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Despite the fact that the assumptions underlying perfect
competition never actually hold, the use of the competitive model,
as an idealization, is justified if the predictions of the model
approximate the outcomes of situations it is used to represent.

In partial equilibrium analysis, this justification is embodied in
the "Folk Theorem" which states that if firms are small relative to
the market, then the market outcome is approximately competitive.
This paper provides a precise statemtne and proof of the "Folk
Theorem” for competitive markets with a2 single homogeneous good,

and free entry and exit. It is shown that if firms are small
relative to the market then there is a Nash-Cournot equilibrium

with entry; furthermore, the Nash-Cournot equilibrium is
approximately competitive. More specifically, if we consider an
appropriate sequence of markets in which firms become arbitrarily
small relative to the market, then there is a Nash-Cournot equilibrium
with entry for all markets in the tail of the sequence, and aggregate
equilibrium output converges to perfectly competitive output. If
firms have strictly U-shaped average cost curves then individual

firm behavior converges to competitive behavior. The treatment of
free entry distinguishes this paper from other papers dealing with
the "Folk Theorem," where either the number of firms is exogenous,
ruling out free entry, or free entry is treated as being equivalent
to a zero profit condition, ignoring the integer problem that arises

when the number of firms is finite but unspecified.



The paper is organized as follows: section 1 contains the
perfectly competitive model and its assumptions, section 2 contains
the assumptions and definitions for the imperfectly competitive
model with small firms, section 3 contains an example contrasting
the usual treatment of the "Folk Theorem" and the present approach,
section L4 contains the proofs of the main results, and section ~
contains remarks on the results and indicates how some of the

assumptions that are used can be weakened.

Section 1

The classical long run perfectly competitive model of a market
for a2 single homogeneous good, where factor prices are constant, can
be found in most textbooks which survey microeconomics at any level.
2All firms have identical technology, and in the long run firms can
choose plant size, and enter or leave the market. The long run
perfectly competitive market result is aggregate output Y* and
price F(y*) (F is inverse demand) such that F(¥Y*¥) = minimum long
run average cost = LRAC(y*), with each producing firm operating
the optimally efficient size plant at output y*, and earning zero
profit. With constant input factor prices, long run supply is a
horizontal line at price = LRAC(y*).

There are two reasons why firms must be infinitesimal in the
perfectly competitive model: first, if firms produce significant
output then they have an effect on price; second, if y* |1is
significant, then long run supply at price = LRAC(y*) is the discrete

set of points which are integer multiples of y*, not a horizontal



line, so if Y*¥ 1is not an integer multiple of y¥, long run
perfectly competitive equilibrium does not exist. Both of these
problems vanish when firms are infinitesimal.l
The assumptions used in the long run perfectly competitive
model are:
(1) 1long run average cost is strictly U-shaped with minimum
attained at y* £ O (nonzero in the scale of the firm);
(2) there exists Y¥e(0O,o») such that inverse demand
F(Y) ; LRAC(y*) as Y gy* :
(3) (a) firms are identical and infinitesimal with respect
to v* ,
(b) firms choose quantity (and as a result of being
infinitesimal, need not consider their own effect
on price, since it is zero), meximizing profit, viewing
price (and hence the aggregate output of other firms)
as fixed,
(c) firms are free to enter and leave the market.
The long run average cost and inverse demand functions are also
commonly assumed to satisfy differentiability conditions.
The long run perfectly competitive equilibrium is characterized
by:
(L) each producing firm's output is a profit meximizing
response to price (and hence to the aggregate output of

all other firms);

(5) each producing firm has nonnegative profit:



(6) no potential entrant cen earn strictly positive profit
by entry, assuming price (and hence the aggregate output
of all other firms) is fixed.

When firms are small not not infinitesimal (y* 1is small but
significant) they have an effect on price, and we assume they
recognize this effect, but no other substantial changes are made
in the assumptions or the equilibrium properties. In this
context, the "Folk Theorem" says that if y* 1is significant but
small relative to Y*, then market equilibrium output exists and

is approximately v¥

Section 22

Let AC and C be long run average cost and long run cost
functions respectively, and let F be the inverse demand function.
The first two assumptions for imperfectly competitive markets
correspond to assumptions (1) and (2) for the perfectly competitive
model.

(Cl) There exists y* ¢ (0,o) such that AC(y) > Ac(y*) ¢ (0,»)

for all y ¢ (0,o), and AC(y*) < lim inf AC(y).

y—=>O+
(F1) There exists Y* ¢ (0,o) such that F(Y) g AC(y*) as
<
Y 3 ¥

Assumption (Cl) does not reguire average cost to be strictly U-
shaped, but does guarantee the existence of ¢, ® > O such that

Ac(y*) + ¢ < AC(y) for all y ¢ (0,%), so very small outputs

have average cost bounded away from minimum average cost. Uniqueness

of y* 1is not required, so a continuum of efficient outputs,



as in the case of a2 flat bottomed U-shaped average cost curve,
is allowed.

The measure of firm size is a natural one that is based on
technology: the smallest output at which minimum average cost is
attained, minimum efficient scale. 1In our partial equilibrium
framework, each firm is completely described by its average cost
function, so for convenience we identify the firm with its

average cost function, and speak of the firm, AC.

Definition 1: Let AC be an average cost function satisfying (Cl).

Then the size of a firm, AC, is

MES(AC):= inf{y* ¢ (O,0)AC(y*) < BAC(y) Vvy e (0O,0)} .
By (Cl), MES is well defined and strictly positive. If AC is
continuous at MES(AC) then MES(AC) is the smallest output at
which minimum average cost is attained.

In order to generate a family of average cost functions
(indexed by ), & transformetion which changes the scale of

measurement of output is used.

Definition 2: Let AC be an average cost function satisfying (Cl1l).

For each o ¢ (0,®), the a-size firm corresponding to AC

is the firm Ac, defined by ac,(y):= Acly/a).

This transformation changes the scale of measurement of output
by 2 factor of o (Ac(y) = Aca(ay)). With this transformation,
we can assume that any basic average cost function under

consideration has minimum efficient scale equal to one, and use «



to generate the other average cost functions with nonunity minimum
efficient scales. This assumption that minimum efficient scale

equals one for basic cost functions entails no loss of generality.
(ce) MES(AC) =1

If AC satisfies (Cl) and (C2) then an a-size firm relative to
AC has MES(ACa) = o, and the use of size in Definitions 1 and 2
is consistent. Denote the cost function corresponding to Aca

by C so Ca(Y) = aC(y/a).

a)
The next two assumptions correspond to the continuity and
differentiability assumptions commonly made in the perfectly

competitive model.”

(c3) a) c¢(0o) = 0and C 1is a continuous, strictly positive,
monotonically increasing function of vy on f\[o), where
I is the interval on which C 1is finite valued. If C
is bounded on I then I 1is closed.
b) C is twice continuously differentizble on I\{O] with
C' > 0, and there exist s ¢ (0,1) and t ¢ (1,») such

that C" > O for all y ¢ [s,t]1{]1

This is a standard assumption, weakened to allow capascity constraints
(1 £ [0,0)), but requiring that either I is closed on the right
(the constraint can be attained) or cost is arbitrarily large for
outputs near the constraint. The existence of s and t corresponds
to the usual assumption about the shape of the marginal cost curve

near the minimum of the average cost curve. Notice that C 1is not

reguired to be continuous at O, so 1lim C(y) > O is possible.
y-0+



(F2) For all Y ¢ (0,x0), F(Y) is twice continuously differentiable

with F'(Y) < O whenever F(Y) > O

This is also a standard assumption and allows unbounded price near

zero output as well as strictly positive price for all finite outputs.

The market under consideration is completely described by «, C,
and F, so we denote the market by («,C,F). Note that in any («,C,F)
market all firms, including potential entrants, have the same cost
function C,

The equilibrium concept used here has properties similar to
those listed for the long run perfectly competitive eguilibrium:

(i) The output of the producing firms yields a Nash eguilibrium

with strategic variable quantity,
(ii) all firms make nonnegative profit, and

(iii) there is no profit incentive for additional firms to

enter the market.

Definition 3: Given a cost function C an inverse demand function
and an a ¢ (0,0), an (a,C,F) market equilibrium with free entry

is an integer n and a set {yl,...,yn} of positive outputs
n n
such that, for Y.,., = X y. end Y, = Zvy.,
R T 4171
. oL
(a) V 1 ¢ {l)"')n}, F Y)l( Yl)yl - Ca(yl)

> F(Y)i(+y)y - ¢ (y)
Vye [O,o]; and

(b) F(YT+y)y - Ca(y) <0 V¥vye [0,0]

The set-of all (o,C,F) market equilibria with free entry is

denoted by E(«,C,F).

F)



Condition (a) is the Nash condition for producing firms. When

firms are infinitesimel, y is infinitesimal with respect to (the
integral) Y)i(’ SO F(Y)i(+y) is a fixed price and (a) becomes the
profit meximizing condition for a competitive firm. If c(o) = O,
condition (a) implies that all firms make nonnegative profit since
ca(o) = 0. Condition (b), the free entry condition, reguires that
no potential entrant, acting alone, can achieve positive profit by
entry. When firms are infinitesimal this reduces to the competitive
entry condition. Notice that the n wused in the definition is
endogenous, not prespecified, and given C, F, and a, E(a,C,F) may

contain several equilibrisa, with different values of n.

The main results of the paper are Theorems 1 and 2.

Theorem 1l: Given a cost function satisfying (Cl) and (c2), with

c(0) = O0,an inverse demand function F satisfying (Fl),.and

an oe(0,o), if n, {yl,...,yn] is an element of E(w,C,F) then
n

Yo = Zy; € [y - a, Y*]
1i=1

Hence, if o 1is small relative to Y*, then any equilibrium in
E(a,Cc,F) (if one exists) yields a2 market output which is

approximately the perfectly competitive output.

Theorem 2: Given a cost function C satisfying (cl), (c2), and

(C3), and an inverse desmend function F satisfying (Fl) and

(F2), there exists ao* > O such that for all o ¢ (0,a*],

E(C{,C,F) /= p .



Theorems 1 and 2 provide a precise statement and proof of the "Folk
Theorem": if firms are small relative to the market then there is
a market equilibrium, and the market output is approximately

competitive.

In this section, for a2 simple example with U-shaped average
cost, we contrast the usual treatment of the "Folk Theorem" with
the approach adopted in Section 2. The usual treatment fixes
cost and demand functions, fixes the number of firms, n, and finds
an n-firm Cournot eguilibrium. Then n 1is exogenously increased,
so each firm's output (the measure of size) becomes arbitrarily
small. 1In this context, the "Folk Theorem" is valid if and only
if the aggregate output of the n-firm Cournot equilibrium converges
to perfectly competitive output as n becomes arbitrarily large.
When average cost is U-shasped, if each n-firm eguilibrium is wviable
(211 n firms producing positive output earn nonnegative profit)
then the "Folk Theorem" must invariably fail, since price converges
to AC(0+) - the limit of average cost as output converges to zero -
in order to maintain nonnegative profit for the firms whose output
is becoming arbitrarily small.”

In contrast to the n-firm Cournot technigque, the approach of
Section 2 measures firm size by technology and treats the number of
firms as a2n endogenous variable. 1In this context, the "Folk

Theorem" is valid under very general assumptions.
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Example A shows the failure of the "Folk Theorem" using the
n-firm Cournot technique. Example B, using the same basic cost
and demand functions, demonstrates the validity of the "Folk Theorem"
using the approach of Section 2. For both examples, the
nondifferentiability of the cost function serves to simplify the
reaction correspondences, and does not affect the nature of the

results.

Example A: The cost function is

gy - '2]—_}’2 Yy € [O)]—]
c(y) =
1 l 2
5y +5¥° vy e (1,o)
and the inverse demand function is F(Y) = 3-2Y .
Let {yl,...,yn] be an n-firm Cournot eguilibrium, and let
n
Y)i( 1= % Yy for each i . The reaction function for each firm is
j-1
jEL
'2_(% - Y -() Y).( € [0’2]
(Ye.,) = 3 )i i
n n
so summing over i , recognizing that LY (= (n-1) = vy, ,
g1 )t i=1" %t
and rearranging, we get
n
_2(_.n__ 2
v = i(ge7e) <%
1=1
Then Y <2 so y. > 0 for all i, and vy, = 1(——l——) for
)i( L i ’ i 7 hk'n+l/2
2ll i = 1,...,n 1is an eguilibrium, and it is the only n-firm

egquilibrium (to see that Yi = Y5 for all i, j, fix the output of
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any n-2 firms and notice that the only equilibrium for the two
remaining firms, facing the residual demand as a Cournot duopoly,

is i = yj). As n 1is exogenously increased, the output of each
individual firm converges to O, while aggregate output converges

to %, not to competitive output 1. Price converges to 2 Ac(o+)=Cc'(0+)

2
Notice that for any finite n , price is greater than g , so if
entry is allowed, it will take place. Also, as n increases the
behavior of the firms does not converge to price taking behavior
(the second order condition for a price taking profit maximizer is

violated at y;, 2nd the price taking response to Y)i( = E(E:l——)

is always greater than 1, while y. converges to 0).

Example B: The basic inverse demand and cost functions are the

same as in Example A. For o ¢ (0,»),
B T S <
{ >Y T 5y y ¢ [0,a]

L1 1.2
5Y 55y v e (a,@)

We show that for o ¢ (0,1/5], E(a,C,F) £ ¢.6 Fix o e (0,1/5].
The reaction correspondence of a firm with cost function Cyo

reacting to output Y by other firms, is

(Hgii (%-2Y) Y e [o,%-za)
- a Y ¢ [E-EQ,l—a)
y(¥la) - JL
(0,0} Y=1-aoa,
O Y = (l-a,w)
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An instructive method for finding a symmetric equilibrium is to
consider the cumulative reaction graph, CRG, which plots the points
(v, Y+y(Y|a)) (see McManus [4]). If there is an n-firm Cournot
symmetric equilibrium (without free entry), there is a point
(YO, Yo+y(YO|a)) which lies oﬂ both the CRG and the line L :Y+y =
H%I)Y . In order for this Cournot equilibrium to satisfy the
additional free entry condition, O ¢ y(YO+y(YOia)la) is reguired,
so an optimal response of any potential entrant is to maintain
zero output. The reaction correspondences for o ¢ (O,l|5] have
discontinuities at Y = 1 - o, where they are not convex valued,
so n-firm Cournot symmetric eguilibrium exists if and only if
n < n(a) where n(a) 1is the greatest integer less than or equal

to 1/a (s=e figure 1).

Y o s e

FIGURE 1

|

|

!

|
1

pd=d (1)

~~

1-a) Y
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All that remains is to show that aggregate output Yo, in the n(a)
firm Cournot equilibrium is at least 1-a, so O ¢ y(YT{a), and no
entry takes place when free entry is allowed. For a ¢ (0,1/5] ,
n(a), {yl""’yn(a)]’ where vy, = a for all i, is an element of
E(a,C,F) since

(2) ¥y, = (a(e)-1) & e (1-20,1-a) T [¢ - 20,1-a], so

y; = @ is an optimal response to Y)i(’ and

(b) no entry occurs since Yy = n(a) a ¢ (1-a,1] so

y(Ypla) = 0.

Notice that Y., ¢ (l-a,1], and Y, converges to the perfectly

T

converges to zero. Also, profit is strictly

T

competitive output as

Qi Q

positive unless n(a) =
The optimel response to Yyi( = (n{a)-1)a for a firm that

assumes price is fixed is approximately o (in fact, for

oS (O,%), the price taking response in any element of E(o,C,F)

is o, but this exact equality of price taking and non-price-taking

responses is a consequence of the nondifferentiability of the

cost function at o). Multiple equilibris are possible. For o = %,

where n 1is an integer greater than or equal to five, n, fyl,...,yn]
1 . 1

where vy, = - for all i, and n-1, {yl,...,yn_l] where y; = =

Lc,r).

for all i , are both elements of E(H

The results of Example B are generalized in Theorems 1 and 2,
the first of which shows that if o 1is small relative to Y¥*,
then every element of E(w,C,F) yields a2 market output which is

approximately the perfectly competitive output.



1k,

Theorem 1: Given @ cost function C satisfying (Cl) and (c2),

T

with C(0) = 0, an inverse demand function F satisfying (F1l)
and an o ¢ (0,o), if n, (yys.-.,v,} 1s an element of

n
E(o,C,F) then Y, = = y; e [¥v*-a,v*].'

Proof: If Yo > Y* thenlyi > O for some i, and market price F(YT)
is less than minimum average cost by (Fl), so the firm producing

y; > O has strictly negative profit, contrary to the Nash condition
and Ca(O) = 0.

If Y, < Y* - a, there exists y ¢ [a, Y*—YT) such that ACa(y)
equals minimum average cost, by definition of MES and the fact
that MES(ACa) equals o (if AC, is continuous at «a there is no
need to consider vy values other than «). By producing y, an
entrant changes price to F(YT+y) > AC(y) since YT+y < Y*¥, and earns
profit (F(YT+y) - Aca(y))y > 0, contrary to the free entry
condition. Q.E.D.

In order for this result to be meaningful, E(«,C,F) must be
nonempty for « small relative to Y*. There are two ways in which
E(x,C,F) can be empty. First, as in Example B for o ¢ (%,w), no
finite number of firms may be enough to remove the incentive for
additional firms to enter, while n-firm Cournot equilibria without
free entry exist for all n . Second, n-firm Cournot eqﬁilibrium
may not exist for all but a finite number of n values, with the

free entry condition failing at those Cournot equilibria that do

exist.
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The second way in which E(a,C,F) may be empty illustrates the
integer problem that arises when free entry is asllowed with
non-infinitesimal firms. Most of the time, free entry has been
treated as equivalent to a zero profit condition, and when firms
are noninfinitesimal, the number of firms is treated as a continuous
variable in order to get zero profit, after which some statement
is made about rounding off the number of firms to an integer.
Using that approach, equilibrium with free entry masy fail to exist
when the number of firms is rounded to an integer.

Theorem 2 shows that if o is small enough relative to Y*,
then both types of nonexistence are overcome, and E(o,C,F) is not

empty.

Theorem 2: Given a cost function C satisfying (cl), (c2), and

(c3), and an inverse demand function F satisfying (Fl) and

(F2), there exists a* > O such that for all o ¢ (0,a*],

E(a,C,F) £ 0 .

In order to prove the Theorem, we show that for o sufficiently
small, the reaction correspondence is similar to those of Example B,
at least in the interval that corresponds to [l-2a,1-a]. 1In
particular, three properties are vital for the method of proof used:
(i) at the point corresponding to l-a, Y(a), the reaction

correspondence has two values, O and y(a) > 0O
(ii) the reaction correspondence is nonincreasing on [Y*-2a,Y(a)]
(the exact meaning of this is explained below); and

(iii) the reaction correspondence is continuous on [Y*-2a,Y(a)).

These three properties are proved as follows.
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Step 1l: As «o decreases, the average cost function Aca becomes
more sharply U-shaped, so for o sufficiently small, if we overlay
a graph of Aca on a graph of F, and shift the ACa axes horizontally
to the right until AC, is just tangent to F, we obtain Y(a), and
y(a) > 0, where O and y(a) are both optimal responses to Y(a),

and (i) holds (see figure 2).

\ AC
x

F(Y*)l

Flyx)p == —~ ""‘f
1 _
| | F
- L
Y o) Y(éc) ; Y* Y
b
| - £ N
0 o v 0 y(a) Y

FIGURE 2
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Step 2: If marginal revenue, F'(Y+y)y + F(Y+y), is decreasing in
both Y and vy, for all Y and vy, then regardless of the cost
function, the largest optimal response to Y, is less than or
equal to the smallest optimal response to Yl whenever Yl < Y2
(see figure 3); if it does not increase profit to expand output
from Yy to Yo in response to Yl’ then it decreases profit to make

that same expansion in response to Y, (the change in costs is the

same, but revenue does not increase as much).

FIGURE 3

~We show that there exists a K > O such that F'(Y+y)y + F(Y+y)

is decreasing in both Y and y for Y e [Y¥-K,Y*], y ¢ [0, Y*-Y],

and show that for o sufficiently small these intervals contain all

pertinent values of Y and y. Thus property (ii) holds.
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Step 3: We show that for all o sufficiently small, the relevant
values of Y and y are such that marginal revenue is decreasing and
marginal cost is nondecreasing in y (i.e., the optimal values

of y 1lie in [sa,tal]). 1In general, at the optimal response
marginal revenue equals marginal cost, so there is a unique
optimal response, and the reaction correspondence is a continuous
function for Y 1in the desired interval. Hence property (iii)
holds. Once properties (i) - (iii) hold, the proof follows as in
example B: given a continuous function defined on an interval
whose graph lies above a certain line at one endpoint, and below

it at the other, the graph must intersect the 1line.

Proof of Theorem 2: Define the following notation.

a) The profit function P(y|Y,x):= F(Y+y)y - Ca(y), If § € I\JO},
o > 0 and Y > O then the profit function is continous at
(y,Y,a) (and P(O|Y,a) > 1lim P(y]Y,a) with equality if and only

y-—=0+
if C, is continuous at 0).

b) The reaction correspondence
v¥(Yla):= {y* ¢ [0,o)|P(y*|Y,a)>P(y|Y,a) Vy ¢ [0,o)]}.

If Y e (0,Y*] then y*(Y|a) is 2 nonempty compact subset of
[0, Y*-Y].

c) The smallest reaction y(Y|a):= min y* (Y|a).

d) The critical aggregate output
Y(a):= sup{Y ¢ [0,0)|y(¥]a) > 0} = sup (Y ¢ [0,0)|P(y(Y|a)|Y,a)>0}.
For a < Y¥, Y(a) is well defined and Y(oa) e [Y* - a,¥Y*]

{similar to the proof of Theorem 1). If Yo = ; Y > Y(o)

i=1
then n,(yl,...,yn} satisfies the free entry condition.
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e) The critical single firm output y(a):= max y*(¥(a)|a).
For o < ¥*, y(a) is well defined and
Y(a)|la)C [0, ¥* - Y(a)]C[0,a], so y(a) < a
f) The number of firms n(a):= [XLQ%%g%Ql] (the greatest integer

less than or equal to XL@%%%%@) ). For o < ¥Y* this is a well

defined, finite, positive integer if y(a) > O. For convenience

. . nLal__ nLal+l nLal__
define N(a):= nlar) . Y(a) + yla) e (a) Y(a), n(a) T
and N(a)Y(a) > v(a) - y(a) > ¥Y(a) - a > vx - 2¢
For any fixed a < Y*, assume for the moment that y(a) > O, and

consider the cumulative reaction graph shown in figure 4. By

£), vlo) + y(a@) ¢ ((B2ELv(a), (485)v(e0] so (), v(o) + y(a

n(a)- l
lies in the cone between Ll(a) and Lz(a) (possibly on Ll(a)). Iif
(Yo, Yo+vg) e Lyla) [1 (Y, Yry*(¥|a))|¥e(N(a)¥(a), ¥(a)])
consider n(a),

”yn(a)} where y. = Yo for all i

Then for all i, = vy. =(n(q)—l)yo = Y,. Hence

(g) each y; 1is an optimal response to the other firms' outputs
since vy, =y, € y*(YOIQ), and

(h) there is no incentive for additional firms to enter since
n(o)
Yo = iz_‘ll y; = nla)yy = Yo/N(a) > N(a)(¥(a)/N(a)) = Y(a).
Thus n(a), {yl"”’yn(a)} is an element of E(a,C,F).
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Y+y

Y(a) + y(a)
Y., = Y _+

Y(a)
FIGURE L4

Therefore in order to complete the proof it is sufficient to
prove that there exists a* > O such that for all a ¢ (0,a%],
y(a) > 0 and Ly(a) [ ((v,Y+y*(Y|a))|ve (N(a)¥(a), Y(a)]) £ § .
This is done in three steps.

Step 1 shows y(a) > O for all « sufficiently small.

Step 2 shows y(N(a)Y(a)|a) > y(a), and y(Y|a) -» y(a) as ¥ - ¥(a)-
for:all <o sufficiently small..

Stép 3 shows y(Y}a)-is continuous for sll
Y ¢ {N(d)YCa},\Y(a)), for all a sufficiently small.

Hence for « small enough, Y+y(Y|a) 1is a continuous function
which lies above Ll(a) at Y = N(a)Y(a), and converges to a point

below Ll(a) as Y - Y(a)- , so the required intersection must be

nonempty (if (¥(a), Y(a)+y(a)) e Ly(a) then there is no need to go
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through steps 2 and 3, so in step 3 we may assume (Y(a),Y(a)+y(a))

lies below Ll(a) and not on it).

Step 1l: By (Cl) there exist ¢,9 > O such that Ac(y) > ac(1l) + e
for all y ¢ (0,8], Pick Y, ¢ (0,Y*) such that

F(Y,)e(Ac(1), Ac(1)+e) and set Oqz= (Y*-Yl)/2

1

a) For all o « (O,al], Y(a) > 0 and P(y(a)|¥(a), a) = O by the
continuity properties of P.

b) For all o ¢ (O,alj, for all Y ¢ [Y* - 2a, Y(a)),

P(yv(Y|a)|y,a) > p(y(¥|a)|Y,a)>P(y(Y|a)|Y,a) > O,

where Y ¢ (Y, Y(a)] 1is such that y(Y|a) > 0 (Y exists by

the definition of Y(«), and the strict inequality follows from

F' < 0). Thus y(Y|a) > O and, by the choice of a,, y(Y|a) > da,

12
for all Y ¢ [y* - 2a, Y(@)), for all o ¢ (O,al].

c) As Y converges to Y(a)- , there is a limit point of y*(¥|a)
which lies in [%a,¥Y*]. This limit point is an optimal
response to Y(a) by the continuity properties of the profit

function. Thus for all o ¢ (o,al], v(a) > %a > 0. This

completes Step 1.

Step 2.
, -F'(Y) 1
Let K:= min {j 5 ., Then K >0
Ye [v*-2a,Y*] max{0,F"(Y)].
(K = + ® is possible) since F" 1is bounded and F' 1is bounded
away from zero and negative on the compact set [Y* - 20y, Y*].
Let a,:= min {%,al} > 0. Then for «o ¢ (O,a2], F'{Y+y)y + F'(Y+y) < C

for all Y ¢ [Y* - 2a, Y(a)), v ¢ [0,Y*-Y] by the choice of K.
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Thus marginal revenue, F'(Y+y)y + F(Y+y), is decreasing as a
function of Y and as a function of y for all relevant values
of Y and y (recall [N(a)Y(a), Y(a))(C [y*-2a,Y(x)], and
y*(Y|a) T [0,v*-Y]) for all a ¢ (0,a,].

For any O ¢ (O,ag], and any Y;,Y, ¢ [Y*-2a, Y(a)] with Y, <Y,
the marginal revenue curve F‘(Yl+y)y + F(Yl+y) lies strictly above
the marginal revenue_ curve F'Y,+y)y + F(Y2+y). If y, e y*(Ygla),

every . optimal response to Y must be at least as large as Yo

1
otherwise, if y; <y, is an optimal response, y, ¢ y*(YlIa), then

Y
2 Yo
y/ MR(y|Y,,a)dy < / MR(y|Yy,0)dy < c (v,) - ¢ (vy) ,
1 Yy
and P(yllYg,a) > P(yleg,a) contrary to vy, ¢ y*(Ygla) .  Thus

for all «a « (O,ag], for all Y,,Y, « [Y*-2a,Y(a)] with Y, <y,
y*(Ygla)C::[O,y(Ylla)], and in particular y(N(a)v(a)|a) > yv(a).
It is now easy to see that y(Y|a) converges to y(a) as Y
converges to Y(a)- . As in «c¢) of step 1, as Y converges to
Y(a)-, y(Y|a) has a limit point which is an optimal response to
Y(@), a. By the previous paragraph, this limit point must be
greater than or equal to y(a). Thus, by the definition of y(a)

as the largest optimal response to Y(a),x, there cen be only one

limit point, and it must be y(a). This completes Step 2.
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Step 3. For o e (0,0,], the reaction correspondence y*(Y|a) is
upper hemi continuous in Y on [N(a)Y(a),¥(a)](using the
previously derived properties of P, Y(a) and y*(Y|a), the problem
can be restricted so that the Maximum Theorem-Berge [1] p. 116 -
can be applied). Therefore if y*(Y|a) is single valued on
IN(a)Y(a),¥Y(a)) then it is continuous there, and step 3 will be
complete.

By assumption (C3), there exist s ¢ (0,1),t ¢ (1,®) such
that c"(y) > O for all y ¢ [s,t] []I. To eliminate the inter-
section with I, if t ¢ I redefine t as (1l+ sup I)/2, so t e I,
and t > 1, with equality if and only if supI = 1, We now show
that for «a sufficiently small,
y*(v|la)(C (sa,ta] for all ¥ ¢ [N(a)Y(a),¥(a)).
a) Since s < 1, AC(s) > ac(1l), and inf{Ac(y)|y ¢ (0,s]1} > Ac(1).
As in b) of step 1, there exists a, ¢ (O,a2] such that

3

F(Y) < inf {AC(y)|y ¢ (0,s]} for all Y ¢ [Y*-2« ). Then for

55
all o « (O,aBJ, v(Y|a) > sa for all Y ¢ [N(a)Y(a),¥(a)).

b) If t = 1 then supl = 1 so for all o ¢ (o,aBJ s

v¥(Y|la)(C [0,ta] for all Y. If t > 2 then for all

a e (O,ozBJ, v (Yla) Clo,y*-Y1 Z [0,20] (C [0,t] for all

Y ¢ [N{a)Y(a),¥(a)). For t ¢ (1,2), by.the first half of step 2,
it is sufficient to show that y*(v*-2ala) C[0,ta]. Let z(a)

be a maximizer of (F(y*-2a+za) - AC(1l))za where =z 1is restricted
to [t,o) (clearly z(a) ¢ [t,2]). Then P(za|¥y*-2a,a) <
(F(y*-2a+z(a)a) - ac(1l))z(a)a for all z ¢ [t,o) by choice of z(a)

and the fact that Ac(z) > Ac(1l). Also for all z ¢ [t,o),
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(F(y*-2a+z(o)a)- Ac(1))z{o)a > B zo |y -2a,a)
(F(Y-20+a) - AC(1))c = plaly*-2a,a)

Rla):=

both F(Y*-2a+ta) and F(Y*-2a+a) are greater than AC(1l) so R(a) is
strictly positive. For «a ¢ (O,aB], F is twice continuously
differentiable on [Y*-2a,Y*] so by Taylor expansion of F about

Y*, and noting F(¥Y*) = 2c(1), we obtain

Friyx) + o(a(2-z(a))

(2-z(a))
R(a) = z(a)(2-z(a)) I B +“3ng et ]

a

Since z(a) e [t,2]1(C (1,27, z(a) (2-z(a)) < t(2-t) < 1, so there
exists a* ¢ (O,a5] such that R(a) < 1 for all o ¢ (0,a*], and
response «o 1s strictly better than any response y > ta.

For t = 1 or t > 2 set a*:= « In all cases, for all

5
a e (0,a*], y*(Y|a){~ [0,ta] for all Y ¢ [N(a)Y(a),¥Y(x)), and
together with a), y*(Y|a){_ (sa,ta], with

y*(Y|a)C (sa,ta) 1if t > 1.

For o ¢ (0,a*], marginal revenue is decreasing, and marginal
cost is nondecreasing for all Y ¢ [N(a)¥Y(a),¥Y(a)), v € (sa,tal, so
there is at most one element of y*(Y|a) in (sa,tal. On the
other hand, y*(Y|a) 1is a nonempty subset of (sa,ta) so there
is at least one element of y*(Y|x) in (sa,ta]. Thus for all
a e (0,a%], y*(Y|a) 1is single valued, and therefore continuous

for Y ¢ [N(a)¥(a),¥Y(a)), and step 3 is complete.

Hence for o ¢ (0,a*],

Ly(a@) [] (v, v+y(¥la))] ¥ e [N(a)¥(a),¥(a))} 4 6, and E(a,C,F) £ p .

Q.E.D.



Section 5

(1) It hes been assumed throughout the paper that firms act
noncooperatively. Because of the éossibility of entry, any cartel
must practice limit pricing, so the total industry gasins from
collusion are small, and converge to zero as «o converges to zero.
Because of the problems and costs involved with collusion among a
large number of firms, when «a is small, the gains from collusion
will not justify the formation of large cartels. On the other hand,
if 2 small coslition of firms acts collusively, other producing
firms will generally be even better off than the coalition members,
so with a large pool of producing firms, a "free rider problem"
works against the formation of small coalitions. Finally, for
a sufficiently small, at an equilibrium, it is generally not
profitable for a producing firm to act collusively with an
entering firm. Thus the assumption of noncooperative behavior seems
justified when o 1is small relative to Y*.

(2) The argument in Theorem 2 is based on shrinking firms
relative to a fixed inverse demand, but a trivial corollary proves
the analogous result for fixed firm size and replicated consumer
sector. Let Fr be the inverse demend when the consumer sector
is replicated r times, Fr(Y):= F(Y/r) (this assumes that the

partial equilibrium analysis is not affected by the replication).

Corollary: Given a cost function satisfying (Cl), (c2) and
(c3), and an inverse demand function F satisfying (F1)
and (F2), there exists r* < o such that for all

r > rx, E(l,C,Fr) £ D .



26.

Proof: 1Identify C, Fr with Ca’ F in Theorem 2, where o = %
If n, (yy,-..,v,} 1is an element of E(a,C,F) then
n, (ryl,...,ryn} is an element of E(l,C,Fr). Q.E.D.

This Corollary serves to emphasize the fact that the
existence of equilibrium depends on the firm (o) being small

relative to the market (¥*) rather than small in absolute terms.

e8]
(3) 1If (aj) =1 is a sequence converging to O and
ny, {yi,...,yg } e E(aj,C,F) for all j, then n, converges to @
and max {yi converges to O, This follows from the optimality

1<i<n,
_1__nJ

of each firm's response and the fact that aggregate output

Y% € [Y*-aj,Y*] for all j . Thus as the firms become technologically
small with respect to the market, the endogenously determined

number of operating firms becomes large. Compared to the n-firm
Cournot technique, where the number of firms is exogenously

increased and the output of each firm becomes small, the method

used in this paper offers a much more natural interpretation of

the "Folk Theorem," and can be used to prove the "Folk Theorem"

when average cost curves are U-shaped and n-firm Cournot equilibrium

invariably fails to converge to the perfectly competitive

equilibrium as n 1is increased.

(4) As o converges to O, each firm's actions converge to
price taking actions if the firms have strictly U-shaped average

cost curves. As o converges to O, Y,, converges to Y*¥ and price

T

converges to F(Y¥) so both the actusl response Vi and the price

taking response Yo lie in an interval [r(a)a, r'(o)a] where
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r(a) <1 < r'(ao) and both r(a) and r'(a) converge to 1 as «
converges to O, Thus the relative difference between the two
responses, converges to O,

Notice that in general firm profit is strictly positive at
equilibrium even with free entry, because only integral numbers of
firms can operate. BAll the equilibria constructed in the proof
have strictly positive profit except in the case where n(o)
Yﬁal—%Lal (i.e., when it is not necessary to "round off" to obtain
an integer), but even in that case there is another equilibrium

with n(a)-1 firms and positive profit for each firm.

(5) It is clear from the proof of Theorem 2 thaE the
differentiability properties of F and C are only required in
neighborhoods of ¥* and 1 respectively. A countable number of
nondifferentiable "well behaved" kinks (i.e., where left and right
hand first derivatives exist but are not equal, or left and right
hand second derivatives exist but are not equal) may be allowed in
the inverse demand and cost functions. This allows all the types
of nondifferentiabilities commonly allowed in cost and inverse
demand functions. With an extended definition of first and second
derivatives (e.g., when left and right hend derivatives are not
equal, the first derivative takes on both values, and the second
derivative is -0 if the right hand derivative is less than the
left hand derivative), sufficiently strong assumptions for the

proof of Theorem 2 are: (F3) there must be a positive ¢ such
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that for 211 Y in [Y¥-¢,Y*], the inverse demand is continuous,
with first derivative negative, bounded away from zero and upper
semicontinuous from the left at Y*, and second derivative bounded
above; and (CL) there must be an s in (0,1) and @ t in
(1,@) such that the second derivative of the cost function takes
on only one sign (i.e., is either nonpositive or nonnegative) on
each of (s,1) and (1,t) r}I (the sign need not be the same on both
intervals). These assumptions are guite general, and the only
cost functions ruled out by (Chk) are clearly pathological functions.9

It is also clear from the proof that the family of average
cost functions need not satisfy ACa(y) = AC(y/a). The only
properties needed for the proof are:
(i) MES (Aca) = o and Aca(a) = AC(1l) for all a ¢ (0,®); and
(ii) there exists s ¢ (0,1) (s independent of o) and & > O

such that ACa(y) > ACc(1l) + % for all y ¢ (O,sa}, for all

o ¢ (0,9), where s corresponds to the s wused in (C3)

b) (C&(y) > 0 for all y ¢ [sa,ta], for all a ¢ (0,®)).
Let AC”(y):= Ac (ay), so MES(ACY) = 1 for all a ¢ (0,®). Let
Ac®(y):= inf A a(y). Then MES(2c®) < 1, and property (ii) guarantees

aene%, OCS - 4

that MES(ACO) > S, and in a certain sense places a bound on the
discontinuity of minimum efficient scale in the limit.
Assumption (Ck) can be stated so that it applies to a2 family
of average cost functions satisfying (i) and (1ii).

(6) Hart [3] proves a result similar in spirit to Theorem 1
for a general egquilibrium model with endogenous product choice.
Each firm from an infinite set of potential firms produces at most

one commodity chosen from a set of differentiated commodities, using

the homogeneous numeraire good as sole input. Average cost curves
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are U-shaped, but vary over commodities and over firms, and there
is zero cost for zero output. At an equilibrium, consumers maximize
utility as price takers, while firms maximize profit in a Nash
equilibrium with complete knowledge of demand, using commodity type
and quantity as strategic variables. Firms are made small relative
to the market by replicating consumers (*E is the economy with
consumers replicated r times). Under certain assumptions it is
shown that if an equilibrium exists for each rE, r=1,2,... then
for large r, the equilibrium allocation is approximately Pareto
optimal (a specific welfare measure of the difference between the
equilibrium and a Pareto optimal allocation converges to zero

as r converges to infinity).

Conclusion

In the partial equilibrium analysis of a market for a single
homogeneous good, with constant factor prices, the "Folk Theorem"
is valid under guite general assumptions. With firm size measured
by technology, and the number of firms endogenous, if firms are
small relative to the market then Nash-Cournot equilibrium with
free entry does exist, and the market outcome is approximately
competitive. The treatment of free &ntry recognizes that free
entry is not equivalent to a zero profit condition when firms
are significant and properly handles the integer problem that does
arise with free entry.

Theorems 1 and 2 show that it is not necessary to mix the
significant and infinitesimal cases in the discussion of a single

perfectly competitive market in the long run. When firms are
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significant but small, they can be assumed to recognize their
effect on price, and a Nash-Cournot equilibrium with entry still
exists. The market outcome in this equilibrium is approximately
perfectly competitive, with aggregate output, price, and
individual firm profit near ¥*, F(Y*), and O respectively. If
average cost is strictly U-shaped then individual firm output is
also approximately equal to the output of a firm which views

price as fixed. This provides a justification for use of the long
run perfectly competitive model, with infinitesimal firms, as an
idealization of markets with free entry where firms are

technologically small relative to the market.
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FOOTNOTES

*Conversations with Wayne Shafer led to the use of the long
run perfectly competitive model in the presentation of the
results, and also raised the question of possible incentives
for collusion. Questions concerning the properties of equilibrium
with entry evolved out of conversations with Hugo Sonnenschein,
whose comments on earlier drafts of this paper greatly improved
the presentation. Of course, all errors remain my own.

lMost expositions of the model assume that the number of
firms is large but finite, and firms are not infinitesimal.
This paper shows that it is not necessary to mix the significant
and infinitesimal cases. Firms can be treated as infinitesimal,
yielding the perfectly competitive results, or firms can be
treated as significant but small, yielding market results which
approximate the perfectly competitive results.

2Unless stated otherwise, all assumptions and discussions
henceforth deal exclusively with noninfinitesimal firms. When
firms are noninfinitesimal, the terms "perfectly competitive
price" and "perfectly competitive output" refer to minimum
average cost, and the demand at price equal to minimum average
cost respectively. To remain consistent with the perfectly
competitive model, the cost functions used for imperfectly
competitive firms are long run cost functions. This is done
for consistency only, since the results of Theorems 1 and 2
hold for short run as well as long run cost functions.

5These assumptions are considerably stronger than necessary
(see Remark 5), but are presented here in their standard form to
maintain the correspondence with the common presentation of the
long run perfectly competitive model.

lLSeveral extremely strong assumptions on the demand and
cost functions are commonly made in order to insure the existence
of equilibrium for each n. The assumption that profit functions
are concave for all outputs of the individual firms, for all
aggregate outputs of the other firms, is almost universal.
Roberts and Sonnenschein [6] have shown how unreasonably
restrictive this assumption is. A second assumption that is
frequently made requires that marginal revenue be everywhere
decreasing as a2 function of both individual firm output and
aggregate output of other firms. An example in which n-firm
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Cournot equilibrium fails to exist for all n greater than 1
has cost and inverse demand functions

0 y = O 60  y e [0,f]

cly) = { 10+y vy

® y e (1,9) o) Ye (7,°)

m

(0,11 and F(Y) = { 1h-2Y Y ¢ (%,7]

The reaction correspondence 1is

%—Y Y ¢ [0,15/228)
{%g,l] Y = 15/228
1 Y ¢ (15/228,1)
{0,1) Y =5
l.
0 Y € (E’m)
The only Cournot equilibrium occurs when n equals 1 . However,

if entry is allowed, a second firm, assuming the output of the
first firm is fixed, has profit incentive for entry. The
discontinuity of F, the fact that F' is not negative initially,
the discontinuity of C at O and the fact that output is bounded
are not essential to the results of this example.

STreatment of the convergence of n-firm Cournot output to
competitive output can be found in [2], [5], and [7]. Ruffin
[7] and Okuguchi [5] recognize the importance of minimum average
cost = ¢'(0+) (=aAc(0+) for C continuous at O, with Cc(0) = 0)
for the validity of the "Folk Theorem" in this context.

6In fact, E(a,C,F) £ O for all o ¢ (O,l], but for
o ¢ [%,%] the properties of the reaction correspondence are
different. Since this example is to serve as a preview to the
proof of Theorem 2, the proof for o € [%,%] is extraneous

(however the properties of E(a,C,F) for a ¢ [%,%] may be of

interest in their own right). For « ¢ (l,m), E(a,C,F) = 0
since, as in Example A, the free entry condition is not
satisfied for any finite number of firms.
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TThe bounds on Y cannot be improved without additional

assumptions, as seen 1n Example B with o = 1/5, where k4,

{1/5,1/s5,1/5,1/5} and 5,{1/5,1/5,1/5,1/5,1/5} are both elements

of E(1/5,C,F) with Yo = L/5 = Y*-o and Y, = 1 = Y* respectively.
8

In the example of footnote 4, the zero profit condition
is satisfied with n = 3/2, but when the number of firms is
rounded to either 1 or 2, equilibrium with free entry fails
to exist.

IThe following example of a cost function that violates
(chk) also shows that the existence of the interval [s,t] on
which C"(y) is nonnegative is an independent assumption in
(c3)(b), and does not follow from the other parts of assumption
(c3). Minimum average cost is attained at a limit point of
the set of points where C"(y) changes sign.

6 8
ao(y) - e s (el

for y e (0,21, vy # 1, and AC(1) =1

It is easy to generate examples similar to this one for which
(ch) is violated and step 3 of the proof of Theorem 2 fails.
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