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TwO-Person Bargaining Problems and Comparable Utility
by

Roger B. Myerson

1. Introduction

SHAPLEY (1969) showed that a useful value or solution
function for two-person bargaining problems cannot be invariant
under all ordinal utility funcfions, so some restriction to
cardinal utility would seem necessary. KALAI (1976) assumed
cardinal utility and showed conditions under which a bargaining
solution function must equalize all players' utility gains.
Empirical studies by NYDEGGER and OWEN (1974) strongly suggested
that people d&o make interpersonal comparison of gains in bargaining.
In this pavper we will build on these ideas to derive an equal-gaihs-in-
bargaining condition, without any cardinality assumptions.

Consider ah arbitrator responsible for helping two players
to cooperate in game situations. For any bargaining problem which
the players might face, he must be prepared to recommend a fair
cooperative agreement for the two players. One simple procedure
he d¢ould use is to propose the outcome which makes both players as
happy as possible, subject to the constraint that the players should
enjoy equal gains over their noncooperative alternative. To make
such a comparison of gains, the arbitrator must measure the playersi
levels of happiness in some pair of scales for which he feels the
differences are intezpersonally comparable. That is, an equai-gains

equity criterion is meaningful only if there is a pair of comparable

utility scales.
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The assumption that comparable utility scales exist has been
generally avoided as much as possible in game theory. Interpersonal
comparison has been sometimes considered theoretically defensible

for scales having both transferability and von Neumann-Morgenstern

risk-neutrality properties. However, utility comparison has

significance quite independenfly of these other two properties.

In this paper we will show that, if an arbitration scheme
satisfies certain desirable conditions, then it must be an equal-
gains scheme for some pair of comparable utility scales. These
comparable utility scales might be neither transferable nor risk-neutral

von Neumann-Morgenstern utility scales.

2. Definitions and Notation

Let R be the set of real numbers. S is a proper subset

of R%Z if and only if S < R% and @ # S # Rz. S is a comprehensive

subset of R2 if and only if: (u,v) ¢ S and x <u and y < v imply

that (x,y) ¢ S.

A two-person bargaining problem is a triple (a,b,S) such that

S is a closed comprehensive proper subset of R2 and>(a,b) ¢ S.
Let BP be the class of all two-person bargaining problems. For
any (a,b,S) ¢ BP, let 3S be the boundary of S; that is:

3s = {(u,v) |vx>u, vy>v, (x,y)%S}.

An order-preserving transformation of the reals is a function

g: R-R such that g is one-to-one, onto, and x>y implies g(x)>g(y).
It can be easily shown that an order-preserving transformation must

be a continuous function.

2

Suppose we have a function F: BP+4R™ and an order-preserving

transformation g: R+R. Then we say that F is invariant under g applied

to 1's utility if and only if, for any (a,b,S) ¢BP, if F(a,b,S)=(u,v)

then F(g(a),b,{(g(X),y) | (x,y) €S}) = (g(u),v).
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Similarly, F is invariant under g applied to 2's utility if

and only if, for any (a,b,S) ¢BP, if F(a,b,S) = (u,v) then
F(a,g(b), [(x,8()|(x,y) €51 = (u,g(v)).

3. Solution Properties

We can now formally analyze the position of an arbitrator
working to help some Player 1 cooperate with some Player 2. We
assume that the arbitrator can measure each player's levels of
happiness in a given real-valued utility scale. We do not assume
any cardinal properties for the given utility scales; we only assume
the ordinal property that higher utility numbers correspond to higher
levels of happiness or preferred outcomes. Applying order-preserving
transformations to the given utility scales would preserve this

ordinal property.

With these given utility scales, the arbitrator can represent
a bargaining situation for players 1 and 2 by a formal two-person
bargaining problem (a,b,S), where S is the set of all feasible

utility allocations’availéble if the players cooperate, and (a,b)

is the threat point or utility allocation which must result if they

do not cooperate. (That is, Player 1 would get his utility level a
and Player 2 would get his utility level b, if no cooperative
agreement were reached.) The arbitrator must be prepared to propose
some fair cooperative solution for any such bargaining problem.
Thus, the arbitrator's behavior can be described by some function

F: BPaRz, where F(a,b,S)=(u,v) 1if the arbitrator would propose

that Player 1 should get utility u and Player 2 should get utility v
" in a bargaining situation represented by (a,b,S). We can refer to

F: BP-aR2 as the arbitrators solution function.




We list four conditions which a solution functioh might be
expected to satisfy.

Cl: (Weak Pareto-optimality.) For any (a,b,S) € BP,

F(a,b,S) € aS. | - | ‘

C2: (Strong individual rationality.) For any (a,b,S) ¢BP,
if (u,v) = F(a,b,S) then u > =z and vZ=Db, and u > a and v> b
if there exists any point (x,y)€S such that x > a and y> b.

C3: (Composition.) For any (a,b,$S) €BP, if T>S then
F(a,b,T) = F(F(a,b,S), T). ' ' ‘

C4: (Uniformity.) For any (a,b) eRz, there exists order-
preserving transformations g1 and g9 such that F is invariant under
g1 applied to 1's utility, P is invariant underﬂgz'
applied to 2's utility, and (gl(a), gz(b)) = (0,0).

Cl and C2 are similar to conditions in NASH (1950). Cl asserts
that the arbitrator should select a feasible allocation on the weakly
Pareto-optimal frontier, so that no other feasible outcome would,
simultaneously make both players better off. C2 says that, if possible,
both players should gain from their cooperation.

C3 is similar to the step-by-step negotiations axiom in
KALAI (1976). Suppose that the players have faced the problem
(a,b,S) and the arbitrator has gotten them to agree on F(a,b,S).
Suppose also that new opportunities for cooperative actions are now
recognized, so that a larger feasible set T can be considered, amd
the bargaining has reopened. The new threat point must be F(a,b,S),
assuming that both players have to consent before the first session's
agreement can be voided. Then C3 asserts that the outcome of the
second bargaining session, F(F(a,b,S),T), should be the same as if
the bargaining had taken plaée in oniy one session with the problem

(a,b,T).
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There are two kinds of advantages for the arbitrator if F
satisfies C3. It may be analytically easier to solve a complex
bargaining problem if the negotiations can be broken up into several
sessions (considering a few more cooperative opportunities at each
session),»as long as each player is confident that he will not lose

by breaking up the problem this way. Also, C3 guarantees that neither

player will have any incentive to try to change the order in which
the cooperative opportunities are discussed.

C4 is a weaker version of the invariance axiom of NASH (1950),
based on suggestions by SHAPLEY (19689). It assures us that any
bargaining problem can be converted into an equivalent problem with
threat point (0,0), by appropriate transformations of the ﬁlayers'
utility scales. C4 puts an effective bound on the complexity of F,
by requiring that F be qualitatively the same (modulo the
given transformations) in all regions of R2.’

Notice that it would not be natural to require that F be
invariant under affine transformations, since addition and multi-
plication may have no particular significance in the given ordinal
utility scales.

Our principal result is that conditions Cl through C4 together
imply the existence of comparable utility scales.

THEOREM. F: BP-R® satisfies Cl through C4 if and only

if there exist  order-preserving transformations Ul: R4R and
Uy: R4R such that, for any bargaining problem (a,b,S), F(a,b,S)

is the point (u,v)&9S satisfying Ul(u) - Ul(a) = U2(v) - Ué(b).



4. Proof of the Theorem

In the numbered paragraphs of this section, the first
sentence is a claim which is proven by the remainder of the
paragraph.

The "if" part of the theorem, showing that an equal-
gains scheme satisgies Cl through C4, is straightforward to
check., Observe that, for any (a,b,S)¢ BP,

Boo=rRZEze there is always a unique (u,v)€3S satisfying

Ul(u) - Ul(a) = Uz(v) - Uz(b). This is because the graph of the
function y = Uil(Ul(x) - Up(a) + Ul(b))has positive slope,
passes through (a,b) ¢ S, and has y++« as x+ +=. So the

graph intersects 3S at exactly one point (u,v), which is the
point required. (Remember, S is comprehensive, so 3S is a
downward-sloping curve.)

Letting F(a,b,S) be this point {u,v) will certainly
satisfy Cl and C2. 1If (w,z) € oT satisfies Ul(w)-Ul(u) = U2(z)-U2(V)
then it also satisfies Ul(w)-Ul(a) = Uz(z)-Uz(b), implying
C3 for the equal-gains solution function. It can be checked
that g1 (x) = U] (Up (x)-U3 (a)+U; (0)) and g,(y) = U5 (U, () -, (b)+U, (0))
will satisfy C4 for the equal-gains solution function.

The '"only if" part of the theorem is much harder to prove,
because we must construct the functions U1 and U2 for any given F.
So henceforth assume that F: BP-aR2 is given and satisfies Cl
through C4.

For any number z, let Ll(z) = {(X,Y)!Xiszﬁ, and let

Ly(z) = {(x,y)]|y< 2z}.
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(1) If (u,v) = F(a,b,S) and (x,y) = F(a,b,T) and u > x,
then v > y. Otherwise, with u > x and u <y, consider
Q = SuTuLl(x+u)uL2(Xz-). C2 assures us that F(x,y,Q) dominates
(x,y) in both coordinates, so F(x,y,Q) is not in T or Lz(zgz).
(x+u)

Similarly, F(u,v,Q) can not be in S or L;(=5— But C3 implies

F(x,v,Q) = F(a,b,Q) = F(u,v,Q). So F(a,b,Q)¢q, which violates
Cl.

(2) 1f fF(a,b,S) = (u,v) and F(a,b,T) = (x,y) and u > x,
then v > y. For, if v=y, then let (w,z) = F(a,b TuL (u+x)) =
F(x,y,TULl(u+x)) By C3, z>y and w>X, SO Ws E%E < u, which
violates (1).

(3) 1If F(a,b,S) = (u,v) then F(a,b,Lz(v)) = (u,v). Let
(w,z) = F(a,b,Lz(v)). If w<u then z<u, by (2); and if w>u
then z>v. But z#v would violate Cl.

Let G1 be the set of all order-preserving transformations
under which F is invariant when applied to 1l's utility; and let
G, be the analogous set for 2's utility. In paragraphs (4)-(10)
we develop many facts about Gl' All of these statements will also
be applicable to G2.

Composition and inversion are defined for order-preserving
transformations by:

(g oh)(x) = gth(x)), gog -l g-lo g = e, where e is the identity
map on R (e(x) = x). For any positive integer k, gk is g composed
with itself k times (g o g o...0g). For any negative integer Kk,

k -1,-k 0
=(g7) 7, and g'=



(4) Gy is a group; that is, Gy is closed under composition
and inversion. To see this, check that if F is invariant under g
and h applied to 1l's utility, then F is also invariant under g o h
and g-l
(5) 1f g€G, and g(x)=x, then g(u)=u for all u>x. Suppose
to the contrary that g(u)%u. Let (u,V) = F(x,O,Ll(u)) and let
(g(w),w) = F(a,v,L;(g(u))). *
By C2 w>v; but by C3 and invariance we get (g(u),w) = F(x,O,Ll(g(u))) =
(g(u),v), a contradiction. Also, g(u)<u is iﬁpossible, because
the same argument could be applied to g_l.
(6) 1f g€G, and g(x) = x, then g(u) = u for all ueR,
As in (5), it suffices to prove that g(u)>u 1is impossible, for
any u<x. If g(u)>u, then {gk(u)};=l is an increasing sequence
bounded above by x. (It is increasing because g is order-preserving.)
Let z = lim gk(u). By C4 there exists h1 and h2 in Gy such that
hl(g(u))k:mo and hy(z) = 0. Let h = hél o h;. Then h(g(w)) = z,
and heGy. Since h is order-preserving, h(u)<z, so .gk(u)>'h(u),

for some k.. Let v1=gk(u) and v,= gk+1

(u). Then h o g_k(vl) =
h(u)<v1 and h o g-k(v2)7= z >v_. Since h o g-k is continuous,
there is some v for which h o g " (v) = v, V<v<v,. But &, is a group,
so h o g"k is in G- This would contradict (5).

(6) For any numbers x and y, there is a unique g€Gy such
that g(x)=y. There is at least one, since hilo h, (x)=y, where
hleGl,hzeGl,hl(x) = 0, and hz(y) = 0. There is at.most one, Since

g(x) = g(x) implies g_lo g(x)%x, so g-lo g = e by (5).
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(7) If geGq and heGy and g(0)>h(0), then g(x)}h(x) for
all x. If not, then for some z between 0 and x,.g(z) = h(z),
which contradicts (6).

For any order-preserving transformations, we write gSh
if and only if g(0)>h(0).

{8) 1f g, é, h; and ﬁ are in Gq, g>é, and h>ﬁ, then
g oh > é o ﬁ. Because g is order-preserving, g o h(0) =
g(h(0)) > g(h(0)); and g(h(0)) > g(h(0)) = g o h(0) by (7).

(9) 1If g ¢ G, and g > e, then.{gk(O)} is an increasing
sequence in K, with gk(O) ++ » as k 4+ = and gk(O) + - = as
k 4 - ». (Recall e is the identity om R). The sequence is
increasing because g > e implies gk+1(0) = g(gk(O)) > gk(O).

If either end of the sequence had a finite limit, that limit would
be a fixed point of g, since g is continuous, contradicting (6)
and g > e.

(10) G1 is a commutative (abelian) group. If not, suppose
goeh(0)<x <h o g(0). Find £, and f, in G, so that £;(g o h(0)) = x
h o g(@0). Let f be the smaller of f1 and f2‘ So f > e
and fz(u) <h o g(0) if u<g o h(0). Find i and j so that

£l <g < fi+1 and £ < h < fj+1, using (9). By (8), £it3 <goh
fitit2

and fz(x)

But fi+j (0) < g o h(0) implies
FA+i+2.

and h o g <
£%3+2(0) < h o g(0), contradicting h o g <

(11) Statements (4) through (10) are also true for G2
as well as Gl' The proofs are symmetric, reversing the role of

the two coordinates.
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Define g; and g, so that gl € Gy, §2 € Gy, §2(0) =1
and F(0,0,Lz(l)) = (EI(O), EZ(O)). Observe that El > e and gé > e,
For i=1 or 2, define v, G, R by Vi(g) = lim %ﬁ?l, where,

o

JOM <z“> <gPOOHL

for each nonnegative integer k, p(k) satisfies g

(12) Vi G1 + R is well defined. Given g ¢ Gl’ the sequence

p(k) can always be found, by (9). Also, 2p(k) < p(k+1)< 2-p(k)+1,

2p (k) _ (21“1) 5,222 by (8). so B 45 an

because gl 2k

increasing sequence converging to some limit between p(0) and

p(@)+1.
k
(13) Vy(g o h) = Vy(g) + Vy(h). If glp(k) <g? < glp(lr)+1

k _ k
r (k) < ne < z r(k)+1 then glp(k)+r(k) < (g o h)2

and g1 1

< g PENTEIH2 by (8) and (10). So V;(g) + V;(h) = lin
4%
Rﬂ%*kﬂl‘)- < V(g o) < lin ﬂ%{ﬁ‘ﬁg < V) (8)+V, (h).
: -
(14) If g > e then Vl(g) > 0. By (9), find X so that

(15) If g > h then Vl(g) > Vl(h). Notice g > h implies

g oh 1 > e, SO Vl(g) = Vl(g o h-l) + Vl(h) > Vl(h)'

(16) Vy: G » R is onto. Given r ¢ R, let
= {(h(0)| h € Gy and V;(h) <r}. If k=<7t <k+l then glk(O) € X
and g’lﬂ(O)/éX Also, x ¢ Xand y <x imply y ¢ X. So X is a
lower half-line. Let u be the supremum of S, and let g(0) =

We will show that Vl(g) = r, If not, find n so that ]Vl(g) -r|> %.
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1
Then Vl(hz)-Vl(hl) > = for any hl € Gy and h2 € Gy such that
h2 > g > hl' Select any sequence of points so that
0=X5 <X <Xy < ... <Xy <Xy = g,(0). Let f; € G satisfy

fi(xi-l) = x;, and let £ be the smallest of these 2n maps. So

£20 < gl, f > e, and Vl(f) < g; By (4) find s so that

£ sg < 5%, Then £571 < g < 5%, buc v (£t - vy(eTh < L

(17) Statements (12) through (16) also hold for Vy: G R

(18) If g € G, h € Gy, h > e, and F(0,0,L,(h(0))) = (5(0),h(9))
then F(0,0,Lz(hp(O))) = (gp(l), hp(O)) for any positive integer p.
Observe that F(gP™1(0), hP71(0), L,(P(0))) = (P(0), hP(0)),
because F is invariant under gp-l and nP~1 applied to 1's utility
and 2's utility respectively. So an induction hypothesis for p-1
together with C3 will prove the statement for p.

(19) If g € G;, h € Gy, h > e, and F(0,0,L,(h(0))) =
(g(0), h(0)), then Vl(g) =V, (h). Given a positive integer k,

1
let p satisfy g2 sh? < g2p+. Then F(0,0,L (gzp(o))) (g:lp(O),g2 (0))
and F(0,0,L,(E,""1(0))) = (g1p+1(0),'g’2p+1(o)),kby (18) and the definition
of g, and §,. Also, (18) inplies F(0,0,L (% (0))) = (g2 ©),h% (0)).
But L (gzp(O))C L (h2 (0)) cL (82p+ (0)), =o glp(0)<lg“ (0)<:g P+1(o)
2k +1; k 1l

by C2 and C3. Thus gzps h¢ < gzp implies gl < g2 glp+
so Vl(g) = Vz(h), by the way V, and V, were constructed.

(20) If g € G,, h ¢ G,, h > e, and F(a,b,Lz(h(b))) =

l!
(g(a),h(b)), then Vl(g) = V2(h). Let f1 € Gy and f2 € G, satisfy

fl(a) = 0 and f2(b) = 0. So F(a,b,L,(h(b))) = (g(a), h(b))implies
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implies F(O,O,Lz(fz(h(b)))) = (fl(g(a)), fz(h(b))). But fz(h(b)) =
_ _ _ _ 1

£,0 h o £57(0) = h(0) and £1(e@)) = 10 g 0 £1(0) = 8(0),

because G and G, are commutative. So (19) implies Vl(g) = V2(h).
Define Uj: R + R so that Ul(g(O)) = V(g) for any g ¢ G;. '

Similarly, define Up: R o R so that Uz(h(o)) = V2(h) for any h ¢ G2'
(21) If F(a,b,Lévﬂ) = (u,v) then Ul(u) - Ul(a) = U2(v) - U2(b).

Let f1 € Gp, f2 €6y, g8 €6y and h € G, satisfy fl(O) = a,

f2(0) = b, g(a) = u, and h(b) = v. Then F(a,b,LZ(v)) = (u,v)

implies F(a,b,Lz(h(b))) = (g(a),h(b)), so Vl(g) = V2(h). But

Vl(g) = Vi(g o £ - Vl(fl) = Ul(u) - Ul(a), by (13). Similarly,

V2(h) V2(h o f2) - V2(f2) = U2(v) - Uz(b). So Ul(u) - Ul(a) =

Uz(v) Uz(b).

(22) U1 and U2 are order-preserving transformations. This

follows from (15) and (16) and the definitions of the U .

So if F satisfies Cl through C4, F(a,b,S) = (u,v) implies
Ul(u) - Ul(a) = U2(v) - Uz(b), by (3) and (21). We have already
observed that the condition Ul(u) - Ul(a) = Uz(v) - U2(b) must
be satisfied by a unique (u,v) € 3S, given that U1 and U2 are
order-preserving transformations and S is a closed comprehensive

3
propersubset of Rz. This completes the proof of the theorem.
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