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I. Introduction

An individual manipulates a system of voting if, by misrepresenting his
preferences, he secures a result he prefers to the result that would obtain if
he expressed his true preferences. For systems of pure voting, where chance
plays no role in settling which alternative is adopted, the following result
is known: such a scheme, if it is to preclude‘individual strategic manipulation,
must either make someone dictator, or restrict the possible outcome to a fixed
pair of alternatives. (See Gibbard, 1973, and Satterthwaite, 1975). This paper
deals with systems of voting of a more general kind: systems by which a social
decision is made through a combination of voting and chance. It will be shown
that any such scheme, if it is to preclude individual strategic manipulation,
must be a probability mixture of schemes, eaéh of which either (1) accords a
monopoly of influence to a single voter, or (2) restricts the final outcome to
a fixed pair of alternatives. Schemes of the first kind I shall call unilateral;
of the second kind, duple.

What is meant here by a combination of voting with chance? Suppose a
decision is made in the following way: £first, voting of some kind is used to
pick out a set of one or more winning alternatives; then, in case there is more
than one such winner, one of them is chosen by lot. Such abscheme, in effect,
uses the way people vote to determine the probability each alternative has of
being adopted. This I shall take as the defining feature of a scheme which
combines voting with chance: on the basis of the way people vote, it assigns
to each alternative a probability of being adopted.

This paper deals only with voting by rank order ballot: in the schemes to

be considered here, voting consists in each voter's ranking the alternatives in



a professed order of preference. An individual is not allowed to express
indifference between alternatives. The theorem in this paper applies to all
systems of the kind I have characterized: to all systems by which voters'
rank order ballots — no indifference allowed - determine the probability

of each alternative's being adopted.

Systems of this kind will be called decision schemes, and they are
defined, more precisely, as follows. Lét there be a finite set of mutually
exclusive alternatives, from which the community must select exactly one.
Each voter ranks the alternatives on his ballot in professed order of pre-
ference. On the basis of these orderings, a probability of being adopted is
assigned to each alternative, and the final choice is made by a suitable

chance device. A decision scheme, then, is a function of the following kind.

Let there be n voters, and let V be the set of mutually incompatible alter-
natives open to the community. Call an ordering of V with no ties a ranking

and call an n-tuple of rankings a ranking n-tuple. Finally, let a lottery

be an assignment of a probability to each alternative, with the probabilities

adding up to one. A decision scheme is a function d whose domain is the set

of all preference n-tuples, and whose values are lotteries.

How can manipulability be defined for decision schemes? A decision
scheme is manipulable if there is a logically possible situation in which
someone manipulates it; and an individual manipulates a decision scheme if,
by misrepresenting his preferences, he secures a lottery he prefers to the
lottery that would have obtained if he had expressed his true preferences.
Whether he manipulates the scheme, then, depends on his preferences among
lotteries. Now if an .ordering of lotteries satisfies rationality conditions

such as those of von Neumannand Morgenstern (1947, p. 26), then it can most



conveniently be given by an assignment of cardinal utilities to the alterna-
tives. Whether individual % manipulates the scheme to his advantage, then,
depends not only on the way everyone else votes, the way k votes, and the
way k genuinely orders the alternatives; it depends further on the way k
genuinely orders lotteries — on k's cardinal utilities.

Manipulability, then, can be characterized as follows. 1In the first
place, k manipulates decision scheme d if (a) where the actual votes
are given by ranking n-tuple (Pl,...,Pn) and k's true utility scale is

U, k's avowed ranking P is not the ranking of the alternatives given by

k
scale U, and (b)if %k had voted the ranking given by scale U, he would
have secured a lottery of lower expected utility, as reckoned by U, than
the lottery he actually secures. A decision scheme d is manipulable, then,
if for some ranking n-tuple <P1""’Pn>’ for some person k, and for some

utility scale U, k manipulates d. If it is not manipulable, it will be

called strategy - proof. These definitions are given explicitly in Section

4,

Unattractive examples of strategy -~ proof decision schemes are not hard
to find. Here are three: Scheme 1l: Put everyone's ballot in a hat, draw one
at random, and choose the alternative which is ranked first on that ballot.
(For a discussion of this scheme, see Gibbard, 1973, pp. 592-3, and Zeckhauser,
1973, pp. 938-40) Scheme 2: First collect the ballots. Next, put the
names of the alternatives in a hat and select two at random. Then use the
collected ballots to decide between those two alternatives by majority vote.
This amounts to a decision scheme, since under it, the ballots cast determine
the probability of each alternative's being adopted. Now if a voter misrepre-

sents his preferences under this scheme, it can affect the outcome only to his
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disadvantage. His misrepresentation can affect the outcome only if the
following holds: for some pair of alternatives x and vy, he prefers =x
to y but ranks y above x on his ballot, the names of x and y are
draﬁn from the hat, and he swings the outcome from x to y by his vote —
thus getting an outcome he likes less than the honest outcome. 1/ Scheme 3:
A coin is flipped, and Scheme 1 is used if the coin lands heads; Scheme 2 if
the coin lands tails.

It might have been hoped that there were strategy - proof decisions
schemes more attractive than these: schemes, for instance, which select
one or more optimal alternatives in a reasonable way on the basis of the way
people vote, and then, in case there is more than one optimal alternative,
choose the alternative actually to be adopted from among them by chance.

The theorem in this paper shows, however, that all strategy - proof decision
schemes are much like the unattractive schemes I have given as examples: all
involve, in effect, selecting a ballot or a pair of alternatives by chance,
and either ignoring all ballots but the one selected, or choosing somehow
between the two selected alternatives. All, in other words, are probability
mixtures of schemes, each of which is either unilateral or duple.

The precise statement and proof of this theorem is given in Section 4.
Three corollaries are stated and proved in Section 5. The first is this:
suppose a decision scheme guarantees Pareto optimal outcomes. Suppose, in
other words, that no matter how people vote, if one alternative is unanimously
outranked by another, then it gets a probability of zero. Suppose also that
there are at least three alternatives, and that the decision scheme is strateg@'
proof. Then the decision scheme is a probability mixture of dictatorial

2
schemes. =



The second corollary is this. Suppose a decision scheme gives lotteries

which are Pareto optimal ex ante, where a lottery is Pareto optimal ex ante

if there is no other lottery which is unanimously preferred.to it. Suppose,
in other words, that no matter what each person's utility scale is, if each
person votes the ranking of alternatives given by his utility scale, then
the resulting lottery p has this property: there is no other lottery p'
which ranks higher than p on everyone's utility scale. Suppose, as before,
that there are at least three alternatives, and that the decision scheme is
strategy - proof. Then the decision scheme is dictatorial — it is not, that
is to say, merely a probability mixture of dictatorial schemes; it is itself
dictatorial. This corollary extends to schemes which allow the expression of
individual indifference.

The third corollary is simply the earlier theorem on non - chance voting
schemes (Gibbard, 1973). The proof in this paper, then, constitutes a new

proof of that earlier theorem.



II. Background

The notion of manipulability used in this paper is a variant of the one
formulated by Dummett and Farquharson (1961). Manipulability and closely related
matters are discussed by Arrow (1951, p.7), Vickrey (1960), Murakami (1968, pp.74-81),
Farquharson (1969), Sen (1970, pp. 192-6), and Pattanaik (1973, 1974, 1975,
forthcoming) . The theorem cited at the outset of this paper is proved
independently, in quite different ways, by Gibbard (1973) and S:tterthwaite
(1975). A precise statement of the theorem is this: any scheme which uses
rank erder balloting in a non-chance way to select a single alternative is
either manipulable, dictatorial (in that someone is guaranteed his first
choice from among the possible outcomes), or restricted to no.more than two
possible outcomes. This result holds btoth for schemes which allow individual
indifference to be expressed and for schemes which do not. A streamlined
proof of the theorem is given by Schmeidler and Sonnenschein (1974). This
earlier theorem does not apply to systems of voting which allow tied outcomes.
In my discussion of that theorem (1973, pp. 592-3), I argued that it makes no
sense to study the manipulability of schemes which allow ties unless one con-
siders the system by which ties are to be broken. If ties are to be broken by
chance, I argued, then the full system to be studied in effect yields outcomes
which are lotteries among alternatives.

It was Zeckhauser (1969) who broached the study of voting with lotteries as
alternatives. Fishburn (1972a, 1972b) studies the subject further. A subse-
quent paper by Zeckhauser (1973) is on virtually the topic of this paper.

There Zeckhauser studies systems of voting which rely on individuals' self-
interested balloting and may have lotteries as outcomes. He concludes (Theorem

V, p. 945) that no such system can guarantee an outcome which is both ex ante



Pareto - optimal and, in a special sense, '"non-dictatorial'. (For the case

of twgtvoters, an outcome is "dictatorial' in Zeckhauser's sense if it is the
first choice of one voter and the last choice of the other). Zeckhauser's
result is logically independent of the one in this paper. It is stronger in
one respect: the results here are confined to systems with rank order balloting,
whereas Zeckhauser's is not. Zeckhauser, on the other hand, requires that the
lotteries that serve as outcomes of the schemes he considers be Pareto-optimal
ex ante, and, in his special sense, ''mon-dictatorial". The main theorem in
this paper does not invoke Pareto optimality, and whereas the second corollary
here is suggested by Zeckhauser's result, Zeckhauser's non-dictatorship condi-
tion is much stronger than the non-dictatorship condition in the corollary.
Zeckhauser's result, then, neither directly entails the results in this paper

nor is directly entailed by them.



III. 1Individual Indifference

The main result in this paper fails when extended to systems that permit
a voter to express indifference between alternstives. No doubt the easiest
example of this failure is a serial dictatorship. Let a fixed 'dictator"
always get his first choice, and if more than one alternative ties as his
first choice, let a "prime henchman" get his first choice from among the altern-
atives the dictator likes best. Let further ties be broken arbitrarily, say
by selecting the tying alternative which is first on some predetermined list.
Now a serial dictatorship is clearly strategy-proof: neither the dictator,
the prime henchman, nor anyone else can ever gain by misrepresenting his
preferences. TIf there are more than two alternatives, however, then the
serial dictatorship is not equivalent to any probability mixture of unilateral
or duple schemes, as the following considerations show.

Note at the outset that a serial dictatorship is not unilateral. A
scheme is unilateral, in the sense the term has been given here, only if it
accords a single voter — call him the ruler — a monopoly of influence, so
that no matter how anyone votes, the ballots of all voters other than the
ruler a£e ignored. Under a serial dictatorship, the ballot of the prime
henchman is not invariably ignored, and hence a serial dictatorhip is not
itself unilateral.

Now a serial dictatorship is .not a probability mixture which has any
duple scheme as a part. If it were, then for at least one fixed pair of
alternatives, the probability of the adopted alternative's being in that pair
would have to be non-zero independently of how anyone voted. Under a serial
dictatorship, both alternatives in any pair have probability zero of being
adopted whenever neither is a first choice of the dictator. Thus if a serial
dictatorship is a probability mixture of schemes each of which is unilateral

or duple, then it is a probability mixture of unilateral schemes alone.
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The only unilateral schemes that could be part of this mixture, though,
are ones for which the dictator is ruler. Otherwise, there would be a
non-zero chance that no matter what the dictator's ballot said, it would
be ignored, so that for some way the dictator and others might vote, an
alternative which was not the first choice of the dictator would be adopted
with non-zero probability. Under a serial dictatorship, on the other hand,
the probability that the dictator will fail to get his first choice (or one
of his first choices in case he has no unique first choice) is always zero.
Thus if a serial dictatorship were a probability mixture of unilateral and
duple schemes, it would have to consist of a single unilateral scheme with
the dictator as ruler — and we have already seen that it does not.

A serial dictatorship, then, is not a probability mixture of schemes
which are unilateral or duple, and hence the theorem in this paper does not
in general extend to systems which allow individuals to express indifference.

What, then, can be said about systems with ballots which do allow indi-
vidual indifference to be expressed? What the theorem here tells us is
this: 1f such a system s 1is strategy-proof, then there is a probability
mixture m of unilateral and duple schemes which coincides with s whenever
no one is indifferent between any pair of alternatives. For any ranking
n-tuple P with no ties, in other words, m assigns the same prospect to
P as does s.

The force of the theorem, then, extends to systems which allow indivi-
duals to express indifference. For the force of the theorem lies in the
judgment that any probability mixture of unilateral and duple schemes is

grossly defective as a way of making community decisions. What the theorem
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says about systems with no individual indifference is, in effect, that
non-manipulability can be had only in systems which are otherwise grossly
defective. DNow take a system which is non-manipulable and allows individual
indifference. For all cases in which no one is indifferent between alterna-
tives, the system is a fixed mixture of unilateral and duple schemes. That
in itself is a gross defect: for a significant class of combinations of
individual preferences, the system stands ready to make the community choice
in an unacceptable way. The theorem in this paper shows, then, that even

in systems which permit a voter to express indifference, non-manipulability

may be had only at an exhorbitant price.
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IV. Definitions and Proofs

Let V be a finite set, called the set of alternatives. Variables

W, X, y, and z will have V as their range of values. A strict ordering

of V 1is a binary relation P which, for all x, y, and z, satisfies:

Asymmetry: x Py -+ -~y P x.

Negative transitivity: x Py -+ (x P z vZzP y).

Such a relation is transitive, and may allow indifference between alternatives.

A ranking of V 1is a strict ordering of V which, for all x and y, satisfies:

Connectedness: x #y -+ (x Py, y P x).

A ranking n-tuple over V 1is an n-tuple <P1""’Pn> of rankings of V.
Ranking n-tuples will be represented by bold type (in typescript by squiggly
underlining), on the pattern:

P = (Pl,...,Pﬁ>,

b wta

= <PIJ "';P;>:

[

and the like. P and P' agree off k iff for all i # k, Pi = Pi.

~

P &_ P is the preference n-tuple P' such that Pﬂ =P and P' agrees with
P off k.
We now define '"proto-scheme', '"scheme", and 'decision scheme".

A measure over V 1is a function p which assigns a non-negative real
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number, p(x), to each member x of V. The sum ZX p(x) of these numbers
is called the weight of the measure. A lottery is a measure of weight one.

A proto-~scheme is a function d such that, for some positive integer

n, called the number of voters of d, and for some finite set V, whose

members are called alternatives of d, the domain of d is the set of all

ranking n-tuples over V, and the values of d are measures over V. The
value of d at P will be written dP2, and the probability dP assigns
to an alternative x will be written d(x,P). A scheme is a proto-scheme
all of whose values have the same weight; this will be called the Wéight of

the scheme. A decision scheme is a scheme of weight one. It thus assigns to

each ranking n-tuple P a lottery over V.

We comsider, then, a fixed set V of alternatives and number n of
voters. The variables will range as follows:

W, X, y, z: alternatives in V.

X, Y, Z: sets of alternatives, i.e. subsets of V.
P,Q: rankings of V.

P,Q: ranking n-tuples (Pl,...,Pn> over V.
b, ¢, d: Partial decision schemes for n voters and set V of alternatives.

Subscripts, superscripts, primes, and the like do not affect the range of
variables.

A utility scale U over V is an assignment of real numbers to the

members of V. Where U is a utility scale over V and p is a lottery

over V, we define the expected utility U(p) f p on scale U in this
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way:
U(p) = ZXU(X)Q(X)-

Utility scale U fits a strict ordering P iff for all x and vy,

U(x) >U(y)«*. xPy.

A decision scheme d 1is potentially manipulable by k at P iff
there are a utility scale U which fits Pk and a ranking Pﬁ of V

such that where P' =P {{ Pﬁ,
U(dp') > U(dP).

d 1is manipulable iff there are a voter k and a ramking n-tuple P such

that d is potentially manipulable by k at P. Otherwise, d is strategy-

~

proof.

We now give a number of definitions which will allow the theorem on

strategy-proof decision schemes to be stated in a preliminary, weak version.

Definition 1. Scheme d 1is unilateral iff there is a k such that for

all P and P', if P' = P

X K’ then dp' = dp.

o~

Definition 2. Scheme d 1is duple iff there are alternatives x and vy

such that for every other alternative =z, d(z,P) =0 for all P.

Definition 3. Scheme d 1is a probability mixture of schemes d.,...,d

AR LRI 1 m

iff there is a sequence Cpseees® s with 0 <a, <1 for each z ¢ {f1,...,m}
and Z$=1 @, = 1, such that for each P and x,

d(x,f) = @1d1(x’§) +...+ amdm(fgf).
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Where d 1is such a probability mixture, we shall write

and where d =b + ¢, we shall write b =d - c.

Theorem (weak version). f d is a strategy-proof decision scheme, then

d is a probability mixture of decision schemes each of which is either

unilateral or duple.

This theorem can be strengthened to give conditions which are sufficient
as well as necessary for a decision scheme's being strategy-proof. For any
set X of alternatives and scheme d, we shall write d(X,P) for
sz§X d(x,E), the total probability assigned by measure dE to members

of X. X heads ranking P, iff for any x € X and y ¢ X, x P V-

Definition 4. Proto scheme d 1is localized iff for every k, P, Pﬁ, and

X such that X heads both Pk and Pﬂ, d(X,E/kPﬂ) = d(X,P).

A switch is a reversal of two adjacent alternatives in a ranking. A

scheme is non-perverse if switching an alternative upward never decreases

its probability.

1
' K
X Pk! v, is the ranking which switches =xy 1in Pk and permutes no other

alternative, Pky =P i:Pi, and ei(d,P), the effect under d of k's switching y

Definition 5. X

pY

y means that x P, y & ~(3z) (kaz & z Pk y). Where

upward, is d(y,Pky) - d(y,P). Scheme d 1is non-perverse iff for every P,

k, and y such that {y} does not head P y(d,B) > 0.

k> Sk
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Theorem. A decision scheme d is strategy-proof if and only if it is a

probability mixture of decision schemes, each of which is localized, non-

perverse, and either unilateral or duple.

The pfoof of the Theorem consists chiefly of five lemmas.

Definition 6. A proto-scheme d 1is pairwise responsive iff for every

P, k, x, y, and 2, if x P!y and z ¢ {xy}, then d(z,2Y) = d(z,P).

Lemma 1. The following are equivalent.

(a) d 1is a localized proto-scheme.

(b) d 1is a pairwise responsive scheme.

(c) d 1is a pairwise responsive proto-scheme, and for all x, y, P,

and k such that x Pkf Vs

d({x,y}, Bky) = d({X)Y‘}JE)-

Proof. Suppose d 1is a localized proto-scheme. Then since V heads any

P and E“, d(v,p) = d(V,Ew), and d 1is a scheme. Now suppose that

x Pk! ys 2 ¢ {x,y}, and W is the set of alternatives ranked above

in P . Then both W and Wyf{z} head both P, and Pi. Thus since d

is localized, k's switching y upward changes neither the total probability
of W nor the total probability of Wy{z}. Thus it leaves the probability
of =z unchanged, and d 1is pairwise responsive. Thus (a) entails (b).
For any pairwise responsive scheme, a switch of =xy changes neither the total
probability of V - {x,y} nor that of V; thus it leaves that of {x,y}

unchanged, and (b) entails (c). Now suppose (c); it follows that if

X Pk! y and {x,y} € Z, then d(Z,gky) = d(Z,p). If Z heads both P

k
and Pé, then Pé can be formed from Pk by switches between members of

Z and switches between non-members of Z, neither of which, we have seen,
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change the total probability of Z. Thus d 1is localized, and (c)

entails (a).

Lemma 2. A decision scheme d 1is strategy-proof iff d is localized and

non-perverse.

Proof: Suppose that d 1is not localized, so that for some k, some P

~

and P' that agree off k, and some X which heads both Pk and P,

d(X,P') - d(X,P) = e>0. Let U fit Pk and be such that for all =x € X,

1<Ux <1+z, and for all y § X, 0< U(y) < e. Then, it can be calculated,
U(dp) < d(X,P) + e < U(dR"),

and so d is potentially manipulable by k at P.

~

If d 1is localized but perverse, then for some x,y, and k, x Pk' y
and k's switching y wupwards lowers the probability of y by some amount
e >0. By (c¢) of Lemma 1, the switch raises the probability of x by e,

and changes no other probabilities. Hence if U £fits P so that

k}
U(x) > TU(y), then U(dey)- U(dP) = eU(x) - eU(y) >0, and so d is
potentially manipulable by k at P.

Now suppose d 1is localized and non-perverse, and consider any

1
~ k’ "k

that U(dg') < U(dP). Form Pi from Pk by successive switches as follows:

k, P, and U which fits P, . Where P' =P éiP', we shall show

take the top alternative in P,

X and switch it from its position in P

k

successively to the top, then take the second alternative in Pﬂ and switch

it successively up from its position in Pk to its position in P!, and so
forth. At each step, an alternative y 1is switched with an alternative which

is above it in P,. Since U fits P

% U(x) > U(y), and so by (c) of

k}

Lemma 1 and the non-perversity of d, wutility on scale U cannot be increased
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by such steps. Hence U(dP') < U(dP). That proves the Lemma.

Definition 7. P! {x,y} 1is P, restricted to {x,y}, and Pt {x,y]

= (PlT {x,y},...,PnT {x,y}). A scheme d 1is pairwise isolated iff for

any k, P, P¥, x, and y, if =x Pk! y, Px =P

k k} and :E:\‘T {X)y.} = PT {X)Y})

then ei(d,P*) = ei(d,P). d 1is decomposable iff for any fixed k, x, and

y with x #y, there are functions vy and § such that for all P with

x B ly, (&P = vt {x,y}) +8(p).

Definition 8. P is P, with x and y moved to the bottom, their

kxy k

ordering with respect to each other preserved, and the ordering of all other

alternatives with respect to each other preserved. P is (P seesP Y,
~XY 1xy nxy
Prx 1S kax’ and P 5 P

Lemma 3. Let scheme d be localized. Then d 1is pairwise isolated and

decemposable,

Proof that d 1is pairwise isolated: We first show that the switch of a pair

by one person does not alter the effect of the switch of another pair by

another person. Suppose j #k, w Pj! z, xP Yy, and {w,z} # {x,y}.

Case 1: y ¢ {w,z}. d 1is pairwise responsive and p1? differs from P
only in j's switching wz; thus d(y,PJz) = d(y,P). Likewise, PJZky

ky

k »
differs from P ° only in j's switching wz; thus d(y,PJZky) =d(y,P )

Hence

jzk j k
d(y, "y - d(y,p?® =d@y, ) - d(y,P),

which is to say ei(d,sz) = ei(d,P).



- 18 -

Case 2: x ¢ {w,z}. By an argument like that in Case 1,

ky

ei(d,PjZky) = x(d,P). It follows from this and (c) of Lemma 1 that

iz ks
ey (27" = ¢/(d,P). Now let xP 'y, P =P,

Then P* can be formed from P by a sequence of switches by voters other

and P*t{x,y} = Pt{x,y}.

than k, none of which switches x with y. We have just seen that none

of these changes the value of and thus ei(d,g*) = ei(d,P). Thus d

€1}:;
is pairwise isolated.

Proof that d 1is decompesable:

k
- y % '
vt {x,¥y}) ek(d,gkxy). Now let P and P° be such that x P !y and

Take k, x, and y with x #y. For any P with x P, ! y, define

als
w

k Pk; we shall show

P

e (d,B") - v(B*1{x,y] = ) (d,B) ~ vt {x,y]). (1)

Since d is pairwise isolated, €§(d’P) depends only on P, and Pt {x,y};

k

thus we may suppose w.l.g. that everyone other than k ranks x and vy

last. Now form Pi from Pk by the following sequence of switches.

ata,

1~ Progressively switch y to bottom.

b
w

2°) Progressively switch x down to just above y.

(3*) Switch y with =x.

ats
w

(47 Progressively switch y up to its original position.

*

(5™ Progressively switch x up to just below y. Call this sequence
P;,...,Pu, and consider the difference
a(y,2 4?0 - dy,P* 4 P
}N k "" k (2)

s

as ¢ goes from 0 to . This difference changes only in step (3 ).

For the steps in (1*) and (4*) consist of switching y with various
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alternatives 2z ¢ {x,y}. Everyone except k ranks 2z above vy iﬁ both

P and E*, and so since d 1is pairwise isolated, both terms of (2) change
by the same amount, and (2) 1is unchanged. The steps in (2*) and (5*)
consist of switching =x with alternatives other than y; since d 1is pair-
wise responsive, this changes neither term of (2). ©Now at step (3*), X

and y are switched in kay' The change in (2) at step (3%), then, is

y _ Y *
€k (d:gxy) Sk(d,gxy) . (3)
This, then, is change in (2) from , =0 to z =y, that is,
k *k %
[d, (7, B H-d(y,2" N - [d(y,B) - d(v,B)],

which is e (d,P) - ¢ (d,B)).

From the equality of this with (3), (1) follows. Since the quantity in
(1) depends only on Pk’ let S(Pk) be this quantity; then

ei(d,g) = Y(Bt{x,y}) + 8(2), and d is decomposable.

Definition 9. k's wunilateral component of decision scheme d is the function

dk such that for all x and P,

dk(x,g) = minQ{d(x,g 4( Pk) - d(x,g i: ka)}.

~

Since the value of dk(x,P) depends only on x and Pk’ this will be

written dk(x’Pk)'

Lemma 4. TLet d be a strategy-proof decision scheme, and let d, be k's
N

unilateral component of d. Then (a) if x P, ! vy, then
TN

y = y
ek(dk’g) man ek(d,g 4<Pk)'

~

(b) gk is a scheme which is unilateral, localized, and non-perverse.
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. ! = = y
Proof of (a): Let x Pk' y, let « dk(y’Pk)’ and let B dk(y,Pk).

‘Then.ei(dk,g) =B ~a. Let e = minQ ei(d,g {( Pk); we are to prove that

e =B - a.

By the definition of B, for some Q,

— Yy
B = d(Y:g /k Pk) d(Y;Q {(Pky);

and by the definitions of o« and e,
¢ <d(,9 4 B~ 4(3,Q 4 B) -

Therefore by addition, a + ¢ < B.

We will have o + ¢ > B if there is a Q such that

Yy _ =
d(Y:g‘_ '{(Pk) d(y;g @Pky) a + e,

since B is the minimal value of this difference. Construct such a Q as

al.

follows. By the definition of a, for some P° with P; = P

o = d(y,g*) - d(y,P* P This difference is the sum of the effects, in

4{ ky)'

context P', of k's successively switching y from bottom to just below

x in Pk' Since d 1is pairwise isolated and y 1is not switched with x,

each of these effects is independent of where others besides k place x

(%)

their rankings. On the other hand, since d 1is pairwise isolated, the effect

under d of k's switching y with =x 1is independent of the way others
vote except for their ranking of x with respect to y. By the definition

of ¢, for some P’, Pﬂ = Py and ¢ = ei(d,g'). Form Q from E* by
moving x, in the ranking of each voter i # k, to just above y in P;

or just below y in P? according as x Pi y or vy Pi x. Then, we have
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seen,

Q
It

d(Y;Q) - d(Y;g &Pky)’

(4,9 = 4,0 4 B) - d(,Q),

and hence by addition, (4) holds.

Proof of (b): Since d 1is non-perverse, d(x,Q {(Pk) - d(x,Q {( ka) > 0 for

all Q. Hence its minimal value dk(x,Pk) is non-negative, and dk is a

proto-scheme. Now let x Pk! y. By (a),

_ AN X Yy .
dk(x,Pk) dk(x,Pk) man ek(d,g {(Pk),

~

a (552D = 4 (y,B) = ming ey (d,Q 4 B

~

By (c¢) of Lemma 1, these two minima must be equal, and hence
dk({X:Y}; Pi) = dk({X;Y}: Pk).

Now let =z $ {x,y}, and take any Q. Since d 1is pairwise responsive,

d(z, Q i;Pi) =d(z;Q 4 P)- By (c) of Lemma 1, d(z,Q {(Piz) =d(z,Q4 P, )-

Therefore
d(z,Q 4 P - 4(2,Q 4 Py ) =d(2,Qf B) - d(z,Q /P, ),

. . vy -
and so the minima are equal: dk(z,Pk) dk(z,Pk).

and so d is a localized scheme.

Thus (c¢) in Lemma 1 is satisfied for dk’ "

Finally, by (a), if x P !y, then for some Q, ei(dk,Pk) = ei(d,g), and

since d 1is non-perverse, this is non-negative; therefore dk is non-perverse.

dk is clearly unilateral, and the Lemma is proved.

Definition 10. A scheme d ignores external comparisons iff for any x, y,

k, B, and P', if x P!y and Pt {x,y} = Bt {x,y}, then &’(d,P") =
E P V@2

&y (d,P) .
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Lemma 5. Suppose d is a gtrategy-proof decision scheme. For each k,

let gk be k's unilateral component of d, and define functions d , c,
[8)

and Eyz for each {vy,z} such that y # z as follows.

d_(x,B) = d(x,B);

c(x,P) =d(x,P) - d (x,B) - ceemid (1B)5

cyz(x,g) = c(x,gyz) for x efy,z} and 0 for x { {y,z}.
Then c¢ 1ignores external comparisons. Each function do,...,dn, c, and each
c is a localized, non-perverse scheme, d ,...,d are unilateral, each
Xy o n
Exy is duple, and for all x and P,

d(xﬁg) = dO(X)E) + dek(X)E) + ZYZCYZ(X)E)) (5)
where Zyz sums over all pairs ({y,z} with y # z.

Proof. do is constant for each =x, and thus, like each dk, a unilateral,
localized, non-perverse scheme. Now consider c¢, and let x Pk' y.

ei(di,g) =0 for i #k, and thus

ey (c,P) = & (4,F) - € (4 ,P). By Lemma 4(a),

& (d),P) < ) (d,P); hence g (c,P) >0
and ¢ 1is non-perverse. c(x,gx) =0 for all x and P, since do(x,PX)
= d(x,PX) and di(X,PX) =0 for i #0. Thus since ¢ is non-perverse,
c(x,P) >0 for all x and P, and ¢ 1is a proto-scheme. Since d, do,;;;,d

n

are all localized, c¢ 1is localized and hence a scheme.

¢ ignores external comparisons. For let x P, ! y. Since d 1is decomposable,

1
k'
there are functions Y and & such that for any Q@ with x Qk! Vs
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ei(d:g) = Y(gj {X:Y}) + 6(Qk) . Thus el}:(d:E) = 'Y(BT{X:Y}) + 5(Pk)-

Let Q minimize €i(d,Q) for Qk = Pk; then by Lemma 4(a),

~

ei(dk,f) = ei(d,g) = y(g?{x,y}) + é(Pk). Therefore ei(c,f) =

y@H{xyDH - v@Qt {x,y]).

Now let P*T{x,y} = Pt{x,y}; by a like argument, where g* minimizes

v (R = Y@ H{x,y)) - WQ 1{x,y}). Since

y * *
ek(d,g Y for Qk P

O

minimizes ei(d,g) =»q(gT{x,y}) + 6(Pk) for Q. = P> Q minimizes
y(gT{x,y}) for x Q ¥ and since x Pz Y, 9* =Q 4{P§ minimizes
Y(@*1{x,y}) for oF = Py. For this Q¥ g*T{x,y} = 9tfx,y}, and so
ey (.2 = Y@ {xyH- v(Q1{x,5D = ¥@1{x,5D) - v(@QH {x,5D= &) (e,P).
Thus ¢ 1ignores external comparisons.

Since c(z,P) > 0 for all =z and b, from the way cXy is defined,
cxy(z,f) > 0. Moreover, cxy(V,E) = c({x,y}, Exy)’ and since c¢ 1is localized,
this is constant for all P, and cXy is a scheme. cXy is pairwise
responsive and hence localized: an xy switch leaves all other probabilities

zero, and any other switch leaves all probabilities unchanged. cXy in non-

. 4 .
perverse: if w Pk! z and {w,z} # {x,y}, ek(cxy,g) =0, and if x Pk! Vs

y = 5 . . .
ek(cxy,f) ek(c,gxy) > 0, since ¢ is non-perverse.

Finally, c(x,P) = Zyzcyz(x,P) for y # 2. We noted earlier that
C(X’Ex) =0 for all x and P; thus cyz(x,fx) =0. For if x & {y,z},

then cyz(x,f) = 0 for all P, and cyz(y,gy) = c(y,(gy)yz) = 0, since

(Ey)yz has y wuniformly on the bottom. Therefore
c(x,fx) =0 = Zyzcyz(x’gx)' Now form P from Ex by successively
shifting x wupward in each ranking; call the resulting sequence P ,...,PM.

+1 . e
At each step from P¥ to PY , some k switches x with a w such that

" Pi! X.
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v+l - z .y < X z . - X 2
Now e (,P) - e (x,PY) =e@,Pl ) - e(xB) = g (B ) = g (csBY)

since c¢ 1ignores external comparisons; thus

+1 4 +1 :
c(x,PL ) - c(x,PL) = CWX(X,PL ) - cwx(x,fb). For {y,z} # {x,w},
z+l 2 o+l 7 2+1
Pkyz = Pkyz’ and so cyz(x,f ) cyz(x,f ). Therefore c(x,g )
A el z . oy _ °
c(x,g ) Zyzcyz(x,g ) Zyzcyz(x,g ). Since c(x,P) Zyzcyz(x,g ), by

. . Ty 7 z
induction c(x,P ) = Zyzcyz(x,g ) for all P, and thus c(x,g)

Zyzcyz(x,E). (5) follows immediately.

Proof of Theorem. 1In (5), drop schemes of weight zero, so that d is a

sum b; + ...+ b; of schemes of positive weight ml,...,mm respectively.
Let each decision scheme b, = (1/a )bw; then d =a,b.+ ... +a b , and
v AN A 171 m m

each bL is localized, non-perverse, and either unilateral or duple. Con-
versely, if decision scheme d 1is a probability mixture of this kind, then
d 1is clearly localized and non-perverse; hence by Lemma 2, d is strategy-

proof. That completes the proof of the theorem.
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V. Corollaries

Definition1l . k 1is dictator for decision scheme d iff for every P,

x, and y, 1if x P then d(y,g) =0. d is dictatorial iff there is

k7

a dictator for d.

Definition 12. Lottery p 1is Pareto optimal ex post for ranking n-tuple P

iff for any x, if there is a y such that y P, x for all i, then

p(x) = 0. Decision scheme d 1is Pareto optimific ex post iff for every P,

lottery dP 1is Pareto optimal ex post for P.

Corollary 1 (Sonnenschein). Let decision scheme d be strategy-proof and
Pareto optimific ex post. Let the set V of alternatives for d have at
least three members. Then d 1is a probability mixture of dictatorial decision

schemes.

Proof: Since d 1is strategy-proof, d 1is a probability mixture of decision

schemes, each of which is unilateral or duple. Let

where for each ¢ € {1,...,m}, o >0 and dL is non-null and either uni-
z

lateral or duple. Then no dL is duple. For since d 1is Pareto optimific
ex post, the alternatives in any pair {x,y} get a probability of zero when-

ever some alternative 2z 1is unanimously preferred to them. Thus for any pair

{x,v}, dL({x,y},B) = 0 whenever z P, X and z Py for each 1i; therefore
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dL is not an xy duple scheme. Hence each d is unilateral.
z

Now let dL be unilateral on the part of k and let x P Then,

A

we shall show, d (y,P) = 0. For let P' be such that Pﬂ = Pk and for
. L

all i, x Pi y. Then since d 1is Pareto optimific ex post, d(y,P') =0,

and thus dL(y,g‘) = 0. Since db is unilateral on the part of k and
1 =

P T P K 7

then d (y,P) = 0. Thus k 1is dictator for dL. We have shown that each
L ~

dL(y,g) = 0. We have shown that for any P, x, and y, if xP

dL is dictatorial, and the Corollary is proved.

Definition 13. Lottery p 1is Pareto optimal ex ante for utility scales

b

U .,Un iff there is no lottery p such that for each 1,

177"

Ui(p') >»Ui(p). Decision scheme d is Pareto optimific ex - ante iff for
every ranking n-tuple P and every n-tuple (Ul,...,Un) of utility scales
such that for each 1, P fits Ui’ lottery dP 1is Pareto optimal ex

LN

ante for U
Corollary 2. Let decision scheme d be strategy-proof and Pareto optimific
ex ante. Let the set V of alternatives for d have at least three members.

Then d 1is dictatorial.

Proof: Note first that if d 1is Pareto optimific ex ante, then d 1is
Pareto optimific ex post. For let preference rankings Pl,...,Pn fit
Ul""’Un respectively, and suppose lottery p 1is not Pareto optimal ex post

for P P . Then for some pair of alternatives X and vy, vy Pi x for

1B
all i, but pg(x) #0. Now let p' give x's probability to y, so that
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p'( x) =0, p'(y) = p(x) + p(y), and p'(z) = p(z) for all z $ {x,y}.
Then for each i, since Pi fits Ui’ Ui (y) > Ui(x), and so

U, (p") >»Ui(p). Therefore p 1is not Pareto optimal ex ante for U .,Un,
i I

17"
and d 1is not Pareto optimific ex ante.

Suppose now that d 1is Pareto optimific ex ante, and therefore Pareto

optimific ex post. Then d 1is a probability mixture of dictatorial decision

schemes. Let

where for each i, a, =z 0 and i 1is dictator for di'
Suppose that d 1is not itself dictatorial, so that @ii> 0 for more
than one 1i. Let &k > 0, let x, y, and z be distinct alternatives, and

let the utility scales U .,Un be as follows.

17"

Uk(X) = 1) 1 > Uk(Y) > G’k) Uk(Z) = 0)

and for all w ¢ {x, y, z}, Uk(w) < 0.
For all i # k,

Ui(z) =1, 1 >—Ui(y) > 1—ak, Ui(X) =0,

and for all w { {x, vy, 2}, I%ﬂw)'< 0.

For each i, let P, fit U, so that {x} heads P, and {z} heads P,

k
for all i # k. Then d(x,P) = Gy s d(z,B) = l-—@k, and d(w,P) =0 for
all w distinct from x and y. Therefore Uk(dg) = a,, and for i # k,
Ui(d,P) =1 - Qy - k

~

Now let § be the lottery that gives y as a sure thing. Then

Uk(y) >»on,k and for i # k, Ui(y) > 1 —-@k. Therefore for all i,
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Ui(§) >)Ui(dg), and so dE is not Pareto optimal ex ante for Ul""’Un'
On the supposition that d 1s not dictatorial, we have shown that d is
not Pareto optimific ex ante. Therefore d 1is dictatorial, and the Corollary
is proved. 3
Corollary 2 can be extended to schemes that allow individual indifference.

Let a preference n-tuple over V be an n-tuple of strict orderings of V.

Let an unrestricted decision scheme (UDS) be a function which, for some finite

set V of alternatives and number n, takes as arguments all preference

n-tuples over V, and takes as values lotteries over V. Manipulability

is defined as before, with the term 'ranking' replaced by 'strict ordering'.
The following Assertion allows us both to extend Corollary 2 to UDS's,

and to derive the old theorem on non-chance voting schemes. Where d 1is a

decision scheme or UDS, a possible outcome for d 1is an alternative x such

that for some P in the domain of d, d(x,P) > 0. A weak dictator for d is

~

a voter k such that for every P, where X 1is the set of possible outcomes

which are first among possible outcomes in P

%’ d(X,p) = 1. d 1is weakly

dictatorial iff there is a weak dictator for d.

Lemma 6. Let d be a strategy-proof UDS, and let d' be the decision

scheme which is d with its domain restricted to ranking n-tuples. Then (i)
any possible outcome of d 1is a possible outcome of d', and (ii) a weak

dictator for d' is weak dictator for d.

Proof of (i): Suppose x 1is a possible outcome of d but not of d'. Let

P be a ranking n-tuple such that =x ranks first in every Pi’ and let P be
~ ~e

a preference n-tuple such that d(x,PA) > 0. Form a sequence of preference
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n~tuples Po,...,Pn as follows: let Eo =P, and for each i, let
P o= El_l é_ P;, so that En = E". Then since P° is a ranking n-~tuple

and x 1is not a possible outcome of d', we have that dcx,go) = 0, whereas
d(x,gn) > 0. Take the least j such that d(x,gj) >0, and let d(x,gj) =g
Then d(x,fj_l) =0, and Pg_l = Pj. Since Pj ranks x first, there is a
utility scale U which fits Pj’ such that U(x) =1 and for all y # x,

0 < U(y) < ¢. Since d(x,gj) = ¢ U =1, and for all y # x, U(y) >0,
we have that U(dgj) >¢. Since d(x,gj-l) =0 and for all y # x,

U(y) < ¢, we have that U(dzj_l) < ¢. Thus U(dgj) >»U(d£j-1), and since

U fits Pj and P;-l = Pj’ d 1is potentially manipulable by j at BJ-l.

Proof of (ii): From (i), the possible outcomes of d and d' are the same.

Now suppose k 1is weak dictator for d' but not for d. Then for some

preference n-tuple P, where X 1is the set of possible outcomes ranked

K’ d(X,P) # 1. For some x £ X, let P; rank x first, and

for every i #k, let P; rank x last. Let P° = P i: P;. Then

~

first in P

d(xago) # 1, for otherwise, on any utility scale U which fits P we

k)
would have that U(dP’) = U(x) and U(dP) < U(x), so that U(dp®) > U(dR).

Thus d would be potentially manipulable by k at P. Now form sequence

i i-1 % %
Po,...,Pn by letting El = gl /Pi for each i, so that Bn =P . Then

since P is a ranking n-tuple with %k, who is weak dictator for d', ranking

~

possible outcome x first, we have that d(x,Pn) = 1. Take the least j such

that d(x,BJ) =1; then d(x,gj-l) < 1l. We know that j # k, since from the

k." 1 ot
k _ P .

way EJ is defined, P Therefore =x 1is at the bottom of P;, and

so on any utility scale U which fits P;, U(dPJ-l) > U(x), whereas
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ale
w

U(dPJ) = U(x). Thus U(dPJ_l) > U(dPJ), and since P; = Pj and U fits

Lo
w

Pj’ d 1is potentially manipulable by j at EJ. That proves the Assertion.

Corollary 2'. Let UDS d be strategy-proof and Pareto optimific ex ante,

and let d cover at least three alternatives. Then d 1is dictatorial.

Proof: Since d 1is Pareto optimific ex ante , all alternatives are possible
outcomes, and so a weak dictator is dictator. d with its domain restricted
to ranking n-tuples is dictatorial by Corollary 2, and thus by Assertion 17,

d is dictatorial.

Definition 14. A voting scheme is a UDS v such that for every x and

preference n-tuple P, either v(x,g) =1 or wv(x,P) =0.

Corollary 3. 1If a voting scheme is strategy-proof, then it is either duple

or weakly dictatorial.

Proof: Let voting scheme v be strategy-proof, and let v' be v with its
domain restricted to ranking n-tuples. Then by the Theorem, v ' 1is a proba-
bility mixture aldl +...+ amdm, where each aL is positive, 2 ab =1,
and each db is unilateral or duple. ©Now if V"(X,E) =1, then for each
z, dL(x{B) =1, and if v'(x,g) = 0, then for each 1, dL(x,g) =0.
Hence each dL is identical with wv', and v' is either unilateral or
duple.

If v' 1is duple -~ that is, has at most two possible outcomes -~ then

by (i) of Assertion 17, v 1is duple.
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Let v' be unilateral, with k as ruler. Then v' 1is weakly dictatorial.

For let x be a possible outcome. Then for some ranking n-tuple P“,

% * '
v'(x,P ) > 0, and hence v'(x,B ) = 1. Thus since v' is unilateral,

v’(ng) =1 wherever Pk = Pk. Suppose, then, that v' 1is not weakly

dictatorial, so that for some alternative x and ranking n-tuple P',

ot

x is first in Pﬂ but v'(x,P') # 1. Where P = g'&' P;, we know that
v'(x,P) = 1. Thus for any utility scale U which fits P/, U(VP) > U(vP'),
and v' is potentially manipulable by k at P. The supposition that v'

is not weakly dictatorial hs been shown false. It follows from (ii) of

Assertion 17 that v itself is weakly dictatorial. That proves the Corollary.
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NOTES

Zeckhauser (1973, p. 939) describes an extension of the '"random dictator
system" as follows: '"Provide each voter with q ballots for his first
choice, r for his second, s for his third, etec., with q>r >-s.

' He then goes on to say,

The selection procedure is random as before.'
"Thus we find that only variants of the random dictator system will
elicit ballots unique with respect to individuals' . . . ordinal prefer-
ences." (Being 'unique' in Zeckhauser's terminology is roughly the same
as being 'strategy-proof' in mine). If by "variants of the random dic-
tator system'' he means sytems of the form specified in passage I have

quoted, then Scheme 2 is a counterexample to this claim.

I owe this corollary to Hugo Sonnenschein.

Aspects of this proof are suggested by arguments in Zeckhauser (1973).



