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Abstract

A set of n players is to bargain over which one of m possible out-
comes will be chosen. The payoff of outcome i to player j is a random
variable, Xij' Al Xij are assumed to be independent, and for a fixed
player j all Xij have the same continuous distribution function Fj' The
mean and distribution of the number of outcomes in the Pareto-optimal set
are shown to be invariant with respect to the distributions Fj’ and are
calculated for finite m. As m = ® the mean is asymptotic to
(log m + .577)n—l/(n - 1)!, and for n = 2, m * *, the distribution
approaches the normal distribution. The results are also applied to a
problem in multiattribute utility theory. Suppose we wish to select an
individual with high values on two personmal attributes that are indepen-
dent and continuously measurable. Of a world population of four billion,

the efficient set would have an expectation of 22.7 individuals.
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Introduction

The feasible set S of a bargaining game is the set of all possible
agreements that are at least as preferred by both players as a disagree-

ment. An outcome in S in in the Pareto-optimal set PO if and only if no

other outcome in S is strictly preferred by both players.

What is the mean proportion of the feasible set that is Pareto-optimal?
More generally what is the distribution of the number of Pareto-optimal out-
comes? This paper will provide some answers to these questions, under thé
assumptions that S is finite with payoffs that are random variables. The )
random variable Xij is defined as the payoff to player i of outcome j. All
Xij,are assumed independent. For a fixed player j all Xij havevthe same
continuous distribution function, Fj.

As an example of such a problem consider two people who WiSh’tO attend
a movie together. Assume movies arrive in town by some probabilistic pro-
cess, such that the utilities of the two for seeing a movie are independent
random variables. Assume that each is able to rank the movies without ties
and that there are 20 theatres., It can then be shown that on the average
3.6 movies will be in the Pareto-optimal set.

It is surprising that an exact value can be calculated, but note that
membership in PO depends only on the players' set of rankings, not on their
cardinal utility evaluations. Since all sets of rankings are equiprobable
and there are no ties, various statistics concerning the size PO can be
calculated, independent of the exact shape of the distributions Fj'

If A is a set of outcomes, PO(A) will designate those outcomes of A

that are Pareto-optimal with respect to A. The set PO(S), those outcomes

Pareto-optimal with respect to the entire feasible set, will usually be



abbreviated as PO. Km n is a random variable whose value is the number
b

of outcomes in PO, where the utilities of the m outcomes in S for n
players are chosen independently from continuous distributions, one for

each player. Pn(k’ m) will designate the probability that Km - k.

b

The following theorem gives the distribution of Km 0
L

Theorem 1:

L -1 L
P2(k, m) = o P2(k, m- 1) + - P2(k -1, m- 1), 8]

where P2(k, 0) = P2(O, m) =0 for k, m= 1, and P2(0, 0) = 1.
Proof: Let the outcomes in S be designated Ol’ O2 .o Om according to
their rank of preference by player 1, such that player 1 prefers 0l te

02 ses tO Om. Let 71 be a permutation of S giving the rank of preference

by player 2, i.e., player 2 prefers W(Ol) to n(Oz) cee EO n(Om).

Figure 1 about here

We can compare PO(S) with PO(S - {om}). The addition of O_ will not
eliminate from PO(S) outcomes that were in PO(S - {Om}) since 0m is player
1's least preferred outcome. PO(S) is a superset of PO(S - {Om}), either
identical to it or containing a further point, Om' Therefore Pz(k, m) is

the sum of the probabilities of two events:

1) O € PO(S) and |Pos - {0 D] =k-1

2) O_ € PO(S) and [Po(s - {0 1| = k.

Let ™' be the permutation giving the rank of preference by player 2

over the set S - {om}. The event that IPO(S)t = k depends entirely on T



and likewise the event that !PO(S - {Om}\ =k or k -~ 1 depends entirely
on mM'. Since payoffs Xij are independent, all permutations T of m out-
comes are equiprobable, and all permutations T' are also equiprobable.
Therefore the probabilities that |PO(S - {Om})l =k, and k - 1, are
Pz(k, m - 1) and P2(k - 1, m - 1) respectively.

Qutcome Om is in PO(S) if and only if it is first in preference for
player 2, Since all permutation T of m outcomes are equiprobable, this
event occurs with probability 1/m and is independent of the size of
Po(s - fo_1).

Therefore,
Pk, m =P (k-1,m-1 +2Lp x, m- 1)
2 m "2 ’ m 2

which is the formula to be proved. The initial conditions stated in the

theorem are easily verified. O

The mean and variance of K are
m,2
21
—-— < —
E<Km,2) = & 3 and 2)
i=1
m
- 1_1
Var(Km’z) = ? T3 (3)
i=1 J

Both of these expressions can be derived from Theorem 1, but (2) can also
be proved directly by using the argument of Theorem 1 with Pz(k, ﬁ)
replaced by E(Km’z).

It follows from (1) that the probability gemerating function for

Pz(k, m) is

cpm’z(t) =t(t+1) ... (t+m-1) &)



wm’z(t) is also the probability generating function of s(m, k), the sign-

less Stirling numbers of the first kind (Riordan, 1958, p. 71) and thus

(_l)m-l-k

P, (k, m) = s (@, k), 5)

The expression (4) is also the generating function for the probabili-
ties that a permutation of length m has exactly k cycles. A number of
results that have appeared in the literature of permutations and Stirling
numbers can be applied directly. Formulae (1), (2) and (3) arise also in
a sampling problem discussed by Vout (1973).

The following theorem gives the asymptotic distribution of K It

m,2"
was proved in the context of permutation cycles by Feller (1968, p. 258).

Theorem 2. Let C be the Euler's constant, that is, C = .577216 . Then,

the distribution of

Km,2 - (log m + C)

L
(log m + C-ﬂ2/6)2

6)

approaches the standard normal distribution in the limit as m = =,

Proof. The mean of Km is asymptotic to log m + C, since by (2) it is

,2
the sum of the first m terms of the harmonic series, 1/i. The variance
is asymptotic to logm + C - ﬂ2/6 since it is the term by term‘difference
of the two series 1/i and l/iz.

To'show that the random variable (6) has a limiting distribution that

is normal, label the possible agreements Ol to Om in otrder of preference by

player 1, agreement Ol being the most preferred.



Associate with each outcome Oi’ the random variable Xi:

X, =0 if 0, € PO
i i

X, =1 if 0, € PO,
i i

The X; are independently (although not identically) distributed
binomial distributions with Prob(Xi =1) =1/i, and Var(Xi) = (i - l)/iz.
The number Km 2 of Pareto-optimal outcomes is Z)Xi. The random variables

H

1
(Xi - (logm+C))/(log m + C)* satisfy the conditions of Lindeberg's
central limit theorem (Feller, 1968), and thus (6) approaches the standard

normal distribution. r7

——

The following theorem, which was pointed out to the author by Roger
Myerson, generalizes formula (2) for the mean to the case of three or

more bargainers.

Theorem 3:

(7)

Proof:

Let Om be player l's least preferred outcome and let X be the random

variable:
X =0 if 0, § PO
X_=1 if o_ € o,
Then Km,n = Km-l,n +'Xm where Km-l,n is the number of Pareto-optimal.

points in S - {om}. It follows that

B, ) =B, ) +EX ). (8)

H



Now Om will be Pareto-optimal if and only if it is Pareto~optimal among

the other n -~ 1 players, excluding player 1. This event has expectation

1

= E(Km,n-l)’ which yields:
- 1
E(Km,n) - E(Km-l,n) * m E(Km,n-l) 9
where
E(KD,n) = 0, E(Km,l) = 1.

Formula (7) satisfies the above initial conditions. To show that

it also satisfies recursion (9), we begin by defining

z i m 1
f =Z(-l)(i)—i;_—l

m .
ZEnhEh s 1=

Then fm n i-1 in-l

’ i-1

(m-1): 1
(i-1) ! (m-1). in-l

m-1,n

m .
= f + (D
i=1

= f + 1 % -1yt m! 1
m-l,n m . ,° il (m-1)! .n-2
i=1 i

[

= + = .
fm—l,n m fm,n-l

This proves the theorem. C

Since the random variables Wl and Km 1.n 2re dependent formula (8)
L

cannot be generalized to determine the entire distribution of Km h.
2

Theorem 3 gives us a result for the mean only.

The following limit of E(Km n) can be calculated,

2



Theorem 4, As m = %=, E(Km n) is asymptotic to
b

(log m + )%/ (a - 1)! (10)
Proof: Let
i i i-1
m 1 j-1
Em,n,i . .. .éb . 55 1.1 .%.i
11—1 12—1 1j—l 1j+l—l 172 n-1

The role of index j is thus that for k < j, the summation ranges from
. - . . L S , .o
iy 1 to b (taking i, m), whereas for k j the range is from i 1

to i 1.

k-1

The proof proceeds in three steps:

(i) g is asymptotic to (10) as m = =,

m,n, 1l
. . . .
(ii) &n,n,j+1 1° asymptotic to 8n,n,j 25 © ®
c e - E(K )
(111) gm,n,n-l ( m,n)

(i) Jordan (1939, Ch. IV) has shown that

+
fnn.1 = U om - 1, 0 /m!

~(log m+ 1) + 0@ - 1! asm= ®

where s(m + 1, n) is a Stirling number of the first kind.

Since log(m + 1) ~ log m, it follows that 8p.p.1 1S asymptotic to
H

H

the expression given in (10).

(ii) Suppose gm,n,j is asymptotic to (10). gm,n,j+l
o i, 1n_2-l
e =g . +L .. T ..o —1_
m,n,J+l m,n’J i =1 i i llizasul -l
1 j+1=1 n-1=1

Dividing each side by (log m + C)n-l/(n - 1)1 gives



- ! 13!
Then g . X {o-b): g . ———-—Ql—LlL—I (1)
m,n,J+l (log m-i-C)n-l o0, J (log m+C)n-

m s in-l-1
+ (@- 1! 2 l:.—... i ik ee ik
11=1 1 lj+1=1j j+l 1n_1=1 n-1

where k = 1/(log m + C).

In the right hand term the sum indexed by in-l must be less than 1
i
for all values of m since 1/k > 2 % for all finite £. Thus the sum
i=1 v
indexed by in—2 must also be less than 1. This argument may be repeated

up to the index ij+1 This sum has only one term and therefore tends to

zero, and both sides of (11) approach 1.

(iii) Replacing K.m n by g in (@), g 1 clearly satisfies
b

m,n,n-1 m,n,n-

the initial conditions of (9). To show the recursive formula is also

may be expressed as

satisfied, gm,n,n—l
m-1 11 in-2 1 m ln-2 1
2 % e D rrte—t D ... T oL
11‘1 12=1 i -l=1 172 n~1 12=1 ln_1=1 2 -1

1
- gm-l,n,n—l * m gm,n-l,n-Z

This proves the theorem. -

Calculations of the expected size of PO, based on Theorems 1, 3 and

4 are given in Table 1,



n
m 1 2 3 4 5 10 15
1 1 1 1 1 1 1 1
2 1 1.50 1.75 1.88 1.94 1.998 1.9999
3 1 1.83 2.36 2.66 2.82 2.99% 2.9998
4 1 2.08 2.88  3.38 3.67  3.988 3.999
5 1 2.28 3.34 4,05 4.8 4,981 4.9994
6 1 2.45 3.75  4.67 5.26 5.972 5.9091
7 1 2.59 4.12  5.26 6.01  6.91 6.999
g | 1 2.72 4,46 5.82 6.74 7.948 7.998
9 é 1 2.83 4.77  6.35 7 .64 8.933 8.998
10 | 1 2.93 5.06 6.86 8.13 9.918 9.997
20 1 3.60 7.27  11.03 14.12  19.67 19.99
50 . 1 4.50 10.93  19.2 27.7  48.18 49.93
100 1 5.19  14.3 27.9 43.9 93.8 99.72
1000 1 7.49  28.8 76.5 157. 765. 980.2
10t 1 9.79  48.7 164, 426.  L947. 9116.5
1087 1 14.39  103.6  497. 1788. 73030.  187,800.
x107] 1 22.7  257.3 19%6. 11040, 4.39x 10° 1.098 x 10°

*

based on the approximation of Theorem 4.

size of feasible

number of players

set

Table 1. Values of E(K )
—_— m,n

>



Approximations of E(Km n) based on Theorem 4 are compared with exact

3

values in Table 2, It is clear that the approximation is accurate for

small n but as n grows to 5 or larger, very high values of m are required

to give acceptable accuracy.

n
m 2 3 5 10
100 5.18 (5.19) 13.4 (14.3
1000 7.48 (7.49) 28.0 (28.8) 131 (157)
10000 9.79 (9.79) 47.9 (48.7) 382 (426) 2271 (4947)
m = size of feasible set
n = number of players

Table 2. Approximations of E(Km,n) based. on Theorem 4.
Exact values appear in parentheses.
The determination of Pn(k’ m) for n 2 3 is more difficult. A method
will be outlined for m 2 3. It can be applied to greater numbers of players
but the calculations become exceedingly long.
Let A be a set of pairs of integers less than or equal to m: A C Im % Im,

and let il, i2 € Im. We define a function onto the subsets of A as follows:

FIA, (i3, 1)1 = {(ys 30 [y ) € A5 4y # 355 4y # Jps
(j1 > il) or (j2 > iz)} where il’ i, € Im.

Let a be player 3's favorite outcome and let rl(a) and rz(a) be the
ranks of preference for a by players 1 and 2 respectively, the most preferred
outcomes being ranked m. The set of possible values for (rl(a), r2(a)) is
Im X Im. Outcome a will be Pareto-optimal, but further Pareto-~optimal out-

comes can arise with rank vectors only in the set

F[Im x I, (rq(a), rz(a))]



since other outcomes will be dominated by a.

Thus,

L

Py (k, m) = b Pk - 1, F[I_ x I
(i.,1,)€I xI =
1°72 m” m

where P(k, A) designates the probability of there being exactly k outcomes
that both are Pareto-optimal and also have rank vectors for players 1 and 2
in the set A, where k € I_and AC I x I .
m m m
The values of P are determined by arguments similar to those just given
but applied to A rather than Im X Im. That is, considering all possible

rankings for players 1 and 2, for player l's favorite within A gives

P(k, A) = 2 PGk =1, Fla, (i, 1) D),
(1;,1,)€a
where
PO, A) =1 if |a} =0

0 otherwise.
Various equivalences among the sets A can be exploited to speed compu-

tation. Standard deviations of K 3 determined by this method are given in
m,

Table 3.
m 1 2 3 4 5 6
E(K ) 1.00 1.75 2.36 2.88 3.34 3.75
m,3
Standard
deviation .000 435 .673 .830 1.03 1.22

m = size of feasible set

Table 3. Means and standard deviations of K. 3
N >



Discussion:

It has been suggested that Pareto-optimality is a very weak limita-
tion on the bargainers' possible agreements. Table 1 suggests the oppo-
site in our view, especially for two bargainers and large m. For example
if 1000 agreements are possible the expected size of PO is 7.49. By the
normal approximation of Theorem 2, the actual size will be 11 or fewer
with probability .92.

The size of PO rises sharply with n, reflecting the difficulties of
decision-making encountered by large groups.

The concept of efficiency in multiattribute decision theory is equi-
valent to Pareto~-optimality. Instead of two bargainers we have two attri-
" butes for each of m courses of action. A decision-maker wishes to have
as high a value as possible of both attributes. Any choice will therefore
lie in the efficient set.

As a fanciful application to & multiattribute decision problem,
suppose that we wish to select an individual from the world's population
based on two desirable qualities. We want an individual with as high
values of the attributes as possible, but we have not decided on a rule
to combine the values into a single measure of worth. The attributes are
assumed to be precisely measurable and to be independent in the world's
population. Of the four billion people on earth, the number of real con-
tenders then has an expectation of 22.7, the rest being eliminated because
they are not efficient choices since someone else is higher on both measures.
With odds of better than 100 to 1 we would Have to consider 34 individuals
or fewer, according to Theorem 2.

It is very difficult to think of two qualities that are truly indepen-

dent through the world's population, but this type of calculation can still



be used as a guide. The expectation of 22.7 would be a rational estimate
if we knew nothing about the form of the dependency. If a positive correla-
tion were suspected, we could usually look forward to a smaller PO, and the

expectation calculated above would give an upper bound.
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