. Wilson [5] defines an efficient allocation in a world of differential information in a way that can be stated succinctly using common knowledge: A contingent-allocation \(x \) is efficient if there is no other allocation \(y \) such that it is common knowledge that all prefer \(y \) to \(x \). Kobayashi [4] investigates the convergence of beliefs problem in a way that resembles the Geanakoplos and Polemarchakis work. Additional results using these ideas can be found in [3].

The applications cited above amply demonstrate the usefulness of the formal notion of common knowledge. Since the formal
definition is regrettably far-removed from the original intuitive idea, it may be useful to describe common knowledge in terms of its characteristic properties. Formally, I treat the problem of characterizing common knowledge as one of associating with each event A another event K_A with the interpretation

$$\neg K_A \iff (x \in \Omega | A \text{ is common knowledge at } \omega).$$

Consider the following four properties:

(P1) \hspace{1cm} K_A \subseteq A

(P2) \hspace{1cm} \forall \omega \in K_A \forall \ell \in P_\ell(\omega) \subseteq K_A

(P3) \hspace{1cm} B \subseteq A \implies K_B \subseteq K_A

(P4) \hspace{1cm} [\forall \ell \forall \omega \forall A \in P_\ell(\omega) \subseteq A] \implies A = K_A

Condition (P1) asserts that A can be common knowledge only if A actually occurs. Condition (P2) holds that if A is common knowledge, then every agent knows that A is common knowledge. Beginning with (P1) and applying (P2) repeatedly, one can infer that A is common knowledge only if A occurs, each agent knows A, each knows that all know A, etc. Condition (P3) holds that whenever B is common knowledge, any logical consequence of B is also common knowledge. Condition (P4) asserts that public events are common knowledge whenever they occur. The antecedent in (P4) defines a public event: it is
an event which, if it occurs, will be known to every agent.
I offer two examples of public events which arise in a trading context.

Suppose that trading is controlled by a Walrasian auctioneer who announces prices until some market clearing prices are found. We may imagine that at the close of trading, the auctioneer announces the equilibrium price vector \(p \) to the assembled traders. Then no trader can fail to know that "\(p \) is the equilibrium price vector" whenever such is the case. Similarly, no trader can fail to know that the net trades proposed by the various traders at the final round of the résumément process are feasible.

If trading takes place through some bargaining process, one may suppose that various proposals and counter-proposals will be made. At the close of bargaining when the traders sign the final documents, each trader must know that "this particular bargain is acceptable to everyone."

Theorem 3

There is a unique function \(K \) satisfying (P1)-(P4) and it is given by

\[
K_A = \{ \omega | R(\omega) \in A \}.
\]

Proof:

One can readily check that the function defined by (7) satisfies (P1)-(P4), thus proving existence. For uniqueness,
take any event A. It follows from (P2) that \(K_A \) is coarser than any of the partitions P_1, \ldots, P_n. Since $R = P_1 \wedge \ldots \wedge P_n$ is the finest common coarsening, it follows that for all $\omega \in K_A$, $R(\omega) \subseteq K_A$. Hence by (P1) $R(\omega) \subseteq A$ for all $\omega \in K_A$, which is the meaning of the statement:

(8) \[K_A \subseteq \{ \omega \mid R(\omega) \subseteq A \}. \]

Next suppose ω is such that $R(\omega) \subseteq A$. Then by (P3), $K_R(\omega) \subseteq K_A$. It is straightforward to check that $R(\omega)$ is a public event, so using (P4) leads to $R(\omega) \subseteq K_A$ and, in particular, to $\omega \in K_A$. This paragraph has shown that

(9) \[(\omega, R(\omega)) \subseteq A \subseteq K_A. \]

Taken together (8) and (9) establish uniqueness.

Q.E.D.

Corollary

Any definition of common knowledge consistent with (6) and (P1)-(P4) is equivalent to Aumann's definition.
Notice that the proof given above implicitly defines two characterizations of common knowledge. The first part of the proof implies that E_A (as defined by (7)) is the most inclusive set consistent with (P1) and (P2). I argued earlier that (P1) and (P2) characterize the requirements of the intuitive definition of common knowledge.

The second part of the proof implies that E_A is the least inclusive set consistent with (P3) and (P4). So an event is common knowledge at ω if and only if it is the logical consequence of a public event that occurs at ω. Since the elements of E are all public events, this second characterization gives intuitive content to Aumann's formal definition.
REFERENCES

FOOTNOTES

1 The Economist (December 29, 1979, p. 7) has offered a
common knowledge style analysis of recent events in the
international arena: "In the weird multibluff of nuclear
arms, the Russians know the Americans believe the Russians
think the Soviets could win a first strike nuclear war...."

2 For an example which emphasizes this point, see [3], page 12.

3 The proof proceeds by showing that if the trade \(t \) is not null,
then the trade \(t^* \) defined by \(t^*_i = 1/2E[1_{(d-t)} t_i] \) is feasible
and \textit{ex ante} Pareto improving. Intuitively, gains from trade
arise in this setting only by systematically outguessing other
traders. In a rational expectations equilibrium, some trader
must realize that he cannot outguess his trading partners,
so no trade takes place.