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Abstract

We study preferences for timing of resolution of objective uncertainty in a menu-

choice model with two stages of information arrival. We characterize a general class

of utility representations called hidden action representations, which interpret an

intrinsic preference for timing of resolution of uncertainty as if an unobservable

action is taken between the resolution of the two periods of information arrival.

These representations permit a richer class of preferences for timing than was pos-

sible in the model of Kreps and Porteus (1978) by incorporating a preference for

flexibility. Our model contains several special cases where this hidden action can

be given a novel economic interpretation, including a subjective-state-space model

of ambiguity aversion and a model of costly contemplation.
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1 Introduction

This paper considers several new classes of dynamic preferences, providing representations

for preferences for both early and late resolution of uncertainty. The first purpose of this

analysis is to unite two strands of the literature: We consider a model in which an

individual may have an intrinsic preference for timing of resolution of uncertainty (as in

Kreps and Porteus (1978)) while at the same time exhibiting a preference for flexibility

(as in Kreps (1979) and Dekel, Lipman, and Rustichini (2001, henceforth DLR)). As

we discuss later in the introduction, preferences exhibiting this combination are quite

plausible in a variety of economic environments and can have important implications.

The second purpose of this analysis is to provide a simple and intuitive interpretation

for such preferences: We provide a representation that suggests that intrinsic preferences

for timing of resolution of uncertainty can be interpreted as being the result of some

interim action that is not observable to the modeler (a hidden action). Thus, intrinsic

preference for timing can be understood as an extrinsic (or instrumental) preference for

timing arising due to some unobserved action.

1.1 Intrinsic Versus Extrinsic Preferences for Timing

It is well known that an individual may prefer to have uncertainty resolve at an earlier

date in order to be able to condition her future actions on the realization of this uncer-

tainty. For example, an individual may prefer to have uncertainty about her future income

resolve earlier so that she can optimally smooth her consumption across time. Suppose an

individual has the possibility of receiving a promotion with a substantial salary increase

several years into the future. If she is able to learn the outcome of that promotion decision

now, then even if she will not actually receive the increased income until a later date, she

may choose to increase her current consumption by temporarily decreasing her savings or

increasing her debt. On the other hand, if she is not told the outcome of the promotion

decision, then by increasing her consumption now, she risks having larger debt and hence

suboptimally low consumption in the future. In this example, changing the timing of the

resolution of uncertainty benefits the individual by increasing her ability to condition her

choices on the outcome of that uncertainty.

Kreps and Porteus (1978) considered a model that enriches the additive dynamic

expected-utility model by allowing for a preference for early (or late) resolution of un-

certainty even when the individual’s ability to condition her (observed) actions on the

outcome of this uncertainty does not change with the timing of its resolution. For exam-

ple, suppose the individual described above has no current savings and is unable to take

on debt. Then, if she learns the outcome of the promotion decision now, she is unable to

increase her current consumption. Even in this case, the preferences considered by Kreps
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and Porteus (1978) allow the individual to have a strict preference for that uncertainty

to resolve earlier (or later), which we refer to as an intrinsic preference for the timing of

the resolution of uncertainty. The additional flexibility of their model has proven useful

in applications to macroeconomic models of asset pricing (Epstein and Zin (1989, 1991)),

precautionary savings (Weil (1993)), and business cycles (Tallarini (2000)) (see Backus,

Routledge, and Zin (2004) for a survey of these and related papers).

While an intrinsic preference for early resolution of uncertainty occurs by definition

in the absence of any directly observable payoff-relevant action, it is possible that the

individual does in fact take a payoff-relevant action that is simply unobservable to the

economic modeler. For example, suppose the individual described above is not permitted

to save or borrow, yet still exhibits a preference for early resolution of uncertainty about

income. It may be the case that this individual has some additional unobserved payoff-

relevant action that she would like to condition on the resolution of this uncertainty.

Thus, her apparent intrinsic preference for early resolution of uncertainty could in fact be

an extrinsic preference arising due to an unobserved action.

Kreps and Porteus (1979) provided an interpretation along these lines for the pref-

erences considered in their 1978 paper, and Machina (1984) considered a related repre-

sentation for slightly more general preferences. The actions that induce preferences for

timing in these models are typically interpreted as physical choices, e.g., induced prefer-

ences for future income resulting from decisions about consumption-savings, consumption-

investment, or consumption bundles (see Kreps and Porteus (1979, pages 86–87)). Our

main representation theorem provides a similar hidden action interpretation for a broader

class of preferences. This generalization not only allows us to model some useful pref-

erences that have not been previously considered, but also permits novel psychological

interpretations for the hidden action, such as ambiguity aversion or costly decision mak-

ing.

1.2 Overview of Results

We examine dynamic preferences in a simple menu-choice setting with two stages of ob-

jective uncertainty. This framework is a two-stage version of the environment considered

by Kreps and Porteus (1978). However, we allow for more general axioms, which per-

mits us to model a richer set of preferences for early or late resolution of uncertainty. In

particular, we incorporate a preference for flexibility as in Kreps (1979) and DLR (2001)

into their temporal model. In addition, we allow for preference for timing to interact with

preference for flexibility in a nontrivial way. For example, we allow for the possibility that

preferences for timing are stronger when facing decision problems that offer flexibility in

future choices. To illustrate the usefulness of these generalizations, we show in Section 1.3

that these new features have important implications for a broad class of mechanism design
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problems.

After describing the setting for our model in Section 2, we present our axioms and

main results in Section 3. We show that our general class of preferences for early and

late resolution of uncertainty can be represented as if there is an unobserved (hidden)

action that can be taken between the resolution of the first and second period objective

uncertainty. In the case of a preference for early resolution of uncertainty, this hidden

action can be thought of as an action chosen by the individual. Thus, the individual

prefers to have objective uncertainty resolve in the first period so that she can choose this

action optimally. In the case of a preference for late resolution of objective uncertainty,

this hidden action could be thought of as an action chosen by (a malevolent) nature. In

this case, the individual prefers to have objective uncertainty resolve in the second period,

after this action has been selected by nature, so as to mitigate nature’s ability to harm

her.1

This paper not only provides representations for a more general class of preferences

for early and late resolution of uncertainty, but also provides new ways to understand

and interpret these temporal preferences. Our hidden action model is general enough to

encompass the subjective-state-space versions of a number of well-known representations

in the literature. We consider some of these special cases in Section 4. In Section 4.1,

we show that subjective-state-space versions of the multiple priors model of Gilboa and

Schmeidler (1989) and the variational preferences model of Maccheroni, Marinacci, and

Rustichini (2006a) overlap with the class of hidden action preferences exhibiting a pref-

erence for late resolution of uncertainty. In Section 4.2, we characterize the costly con-

templation model of Ergin and Sarver (2010a) as a special case of the class of hidden

action preferences exhibiting a preference for early resolution of uncertainty. The general

framework in this paper provides a unification of these well-known representations and

provides simple axiomatizations.

Finally, in Section 4.3, we describe what is perhaps the simplest extension of the model

of Kreps and Porteus (1978) that can accommodate a preference for flexibility. In this

special case of our general model, the preference for timing depends only on the utility

values of the possible menus that could result from a two-stage lottery, not on the actual

content of those menus. In particular, the presence or absence of intermediate choice

has no direct effect on the preference for timing. We will see that this restriction rules

out many of the behaviors we would like to capture with our general model, such as the

preferences to avoid contingent planning described in the following section.

1While we do not suggest that there literally exists a malevolent nature, it is a useful way to interpret a
pessimistic or ambiguity-averse attitude on the part of the decision-maker. See, for example, Maccheroni,
Marinacci, and Rustichini (2006a) for a related discussion.
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1.3 A Motivating Example from Mechanism Design

The preferences modeled in this paper can be motivated by and applied to a number of

issues in mechanism design. To illustrate, consider the problem of school choice. The

student-optimal stable matching mechanism, which is based on the deferred acceptance

algorithm of Gale and Shapley, is used to match students with high schools in New York

City and Boston. This mechanism is dominant strategy incentive compatible for students,

and therefore no student with “standard” preferences can benefit from learning the reports

of the other students prior to submitting her own ranking. However, we will argue that it is

quite reasonable to expect that students would prefer to learn the rankings of others prior

to submitting their rankings. While this type of preference cannot be accommodated by

standard models, even models of preferences for timing such as Kreps and Porteus (1978),

such preferences can easily be accommodated within our framework.

To make ideas concrete, focus on a simple example with two schools, a and b, and two

students, 1 and 2. Suppose student 1 has higher priority at school a and student 2 has

higher priority at school b. The student-optimal matching mechanism gives the following

matches based on the reported preferences of the students:

1’s ranking 2’s ranking matching

a �1 b a �2 b (1, a), (2, b)

a �1 b b �2 a (1, a), (2, b)

b �1 a a �2 b (1, b), (2, a)

b �1 a b �2 a (1, a), (2, b)

Notice in particular that if student 2 reports a preference for school b, then given the

priorities of the schools, student 1 is assigned to school a regardless of her preference. On

the other hand, if student 2 reports a preference for school a, then student 1 is assigned

to whichever school she ranks higher. Therefore, depending on the reported rankings of

the other students and the priorities of the schools, there is a feasible set of schools for

student 1 and she is assigned to her highest ranked school from this feasible set. The

feasible sets for student 1 based on the reports of student 2 are summarized as follows:

2’s ranking 1’s feasible set

a �2 b {a, b}
b �2 a {a}

This table concisely illustrates a key property of this mechanism: The ranking that

student 1 submits has an impact on her outcome in some instances (when a �2 b), but

not in others (when b �2 a). Of course, if student 1 finds school a clearly superior to

school b or vice versa, then this feature of the mechanism is not pertinent — she will
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simply submit her true ranking regardless of the likelihood that it will be implemented.

However, a more realistic scenario is one in which each school has different strengths and

weaknesses, and consequently student 1 finds it difficult to rank the two. In this case,

knowing whether her feasible choice set is {a, b} or {a} prior to submitting her ranking is

valuable to student 1, since she can put more effort into her decision when her submitted

ranking is actually relevant and less when it is not.

The preferences described in this example are easily formalized within the framework

of this paper, and are at the heart of our analysis. Suppose student 1 believes that with

probability α student 2 will submit the ranking a �2 b and with probability 1−α student 2

will submit the ranking b �2 a. Then, in the student-optimal stable matching mechanism,

student 1 submits her ranking of a and b with the foresight that her choice of a versus b

will be implemented with probability α, and with probability 1−α she will be assigned a

regardless of her reported ranking. Thus, submitting the ranking a �1 b results in a (for

certain) and the ranking b �1 a results in the lottery αb+ (1−α)a. This implies that her

ranking of the alternatives (or equivalently, her contingent plan from the sets {a, b} and

{a}) can be expressed within our framework as a choice from a set of distributions over

outcomes {a, αb+(1−α)a}. In contrast, if student 1 learns the ranking of student 2 prior

to submitting her own ranking, then with probability α she chooses from the set {a, b}
and with probability 1−α she chooses from the set {a}. When the decision problems for

student 1 are formulated in this manner, her preference to learn the ranking of student

2 prior to submitting her own ranking corresponds precisely to our axiom for preference

for early resolution of uncertainty.

In this example, the preference for timing was motivated by the following consider-

ation: Students may wish to avoid unnecessary contingent planning, i.e., investing the

effort to rank schools that turn out not to be feasible. Our model provides a tractable

way to analyze preferences for timing that are driven partly or entirely by a desire to

avoid (or, alternatively, to engage in) contingent planning; these preferences can be ac-

commodated by allowing for complementarities between the content of menus and the

hidden action in our utility representation. That is, if there is greater variation in the op-

timal hidden action among nonsingleton choice sets than there is among singleton choice

sets, then the preference for timing will manifest more strongly for decision problems

involving nontrivial contingent planning (contingent choice from nonsingleton sets). For

example, one specific case of our representation were hidden actions have this property

is the costly contemplation model described in Section 4.2, which provides a simple and

tractable functional form for modeling costly decision making.

The connection between contingent planning and preference for timing is absent from

the previous literature on the subject, and drawing this connection is one of the main

contributions of this paper. Kreps and Porteus (1978) made assumptions on the prefer-

ences that made the presence or absence of intermediate choice inconsequential for the
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preference for timing. For example, while their model could also allow for a preference to

learn whether the feasible set is {a, b} or {a} prior to submitting a ranking, it would then

impose the same preference for timing when the possible feasible sets are {b} and {a} (see

Section 4.3 for a detailed description of their model).2 However, in the second situation,

student 1’s ranking is completely irrelevant, so her contingent planning problem is trivial.

Therefore, if she expresses the same preference for timing in both situations, we can infer

that a factor other than contingent planning must be driving her preference.

There are other explanations for why student 1 may prefer to learn her feasible choice

set sooner that match well with the Kreps and Porteus (1978) model. For example,

she may prefer to have this uncertainty resolved sooner in order to reduce her anxiety

about the outcome, or because there are other decisions in her life that she would like to

condition on the outcome of the school match. These sources of preferences for information

are certainly plausible, and our model allows for them as well; however, these causes of

preference for timing have very different implications, both for the overall structure of

preferences and for the design of optimal mechanisms. If students just want earlier arrival

of information, then efficiency can be improved simply by running the mechanism at an

earlier date. In other words, for the preferences considered by Kreps and Porteus (1978),

it is efficient to run the static mechanism at some optimal date (determined by the precise

preferences for timing).

On the other hand, if the students want earlier arrival of information in order to avoid

contingent planning, then running the same mechanism sooner is of no benefit to them.

Instead, there could be efficiency gains associated with the use of dynamic mechanisms.

Having agents act sequentially allows them to utilize information about the past actions of

other agents and may help them to avoid planning for unrealized contingencies. Thus, the

incorporation of preferences regarding contingent planning into our model has important

implications for the design of optimal mechanisms.

The applications of our model are not limited to the problem of school choice. The

interpretation of the agents’ reports as complete contingent plans naturally carries over

to all economic environments in which a dominant strategy incentive compatible direct

revelation mechanism (like a VCG mechanism) is employed. Just as in the school choice

example, for these mechanisms every report of the other agents translates into a feasible

set of outcomes that a particular agent can obtain from her different reports. If the

mechanism is dominant strategy incentive compatible, then it must always select the best

feasible outcome for the agent according to her reported type. Therefore, submitting a

report at the same time as other agents is equivalent to forming a contingent plan from

the possible feasible sets, and agents with the preferences considered in this paper may

again benefit from learning the reports of the other agents in advance of submitting their

2These feasible sets could arise if student 2 has higher priority than student 1 at both schools instead
of just school b.
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own.3

These observations suggest that there are benefits associated with using dynamic

mechanisms in these settings as well. In fact, in environments with monetary trans-

fers, there are already results in the applied literature to support this claim for several

special cases of our general model. For example, when agents can engage in costly infor-

mation acquisition about their private values (which corresponds to the special case of

our model described in Section 4.2), Compte and Jehiel (2007) show that multistage auc-

tions lead to higher revenues than sealed-bid auctions. Athey and Segal (2007) provide an

elegant construction of an efficient, budget-balanced, and Bayesian incentive-compatible

dynamic mechanism in a setting where agents could have a very general set of hidden

actions (including information acquisition).4 There are also many other settings where

the preferences considered in this paper could be applied. In particular, one important

open research question is finding optimal dynamic mechanisms in environments without

transferable utility such as the school match problem described in this section. By clar-

ifying the basic structure of these individual preferences, the axiomatic analysis in this

paper can make it easier to approach applications involving multiple agents in complex

environments.

2 Choice Setting

Let Z be a finite set of alternatives, and let 4(Z) denote the set of all probability distri-

butions on Z, endowed with the Euclidean metric d and with generic elements denoted

p, q, r. Let A denote the set of all nonempty and closed subsets of 4(Z), endowed with

the Hausdorff metric:

dh(A,B) = max

{
max
p∈A

min
q∈B

d(p, q),max
q∈B

min
p∈A

d(p, q)

}
.

Elements of A are called menus, with generic menus denoted A,B,C. Let 4(A) denote

the set of all Borel probability measures on A, endowed with the weak* topology and

3A simple example is the sealed-bid second-price auction with independent private values. Let bi and
b−i denote the bid of agent i and the highest bid of the other agents, respectively. From the perspective
of agent i, each bid/report bi corresponds to a complete contingent plan where she commits to buy the
object at price b−i if bi > b−i, and commits not to buy it if bi < b−i. A preference for timing driven by a
desire to avoid contingent planning implies a preference by agent i to learn the price b−i she faces before
deciding whether or not to buy the object.

4These models involve agents who can take hidden actions in multiple stages, and the optimal dynamic
mechanisms therefore also involve several stages. While our axiomatic analysis is restricted to two
stages for tractability and expositional simplicity, the basic insights uncovered here are also useful for
understanding multistage settings.
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with generic elements denoted P,Q,R.5 The primitive of the model is a binary relation

% on 4(A), representing the individual’s preferences over lotteries over menus.

We interpret % as corresponding to the individual’s choices in the first period of a

two-period decision problem. In period 1, the individual first chooses a lottery P over

menus. Then, the uncertainty associated with this chosen lottery P resolves, returning a

menu A. In the (unmodeled) period 2, the individual chooses a lottery p out of A and this

lottery resolves, returning an alternative z. We will refer to the uncertainty associated

with the resolution of P as the first-stage uncertainty and the uncertainty associated

with the resolution of p as the second-stage uncertainty. Although the period 2 choice is

unmodeled, it will be important for the interpretation of the representations.6

For any A ∈ A, let δA ∈ 4(A) denote the degenerate lottery that puts probability 1

on the menu A. Then, αδA + (1−α)δB denotes the lottery that puts probability α on the

menu A and probability 1 − α on the menu B. Figure 1 illustrates such a lottery P =

αδA+(1−α)δB for the case of A = {p1, p2} and B = {q1, q2}, where pi = βiδzi +(1−βi)δz′i
and qi = γiδz̃i + (1 − γi)δz̃′i . In this figure, nodes with rounded edges are those at which

nature acts, and square nodes are those at which the individual makes a decision.

P

A

p1

z1

β1

z′1

1− β1

p2

z2

β2

z′2

1− β2

α

B

q1

z̃1

γ1

z̃′1

1− γ1

q2

z̃2

γ2

z̃′2

1− γ2

1− α

Figure 1: Decision Tree for the Lottery P

Our framework is a special case of that of Kreps and Porteus (1978), with only two

periods and no consumption in period 1.7 As in Kreps and Porteus (1978), we refer to a

5Given a metric space X, the weak* topology on the set of all finite signed Borel measures on X is
the topology where a net of signed measures {µd}d∈D converges to a signed measure µ if and only if∫
X
f µd(dx)→

∫
X
f µ(dx) for every bounded continuous function f : X → R.

6Since period 2 choice in our model is stochastic, incorporating it explicitly into the framework would
involve a number technical complications. Ahn and Sarver (2011) analyze a model that combines choice of
menus with stochastic choice from menus. Similar techniques may allow period 2 choice to be incorporated
formally in our temporal framework in future research.

7This framework was also used in Epstein and Seo (2009) and in Section 4 of Epstein, Marinacci, and
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lottery P ∈ 4(A) over menus as a temporal lottery if P returns a singleton menu with

probability one. An individual facing a temporal lottery makes no choice in period 2,

between the resolution of first and second stages of the uncertainty. Note that the set of

temporal lotteries can be naturally associated with 4(4(Z)).

For any A,B ∈ A and α ∈ [0, 1], the convex combination of these two menus is defined

by αA+(1−α)B ≡ {αp+(1−α)q : p ∈ A and q ∈ B}. Let co(A) denote the convex hull

of the menu A. Finally, for any continuous function V : A → R and P ∈ 4(A), we let

EP [V ] denote the expected value of V under the lottery P , i.e., EP [V ] =
∫
A V (A)P (dA).

3 General Representations

3.1 Axioms

We will impose the following set of axioms in all the representation results in the paper.

Therefore, it will be convenient to refer to them altogether as Axiom 1.

Axiom 1

1. (Weak Order): % is complete and transitive.

2. (Continuity): The upper and lower contour sets, {P ∈ 4(A) : P % Q} and {P ∈
4(A) : P - Q}, are closed in the weak* topology.

3. (First-Stage Independence): For any P,Q,R ∈ 4(A) and α ∈ (0, 1),

P � Q ⇒ αP + (1− α)R � αQ+ (1− α)R.

4. (L–Continuity): There exist A∗, A∗ ∈ A and M ≥ 0 such that for every A,B ∈ A
and α ∈ [0, 1] with α ≥Mdh(A,B),

(1− α)δA + αδA∗ % (1− α)δB + αδA∗ .

5. (Indifference to Randomization (IR)): For every A ∈ A, δA ∼ δco(A).

Axioms 1.1 and 1.2 are standard. Axiom 1.3 is the von Neumann-Morgenstern in-

dependence axiom imposed with respect to the first-stage uncertainty. Axioms 1.1–1.3

ensure that there exists a continuous function V : A → R such that P % Q if and only if

EP [V ] ≥ EQ[V ]. Given Axioms 1.1–1.3, Axiom 1.4 is a technical condition implying the

Seo (2007).

9



Lipschitz continuity of V .8 Axiom 1.5 was introduced in DLR (2001). It is justified if the

individual choosing from the menu A in period 2 can also randomly select an alternative

from the menu, for example, by flipping a coin. In that case, the menus A and co(A)

offer the same set of options, and hence they are identical from the perspective of the

individual.

Kreps and Porteus (1978) defined preference for early and late resolution of uncertainty

using temporal lotteries. Formally, their preference for early resolution of uncertainty

(PERU) axiom states that for any p, q ∈ 4(Z) and α ∈ [0, 1],

αδ{p} + (1− α)δ{q} % δ{αp+(1−α)q}. (1)

Their preference for late resolution of uncertainty (PLRU) axiom is defined similarly. In

the temporal lottery αδ{p} + (1 − α)δ{q}, uncertainty regarding whether lottery p or q is

selected resolves in period 1. In the temporal lottery δ{αp+(1−α)q}, the same uncertainty

resolves in period 2.9 PERU requires a weak preference the first temporal lottery, whereas

PLRU requires a weak preference for the second temporal lottery.

αδA + (1− α)δB

A

δz

z

α

B

δz̃

z̃

1− α
δαA+(1−α)B

αA+ (1− α)B

αδz + (1− α)δz̃

z

α

z̃

1− α

Figure 2: Illustration of Timing of Resolution of Uncertainty
for Temporal Lotteries: A = {δz} and B = {δz̃}

Figure 2 illustrates such temporal lotteries in the special case where p = δz and q = δz̃
for some z, z̃ ∈ Z. In this figure, nodes with rounded edges are those at which nature

acts, and rectangular nodes are those at which the individual makes a decision. Since the

trees in this figure correspond to temporal lotteries, the action nodes for the individual

are always degenerate. The temporal lottery αδ{δz}+ (1−α)δ{δz̃} corresponds to the first

8In models with preferences over menus of lotteries, related L–continuity axioms were used by Dekel,
Lipman, Rustichini, and Sarver (2007, henceforth DLRS), Sarver (2008), and Ergin and Sarver (2010a).

9In both temporal lotteries, the remaining uncertainty, i.e., the outcome of p conditional on p being
selected and the outcome of q conditional on q being selected, is also resolved in period 2.
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tree in Figure 2, in which the uncertainty about whether alternative z or z̃ will be selected

resolves in period 1. The temporal lottery δα{δz}+(1−α){δz̃} corresponds to the second tree

in Figure 2, in which the uncertainty about whether z or z̃ will be selected resolves in

period 2.

Kreps and Porteus (1978) impose other axioms that tie the preference for timing

for general 2-stage decision problems to the preference for timing on temporal lotteries.

Since we make weaker overall assumptions on preferences, we adapt their preference for

timing axioms to be explicit about the preferences being imposed on lotteries involving

non-degenerate choices.10

Axiom 2 (Preference for Early Resolution of Uncertainty (PERU)) For any

A,B ∈ A and α ∈ (0, 1),

αδA + (1− α)δB % δαA+(1−α)B.

Axiom 3 (Preference for Late Resolution of Uncertainty (PLRU)) For any

A,B ∈ A and α ∈ (0, 1),

δαA+(1−α)B % αδA + (1− α)δB.

In the early resolution lottery αδA + (1−α)δB, any uncertainty regarding the feasible

set resolves in period 1, in particular, before the individual makes a choice from the

realized menu. In the late resolution lottery δαA+(1−α)B, the individual learns nothing

in period 1 and then makes a choice form the menu αA + (1 − α)B. We interpret this

menu as the set of all contingent plans from the menus A and B (or, more precisely, the

distributions over outcomes resulting from those contingent plans). To understand this

interpretation, suppose the individual is asked to make a contingent plan (p, q) ∈ A×B,

where p will be implemented if the realized menu is A and q will be implemented in the

case of B. Since A will be the relevant menu with probability α, this contingent plan

induces the distribution over outcomes αp+ (1− α)q ∈ αA+ (1− α)B.

With this interpretation in mind, late resolution of uncertainty corresponds to learning

nothing in the period 1 and then making a contingent plan (from the yet unrealized choice

10Note that while our preference for timing axioms are stronger than those explicitly stated by Kreps
and Porteus (1978), Axioms 2 and 3 are implied by their temporal lottery counterparts when the other
axioms of Kreps and Porteus (1978) are imposed.

It is also worth noting that other authors have used stronger versions of these preference for tim-
ing axioms in order to relax other assumptions on the preferences. For example, to study recursive
non-expected-utility models over temporal lotteries, Grant, Kajii, and Polak (1998, 2000) introduced a
stronger version Equation (1) which, roughly speaking, requires individuals to prefer when the resolution
of the first-stage uncertainty is more informative in the sense of Blackwell.
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sets) that will be carried out after this uncertainty resolves in period 2. Therefore, timing

of resolution of uncertainty can be broken into two components in our model:

1. Absolute timing: Whether the individual gets information sooner or later.

2. Relative timing: Whether the individual gets information prior to committing to a

plan of action or not.

If the presence or absence of intermediate choice is inconsequential for the preference for

timing (as in the model of Kreps and Porteus (1978)), we can infer that only absolute

timing is important to the individual. On the other hand, if the preference for timing

changes in the presence of intermediate choice, then relative timing is also relevant. By

taking into account both absolute and relative timing of uncertainty, we can model novel

issues such as difficulty in making complex contingent decisions.

When considering the timing of uncertainty relative to choice, it is important to keep

in mind the potential instrumental value of information. As illustrated by the simple

consumption/savings example in Section 1.1, changing the timing of information relative

to choice has the potential to alter the individual’s ability to condition her actions on the

realization of uncertainty. However, this well-understood interaction between information

and choice is not at work in our preference for timing axioms. The use of contingent

plans in our comparison of late versus early resolution of uncertainty ensures that the

individual’s ability to condition her choices on the realized set is unaffected by the timing

of resolution of uncertainty. Since the distributions over final outcomes available to the

individual are the same in the case of early or late resolution, the only difference is whether

she must commit to a plan of action prior to the resolution of uncertainty.

αδA + (1− α)δB

A

δz

z

δz′

z′

α

B

δz̃

z̃

1− α
δαA+(1−α)B

αA+ (1− α)B

αδz + (1− α)δz̃

z

α

z̃

1− α

αδz′ + (1− α)δz̃

z′

α

z̃

1− α

Figure 3: Illustration of Timing of Resolution of Uncertainty
for non-Temporal Lotteries: A = {δz, δz′} and B = {δz̃}
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Figure 3 illustrates timing of resolution of uncertainty in the case where A = {δz, δz′}
and B = {δz̃}. The lottery αδA + (1 − α)δB corresponds to the first tree in Figure 3, in

which the uncertainty about whether the choice set will be A or B resolves in period 1,

before the individual makes her choice from the realized menu. The lottery δαA+(1−α)B

corresponds to the second tree in Figure 3, in which the individual’s period 2 choice is

made prior to the resolution of uncertainty regarding whether her choice from A or B

will be implemented. In this tree, the lottery αδz + (1 − α)δz̃ can be interpreted as a

contingent plan where the individual commits to choosing δz if A is the realized choice set

and δz̃ if B is the realized choice set. Similarly, αδz′ + (1− α)δz̃ corresponds to making a

contingent choice of δz′ from the menu A.

The final axiom for our general model is a standard monotonicity axiom, which requires

a weak preference for larger menus.

Axiom 4 (Monotonicity) For any A,B ∈ A, A ⊂ B implies δB % δA.

Kreps (1979) and DLR (2001) used this axiom to capture a preference for flexibility.

For example, if the individual is uncertain of whether she will prefer to choose lottery p

or q in period 2, then in period 1 she may strictly prefer to retain the flexibility of δ{p,q}
rather than committing to either δ{p} or δ{q}.

Axiom 4 allows for uncertainty about future tastes, but still imposes dynamic con-

sistency on the part of the individual. In contrast, if the individual anticipates that her

future choices will be inconsistent with her current preferences, she may strictly prefer to

commit to a smaller menu. For example, Gul and Pesendorfer (2001) and DLR (2009)

relaxed monotonicity in a menu-choice setting in order to model temptation and costly

self-control. Our focus is instead on the interaction between preferences for flexibility and

timing, so we impose monotonicity throughout the main text. However, in Appendix B we

describe a generalization of our main representation to non-monotone preferences, which

can be used as a starting point for future research on incorporating temptation into our

temporal model.

It has also been suggested that preferences for early or late resolution of uncertainty

could also arise due to anticipatory feelings or anxiety. Our hidden action representation is

in principle consistent with such an interpretation; for example, anticipating a particular

level of consumption could be thought of as a hidden action on the part of the individual.

However, our axioms are inconsistent with several of the well-known models of anticipatory

feelings in the literature (e.g., Caplin and Leahy (2001) and Epstein (2008)) because of

our assumption of monotonicity. Loosely speaking, Caplin and Leahy (2001) and Epstein

(2008) assume that anticipation/anxiety has a greater impact on utility in early stages

than in later, which causes the individual’s ranking of lotteries to change over time. If the

individual correctly foresees that she will be dynamically inconsistent in this way, then
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she will strictly prefer to commit herself to a particular lottery at the first stage and,

hence, will violate monotonicity.

3.2 Hidden Action Representations

Note that expected-utility functions on 4(Z) are equivalent to vectors in RZ , by associat-

ing each expected-utility function with its values for sure outcomes. We therefore use the

notation u(p) and u · p interchangeably for any u ∈ RZ . We define the set of normalized

(non-constant) expected-utility functions on 4(Z) to be

U =

{
u ∈ RZ :

∑
z∈Z

uz = 0,
∑
z∈Z

u2
z = 1

}
.

We are ready to introduce our general representations:11

Definition 1 A Maximum [Minimum] Hidden Action (max-HA [min-HA]) representa-

tion is a pair (M, c) consisting of a compact set of finite Borel measures M on U and a

lower semi-continuous function c :M→ R such that:

1. P % Q if and only if EP [V ] ≥ EQ[V ], where V : A → R is defined by Equation (2)

[(3)]:

V (A) = max
µ∈M

(∫
U

max
p∈A

u(p)µ(du)− c(µ)

)
(2)

V (A) = min
µ∈M

(∫
U

max
p∈A

u(p)µ(du) + c(µ)

)
. (3)

2. The set M is minimal : For any compact proper subset M′ of M, the function V ′

obtained by replacing M with M′ in Equation (2) [(3)] is different from V .

The pair (M, c) is an HA representation if it is a max-HA or a min-HA representation.

The following lemma shows that after appropriately renormalizing the set of ex post

utility functions, one can reinterpret the integral term in Equations (2) and (3) as an

expectation. Therefore, the HA representation can be interpreted as a normalized version

of a representation in which the individual has subjective uncertainty about her ex post

(period 2) utility function over 4(Z).

11We endow the set of all finite Borel measures on U with the weak* topology (see footnote 5).
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Lemma 1 For any finite Borel measure µ on U , there exists a probability measure π on

the set V ≡ µ(U)U such that for all A ∈ A,∫
U

max
p∈A

u(p)µ(du) =

∫
V

max
p∈A

v(p) π(dv).

Conversely, for any compact set V ⊂ RZ and any probability measure π on V, there exists

a unique finite Borel measure µ on U and scalar β such that for all A ∈ A,12∫
V

max
p∈A

v(p) π(dv) =

∫
U

max
p∈A

u(p)µ(du) + β.

Proof: Since this lemma follows from the same arguments used to prove Lemma 1

in Ergin and Sarver (2010a), we only provide the key steps. To prove the first claim, let

λ ≡ µ(U) ≥ 0 and let V ≡ λU . If λ = 0, define π by π({0}) = 1. Otherwise, define π for

any measurable set E ⊂ V by π(E) = µ( 1
λ
E)/λ. Heuristically, π puts weight µ(u)/λ on

each v = λu ∈ V . Therefore,∫
U

max
p∈A

u(p)µ(du) =
1

λ

∫
U

max
p∈A

λu(p)µ(du) =

∫
V

max
p∈A

v(p) π(dv).

To prove the converse, note that for every v ∈ V , there exist av ≥ 0, bv ∈ R, and

uv ∈ U such that v = avuv + bv. Let β =
∫
V bv π(dv), and define a Borel measure µ by

µ(E) =
∫
{v∈V:uv∈E} av π(dv) for a measurable set E ⊂ U . Using a standard change of

variables, it follows that for every A ∈ A,∫
V

max
p∈A

v(p)π(dv) =

∫
V
av max

p∈A
uv(p) π(dv) +

∫
V
bv π(dv)

=

∫
U

max
p∈A

u(p)µ(du) + β.

Intuitively, the magnitude of each utility function v is incorporated into the measure of

the corresponding uv. �

Although the measures in our representation can be given a probabilistic interpreta-

tion, we prefer to formulate our general representation using non-probability measures µ

that capture the combination of the probability and magnitude (cardinality) of ex post

utility. This formulation has the important benefit of allowing for the unique identifi-

cation of the parameters in our representation13, and it also simplifies the mathematical

12Note that the constant β in the second part of the lemma can be absorbed into the function c in the
HA representation.

13There are many pairs (V, π) that give the same integral expression as the measure µ on U . The lack

15



statement of some results.

We next interpret Equation (2). In period 1, the individual anticipates that after

the first-stage uncertainty is resolved but before she makes her choice in period 2, she

will be able to select an action µ from a set M. Each action µ affects the distribution

of the individual’s ex post utility functions over 4(Z), at cost c(µ). As argued above,

the integral in Equation (2) can be interpreted as a reduced-form representation for the

value of the action µ when the individual chooses from menu A. For each menu A, the

individual maximizes the value minus cost of her action.

The interpretation of Equation (3) is dual. In this case, the individual is pessimistic

about the measure µ that she will face in period 2. One way to interpret such preferences

in terms of a hidden action is the following: In period 1, the individual anticipates that

after the first-stage uncertainty is resolved but before she makes her choice in period 2,

(a malevolent) nature will select an action µ from a set M. The individual anticipates

that nature will choose an action which minimizes the value to the individual plus a cost

term. The function c can be interpreted as capturing the pessimism attitude of the indi-

vidual. For constant c, she expects nature to chose an action that outright minimizes her

utility from a menu. Different cost functions put different restrictions on the individual’s

perception of the malevolent nature’s objective.

In the above representations, both the set of available actions and and their costs are

subjective in that they are part of the representation. Therefore,M and c are not directly

observable to the modeler and need to be identified from the individual’s preferences. Note

that in both Equations (2) and (3), it is possible to enlarge the set of actions by adding a

new action µ to the setM at a prohibitively high cost c(µ) without affecting the equations.

Therefore, in order to identify (M, c) from the preference, we also impose an appropriate

minimality condition on the set M.

We postpone more concrete interpretations of the set of actions and costs to the

discussion of the special cases of HA-representations in the following section. We are now

ready to state our general representation result.

Theorem 1 The preference % has a max-HA [min-HA] representation if and only if it

satisfies Axiom 1, PERU [PLRU], and monotonicity.14,15

of identification of probabilities is a common issue in models with state-dependent utility. See Kreps
(1988) for a general discussion of the state-dependence issue, and Section 3 of Ergin and Sarver (2010a)
for discussion specific to this setting.

14IR can be dropped for the case of the max-HA representation because it is implied by weak order,
continuity, first-stage independence, PERU, and monotonicity.

15It is possible to relax the assumption of monotonicity if signed measures are permitted in the HA rep-
resentations. However, since our main focus in this paper is on preferences that satisfy the monotonicity
axiom, we relegate this representation result for non-monotone preferences to Appendix B.
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The special case of HA representations satisfying indifference to timing of resolution of

uncertainty (i.e., both PERU and PLRU) are those whereM is a singleton. In that case,

the constant cost can be dropped from Equations (2) and (3), leading to an analogue of

DLR (2001)’s additive representation in which the individual reduces compound lotteries.

We next give a brief intuition about Theorem 1. Axiom 1 guarantees the existence of

a Lipschitz continuous function V : A → R such that V (co(A)) = V (A) and P % Q if

and only if EP [V ] ≥ EQ[V ]. In terms of this expected utility representation, it is easy to

see that PERU corresponds to convexity of V and PLRU corresponds to concavity of V .

The set Ac of convex menus can be mapped one-to-one to a set of continuous functions Σ

known as the support functions, preserving the metric and the linear operations. There-

fore, by using the property V (co(A)) = V (A) and mimicking the construction in DLR

(2001), V can be thought of as a function defined on the subset Σ of the Banach space

C(U) of continuous real-valued functions on U . This allows us to apply a variation of the

classic duality principle that convex [concave] functions can be written as the supremum

[infimum] of affine functions lying below [above] them.16 Then, we apply the Riesz repre-

sentation theorem to write each such continuous affine function as an integral against a

measure µ minus [plus] a scalar c(µ). Finally, imposing monotonicity guarantees that all

measures in the HA representation are positive.

We show that the uniqueness of the HA representations follows from the affine unique-

ness of V and a result about the uniqueness of the dual representation of a convex function

from the theory of conjugate convex functions (see Theorem 10 in Appendix A). A sim-

ilar application of the duality and uniqueness results can be found in Ergin and Sarver

(2010a).

Theorem 2 If (M, c) and (M′, c′) are two max-HA [min-HA] representations for %,

then there exist α > 0 and β ∈ R such that M′ = αM and c′(αµ) = αc(µ) + β for all

µ ∈M.

4 Special Cases

4.1 Ambiguity Aversion and Robustness

A preference for late resolution of uncertainty could arise if an individual would like to

delay the resolution of objective lotteries for hedging reasons. In this section, we formalize

this intuition by showing that the min-HA model is equivalent to two representations that

have natural interpretations in terms of ambiguity-aversion and robustness. The following

16See Rockafellar (1970), Phelps (1993), and Appendix A of the current paper for variations of this
duality result.
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multiple-priors representation allows for ambiguity regarding the distribution over ex post

subjective states and is intuitively similar to the multiple-priors representation proposed

by Gilboa and Schmeidler (1989) in the Anscombe-Aumann setting.

Definition 2 A Subjective-State-Space Multiple-Priors (SSMP) representation is a quadru-

ple ((Ω,F), U,Π) where Ω is a state space endowed with the σ-algebra F , U : Ω→ RZ is a

Z–dimensional, F–measurable, and bounded random vector, and Π is a set of probability

measures on (Ω,F), such that P % Q if and only if EP [V ] ≥ EQ[V ], where V : A → R is

defined by

V (A) = min
π∈Π

∫
Ω

max
p∈A

U(ω) · p π(dω), (4)

and the minimization in Equation (4) has a solution for every A ∈ A.

In this representation, the individual has a subjective state space Ω, and her tastes

over lotteries in 4(Z) are summarized by the random vector U representing her state-

dependent expected-utility function. Her utility from a lottery p ∈ 4(Z) conditional on

the subjective state ω ∈ Ω is therefore given by U(ω) · p =
∑

z∈Z pzUz(ω). Each prior

π represents a different distribution of the subjective states (tastes), and multiple priors

in the set Π captures ambiguity about which is the correct prior. This representation is

similar to one considered by Epstein, Marinacci, and Seo (2007, Theorem 1) in the setting

of menus of lotteries; we will describe the connection in more detail after presenting the

main results of this section.

The following generalization of the SSMP representation is similar in spirit to the

variational representation considered by Maccheroni, Marinacci, and Rustichini (2006a)

in the Anscombe-Aumann setting.

Definition 3 A Subjective-State-Space Variational (SSV) representation is a quintuple

((Ω,F), U,Π, c) where Ω is a state space endowed with the σ-algebra F , U : Ω → RZ is

a Z–dimensional, F–measurable, and bounded random vector, Π is a set of probability

measures on (Ω,F), and c : Π → R is a function, such that P % Q if and only if

EP [V ] ≥ EQ[V ], where V : A → R is defined by

V (A) = min
π∈Π

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c(π)

)
, (5)

and the minimization in Equation (5) has a solution for every A ∈ A.17

17Note that for simplicity, we directly assume in the SSMP and SSV representations that the minimiza-
tions in Equations (4) and (5) have solutions. One alternative approach that does not require this indirect
assumption on the parameters would be to replace the minimums in Equations (4) and (5) with infima, in
which case Theorem 3 would continue to hold. A second alternative is to impose topological assumptions
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The SSV representation generalizes the SSMP representation by allowing a “cost” c(π)

to be assigned to each measure π in the representation. Like the SSMP representation,

the SSV representation has an ambiguity-aversion interpretation; however, special cases

of the function c can also be interpreted in terms of robustness to model misspecification.

Specifically, a subjective-state-space version of the multiplier preferences considered by

Hansen and Sargent (2001) can be obtained by taking c(π) = θR(π‖η) for some scalar

θ > 0 and reference probability measure η, where R is the relative entropy of π with

respect to η,

R(π‖η) =


∫

Ω

(
log

dπ

dη
(ω)

)
π(dω), if π � η,

+∞, otherwise.

See Maccheroni, Marinacci, and Rustichini (2006a) and Strzalecki (2011a) for additional

discussion and axiomatic foundations in an objective-state-space setting.

The following theorem show that in our setting a preference % is represented by an

SSMP or SSV representation if and only if it has a min-HA representation.

Theorem 3 Let V : A → R. Then, the following are equivalent:

1. There exists a min-HA representation such that V is given by Equation (3).

2. There exists an SSMP representation such that V is given by Equation (4).

3. There exists an SSV representation such that V is given by Equation (5).

Given Lemma 1, the equivalence of (1) and (3) is not surprising; the SSV representa-

tion simply makes our probabilistic interpretation of the min-HA representation literal.18

Also, (2) ⇒ (3) is immediate since the SSMP representation is a special case of the

SSV representation. Therefore, the substantive part of this result is (3) ⇒ (2). This

equivalence of the SSMP and SSV representations is somewhat surprising since in the

Anscombe-Aumann framework, the class of variational preferences considered by Mac-

cheroni, Marinacci, and Rustichini (2006a) is strictly larger than the class of multiple-prior

expected-utility preferences considered by Gilboa and Schmeidler (1989). The distinguish-

ing feature of our SSMP and SSV representations that results in their equivalence is the

subjectivity of the state spaces and the state-dependence of the utility functions.

on the parameters that would guarantee the existence of a minimum, for instance assuming that Ω is a
metric space, F is the Borel σ–algebra on Ω, U is bounded and continuous, Π is weak*-compact, and c
is lower semi-continuous.

18The only other difference is that the SSV representation is formulated using a set of priors over a
state space Ω and a random variable U . Taking the distribution of U for each of these priors gives a set
of probability measures over RZ . Then, Lemma 1 can be applied to write these as measures over U .
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To illustrate the role of the subjective state space in obtaining the equivalence of

the SSMP and SSV representations, consider the simple case of an SSV representation

((Ω,F), U,Π, c) with a finite state space and just two priors, Π = {π1, π2}. Notice first

that if c were constant, then we could simply add the value c(π1) = c(π2) to the utility

function U to transform this SSV representation into an SSMP representation. However,

since c is not constant in general, we will need a more sophisticated approach. To construct

a corresponding SSMP representation, we will use a richer state space that contains one

copy of Ω for each measure in Π. Formally, since we are considering the case where Π

contains only two priors, let Ω̃ = Ω × {1, 2}. Then, letting 1 ∈ RZ denote the vector

whose coordinates are all equal to 1 (equivalently, the expected-utility function that takes

a constant value 1), define Ũ : Ω̃→ RZ as follows for ω̃ = (ω, i) ∈ Ω̃:

Ũ(ω, 1) = U(ω) + c(π1)1

Ũ(ω, 2) = U(ω) + c(π2)1

Thus, we add c(π1) to the state-dependent expected-utility function U for every state in

the first copy of Ω and add c(π2) for every state in the second copy.

We then take the probability measures for our SSMP representation to be precisely

those from the SSV representation when restricted to the appropriate copy of the original

state space. Formally, define π̃1 and π̃2 as follows for ω̃ = (ω, i) ∈ Ω̃:

π̃1(ω, 1) = π1(ω) π̃2(ω, 1) = 0

π̃1(ω, 2) = 0 π̃2(ω, 2) = π2(ω)

By this construction, for i = 1, 2 and for any A ∈ A,∫
Ω̃

max
p∈A

Ũ(ω̃) · p π̃i(dω̃) =

∫
Ω

max
p∈A

Ũ(ω, i) · p πi(dω)

=

∫
Ω

max
p∈A

U(ω) · p πi(dω) + c(πi).

Therefore, we have constructed an SSMP representation that gives the same value function

for menus as the original SSV representation:

min
π̃∈{π̃1,π̃2}

∫
Ω̃

max
p∈A

Ũ(ω̃) · p π̃(dω̃) = min
π∈{π1,π2}

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c(π)

)
.

As this example illustrates, the key to our equivalence result is the flexibility afforded

by the subjectivity of the state space in the SSMP representation. In the case of a

fixed objective state space, a construction that enriches the state space as described

above is no longer possible. This explains why a result like Theorem 3 is possible for
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our subjective-state-space representations, even though the multiple-priors representation

considered by Gilboa and Schmeidler (1989) is strictly more restrictive than the variational

representation considered by Maccheroni, Marinacci, and Rustichini (2006a).

Another consequence of the subjectivity of the state space is that the parameters of the

SSMP and SSV representations cannot be uniquely identified from the preference. In fact,

Theorem 3 illustrates the extent of this non-uniqueness: Since the SSMP representation

is the special case of the SSV representation where the cost function is identically equal

to 0, the equivalence of the SSMP and SSV representations implies, in particular, that it

cannot be determined from the preference whether or not c in the SSV representation takes

non-zero values. However, given our uniqueness result for the min-HA representation and

Theorem 3, it follows that the min-HA representation identifies the equivalence classes of

SSV representations that lead to the same choice behavior. Therefore, when considering

these models, working with the equivalent min-HA representation is desirable since its

parameters are uniquely identified and therefore have behavioral meaning.

Combining Theorems 1 and 3 yields the following axiomatic characterization of the

SSMP and SSV representations.

Corollary 1 A preference % has a SSMP representation if and only if it has a SSV

representation if and only if it satisfies Axiom 1, PLRU, and monotonicity.

There is a simple intuition underlying the connection between the SSMP and SSV

representations and preferences for late resolution of uncertainty. A standard motivation

used in static models of ambiguity aversion is that objective uncertainty resolving after

the state is realized can hedge against ambiguity. In our SSMP and SSV models, second-

stage objective uncertainty can hedge in precisely the same way. However, our model

also permits first-stage objective uncertainty, which occurs prior to the realization of the

subjective state ω ∈ Ω. Since the outcome of first-stage uncertainty is known at the time

the individual faces subjective uncertainty, it does not provide the same hedging benefit

as second-stage randomization. This implies an ambiguity averse individual would prefer

to delay the resolution of objective uncertainty until the second period.

The connection between ambiguity aversion and preference for late resolution of objec-

tive uncertainty is quite general, and extends well beyond our specific model. For example,

this preference for timing also arises in models of ambiguity aversion that use an objec-

tive state space. In the dynamic models of multiple priors and variational preferences

considered by Epstein and Schneider (2003) and Maccheroni, Marinacci, and Rustichini

(2006b), respectively, this type of preference does not appear simply because the frame-

work they used is not rich enough to describe preferences for timing — their framework

only includes objective uncertainty about consumption in the current period. However,

when these models are nested in a richer domain that allows for objective uncertainty
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about both current consumption and continuation acts, it is again possible to describe

preferences for timing, and ambiguity aversion results in a preference for late resolution

of objective uncertainty just as in our model. Several recent papers, including Hayashi

(2005), Seo (2009), and Saito (2011), have used a richer framework with objective un-

certainty about both current and future consumption and made this connection between

ambiguity aversion and preferences for timing explicit.

Strzalecki (2011b) took an alternative perspective on the issue of timing in dynamic

models of ambiguity aversion (with an objective state space). Instead of studying prefer-

ences for timing of objective uncertainty, he considered preferences for timing of resolution

of subjective uncertainty. In principle, the same forces that lead to preference for late res-

olution of objective uncertainty would lead to a preference for early resolution of subjec-

tive uncertainty; both cause subjective uncertainty to resolve sooner relative to objective,

which allows for hedging. However, like Epstein and Schneider (2003) and Maccheroni,

Marinacci, and Rustichini (2006b), the framework adopted by Strzalecki (2011b) allows

for objective uncertainty about the consumption in each period separately, but does not

permit objective uncertainty about consumption at future dates. Therefore, changing

the timing of subjective uncertainty does not allow for additional hedging of ambiguity;

instead, his results demonstrate the role of discounting and consumption in intermediate

periods in determining preferences for timing in models of ambiguity aversion.

As noted above, our SSMP representation is related to a representation considered by

Epstein, Marinacci, and Seo (2007) in the setting of menus of lotteries. Moreover, our

motivation for PLRU in terms of ambiguity aversion and hedging (or a malevolent nature)

parallels their discussion (see page 361). However, their are two main distinctions between

our models: First, our framework allows objective uncertainty to resolve in multiple stages,

and we are therefore able to explicitly model the preferences for timing associated with

the SSMP model. The second and more significant difference is that they require a

normalization on the state-dependent utility functions — they permit only one possible

utility function for each ex post preference.19 Although such a normalization is without

loss of generality for our HA representations due to the use of non-probability measures

(see Lemma 1), for representations that require probability measures such as the SSMP

representation, this requirement places nontrivial additional restrictions on the preference.

This manifests in the Epstein, Marinacci, and Seo (2007) model as two auxiliary axioms

needed to obtain their representation.20 Moreover, under their normalization, since ex

post utilities cannot be transformed by adding a constant, the equivalence of multiple-

priors and variation representations fails.

19Kraus and Sagi (2006, Theorem 5.1) also studied a representation that bears some similarity to a
multi-utility version of SSMP for incomplete preferences. They too imposed a normalization (different
than that of Epstein, Marinacci, and Seo (2007)) on the state-dependent utility functions.

20We are referring to Worst and Certainty Independence axioms used in their Theorem 1. Epstein,
Marinacci, and Seo (2007) acknowledge that these two axioms are “excess baggage” (page 363).
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4.2 Costly Contemplation

Recall that a choice out of the convex combination menu αA+(1−α)B can be interpreted

as a complete contingent plan out of the two menus A and B: Each lottery αp+(1−α)q ∈
αA + (1 − α)B is identical to a pair of choices p ∈ A and q ∈ B, where after the

individual chooses (p, q), p is selected with probability α and q is selected with probability

1−α. Therefore, PERU can be naturally attributed to a desire to avoid making complete

contingent plans. Note however that a pure desire to avoid contingent planning is a

special kind of PERU. For instance, when the menus A and B are singletons so that the

contingent planning problem faced in αA + (1− α)B is trivial, there is no reason for an

individual who is averse to contingent planning to prefer αδA+(1−α)δB over δαA+(1−α)B.

In particular, if the driving force underlying an individual’s PERU is solely an aversion

to contingent planning, then it is natural to observe indifference to timing of resolution

of uncertainty over temporal lotteries.

In Ergin and Sarver (2010a), we studied preferences exhibiting aversion to contingent

planning in the simpler framework of preferences over menus of lotteries. We obtained

a representation for such preferences that can be interpreted in terms of costly contem-

plation. The following is the natural extension of that representation to the current

framework of lotteries over menus.

Definition 4 A Costly Contemplation (CC) representation is a tuple ((Ω,F ,P),G, U, c)

where (Ω,F ,P) is a probability space, G is a collection of sub-σ-algebras of F , U is a Z–

dimensional, F–measurable, and integrable random vector, and c : G→ R is a function,

such that P % Q if and only if EP [V ] ≥ EQ[V ], where V : A → R is defined by

V (A) = max
G∈G

(
EP

[
max
p∈A

EP
[
U
∣∣G] · p]− c(G)

)
, (6)

and the maximization in Equation (6) has a solution for every A ∈ A.21

The interpretation of the CC representation is as follows. The individual is uncertain

about her tastes over 4(Z). This uncertainty is modeled by a probability space (Ω,F ,P)

and a state-dependent expected-utility function U over 4(Z). Before making a choice

out of a menu A, the individual is able to engage in contemplation in order to resolve

some of this uncertainty. Contemplation strategies are modeled as signals about the state

21We showed in Ergin and Sarver (2010a) that the integrability of U implies that the term
EP
[
maxp∈A EP

[
U
∣∣G] · p] is well-defined and finite for every A ∈ A and G ∈ G. For simplicity, we

directly assume that the outer maximization in Equation (6) has a solution instead of making topological
assumptions on G to guarantee the existence of a maximum. An alternative approach that does not
require this indirect assumption on the parameters of the representation would be to replace the outer
maximization in Equation (6) with a supremum, in which case all of our results would carry over.

23



or, more compactly, as a collection G of σ-algebras generated by these signals. If the

individual carries out the contemplation strategy G, she is able to update her expected-

utility function using her information G and choose a lottery p in A maximizing her

conditional expected-utility EP
[
U
∣∣G] · p. Faced with the menu A, the individual chooses

her contemplation strategy optimally by maximizing the ex ante value minus the cost

c(G) of contemplation, giving Equation (6). Note that the CC formula is mathematically

identical to a standard costly information acquisition problem. The difference is that

the parameters ((Ω,F ,P),G, U, c) of the CC representation are subjective in the sense

that they are not directly observable, but instead must be elicited from the individual’s

preferences.22

Theorem 2 from Ergin and Sarver (2010a) can be applied to the current setting to

show that a CC representation can be written in reduced form as a max-HA representation

satisfying a consistency condition:23

Theorem 4 (Ergin and Sarver (2010a)) Let V : A → R. Then, the following are

equivalent:

1. There exists a CC representation such that V is given by Equation (6).

2. There exists a max-HA representation (M, c) such that V is given by Equation (2),

and M satisfies consistency:

∀µ, ν ∈M and ∀p ∈ 4(Z) :

∫
U
u(p)µ(du) =

∫
U
u(p) ν(du)

Therefore, consistency is key for the interpretation of the max-HA representation as

a subjective information acquisition problem. The intuition for how a CC representation

can be transformed into a consistent max-HA representation is as follows. In the CC

representation, each contemplation strategy G leads to the random variable EP[U |G] de-

noting the individual’s ex post expected-utility function after acquiring signal G. Thus,

each contemplation strategy G can be associated with the distribution over ex post utility

functions over 4(Z) that it induces. Moreover, the law of iterated expectations implies

that for any contemplation strategy G, the ex ante expected value of the ex post utility

22The costly contemplation representation in Equation (6) is similar to the functional form considered
in Ergin (2003), where the primitive is a preference over menus taken from a finite set of alternatives.
Ortoleva (2009) also considered a related model of costly thinking using slightly different primitives. The
main conceptual distinction from our model is that Ortoleva considered an individual who may choose
her contemplation strategy suboptimally. The individual’s anticipation of possible over-thinking when
choosing from a menu in the future leads to a violation of the monotonicity axiom that Ortoleva referred
to as “thinking aversion”.

23Although there are some minor differences in the assumptions imposed on the representations in this
paper and Ergin and Sarver (2010a), adapting the result to the current context is straightforward.
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function EP[U |G] must agree with the utility function prior to acquiring any information,

EP[U ], which implies the consistency condition on the corresponding set of measures.

Given a max-HA representation (M, c), we will show that the following axiom captures

consistency of (M, c).

Axiom 5 (Reversibility of Degenerate Decisions (RDD)) For any A ∈ A, p, q ∈
4(Z), and α ∈ [0, 1],

βδαA+(1−α){p} + (1− β)δ{q} ∼ βδαA+(1−α){q} + (1− β)δ{p}

where β = 1/(2− α).

We will call a choice out of a singleton menu a degenerate decision. To interpret

Axiom 5, consider first the lottery βδαA+(1−α){p} + (1 − β)δ{q}. Under this lottery, the

individual makes a choice out of the menu αA+(1−α){p} with probability β, and makes

a degenerate choice out of the menu {q} with probability 1−β. A choice out of the menu

αA + (1− α){p} can be interpreted as a contingent plan, where initially in period 2 the

individual determines a lottery out of A, and then her choice out of A is executed with

probability α and the fixed lottery p is executed with the remaining 1 − α probability.

The lottery βδαA+(1−α){q}+ (1−β)δ{p} has a similar interpretation with the roles of p and

q reversed. Figure 4 illustrates these two lotteries for the case where A = {δz, δz′}, p = δz̃,

and q = δẑ.

αA+ (1− α){p}

αδz + (1− α)δz̃

z

α

z̃

1− α

αδz′ + (1− α)δz̃

z′

α

z̃

1− α

β

{q}

δẑ

ẑ

1− β

∼
αA+ (1− α){q}

αδz + (1− α)δẑ

z

α

ẑ

1− α

αδz′ + (1− α)δẑ

z′

α

ẑ

1− α

β

{p}

δz̃

z̃

1− β

Figure 4: Reversibility of Degenerate Decisions when A = {δz, δz′}, p = δz̃, and q = δẑ

If one interprets the individual’s behavior as one of costly contemplation/subjective

information acquisition, then her optimal contemplation strategy might change as the

probability α that her choice out of A is executed changes, since her return to contempla-

tion will be higher for higher values of α. However, since the probability that her choice
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out of A will be executed is the same in both αA + (1 − α){p} and αA + (1 − α){q},
it is reasonable to expect that her contemplation strategy would be the same for both

contingent planning problems. Still, she need not be indifferent between δαA+(1−α){p} and

δαA+(1−α){q} depending on her preference between δ{p} and δ{q}. Similarly, depending on

her preference between δ{p} and δ{q}, she need not be indifferent between the lotteries

βδαA+(1−α){p}+ (1−β)δ{q} and βδαA+(1−α){q}+ (1−β)δ{p} if the probabilities of the paths

leading to p and q, i.e., β(1 − α) and 1 − β, are different. The RDD axiom requires the

individual to be indifferent between these two lotteries when the probabilities of these

paths are the same, i.e., when β(1 − α) = 1 − β or, equivalently, β = 1/(2 − α). In the

example illustrated in Figure 4, in both trees, the probabilities of the paths leading to z̃

and ẑ are the same when β = 1/(2− α).

We next present the main result of this section. Given a max-HA representation

(M, c), we show that RDD is equivalent to consistency of (M, c).

Theorem 5 Suppose that the preference % has a max-HA representation (M, c). Then,

(M, c) satisfies consistency if and only if % satisfies RDD.

The following CC representation theorem is obtained from Theorems 1, 4, and 5.

Corollary 2 The preference % has a CC representation if and only if it satisfies Axiom 1,

PERU, RDD, and monotonicity.

By Corollary 2, a preference with a CC representation satisfies PERU. However, it

is immediate from the representation that such a preference always satisfies indifference

to timing of resolution of uncertainty when restricted to temporal lotteries, i.e., for all

p, q ∈ 4(Z) and α ∈ (0, 1):

αδ{p} + (1− α)δ{q} ∼ δ{αp+(1−α)q}.
24

Therefore, as suggested at the beginning of this section, an individual with CC preferences

never has a strict PERU unless she has non-degenerate choices in period 2.

24This property can also be established directly as a consequence of RDD and first-stage independence.
Fix any p, q ∈ 4(Z) and α ∈ (0, 1). Letting β = 1/(2− α) and A = {p}, RDD implies

βδ{p} + (1− β)δ{q} ∼ βδ{αp+(1−α)q} + (1− β)δ{p}.

Since β = 1/(2− α) implies that β = 1− β + αβ and 1− β = (1− α)β, the left side of this expression is
equal to (1− β)δ{p} + αβδ{p} + (1− α)βδ{q}. Hence,

β
[
αδ{p} + (1− α)δ{q}

]
+ (1− β)δ{p} ∼ βδ{αp+(1−α)q} + (1− β)δ{p},

which, by first-stage independence, implies αδ{p} + (1− α)δ{q} ∼ δ{αp+(1−α)q}.
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4.3 Simple Models of Preference for Flexibility and Timing

In this section, we describe a simple model that allows for both preference for flexibility

and preference for timing, but does not allow the preference for timing to depend on

the content of the menu per se. The approach we follow here parallels that of Kreps

and Porteus (1978). They were able to incorporate preferences for timing into a standard

expected-utility model by taking a nonlinear transformation of second-stage expected util-

ity before taking expectations with respect to first-stage uncertainty. Formally, period 2

choice in their model maximizes some expected-utility function v, and thus menus in the

second period are evaluated by maxp∈A v(p). This utility value is then transformed by

some function φ to obtain the Bernoulli utility index for first-stage uncertainty:

V (A) = φ
(

max
p∈A

v(p)
)
. (7)

Notice that αV (A) + (1 − α)V (B) ≥ V (αA + (1 − α)B) for all A,B ∈ A if and only if

φ is convex. Therefore, for the first-stage expected-utility representation EP [V ], PERU

corresponds to convexity of φ, and PLRU to concavity.

This approach of using a nonlinear transformation to alter preferences for timing can

be applied to many models beyond standard expected utility. For example, to allow

for preference for flexibility, suppose menus in the second period are evaluated by the

DLR (2001) additive representation
∫
U maxp∈A u(p)µ(du) for some measure µ on the set

of expected-utility functions U . As in Kreps and Porteus (1978), we can transform this

utility value by a function φ to incorporate preferences for early or late resolution of

uncertainty. This suggests the following representation, which includes the (two-stage)

Kreps-Porteus representation as a special case.25

Definition 5 A Kreps-Porteus-Dekel-Lipman-Rustichini (KPDLR) representation is a

pair (φ, µ), where µ is a finite Borel measure on U and φ : [a, b]→ R is a Lipschitz continu-

ous and strictly increasing function on the bounded interval [a, b] = {
∫
U maxp∈A u(p)µ(du) :

A ∈ A}, such that P % Q if and only if EP [V ] ≥ EQ[V ], where V : A → R is defined by:

V (A) = φ

(∫
U

max
p∈A

u(p)µ(du)

)
. (8)

A Kreps-Porteus representation is a KPDLR representation where µ = αδu for some

u ∈ U and α ≥ 0.26

25Kraus and Sagi (2006, Theorem 5.2) also studied a similar generalization of the DLR (2001) additive
representation and the Kreps-Porteus representation for incomplete preferences.

26A KPDLR representation (φ, µ) in which µ = αδu for α ≥ 0 corresponds to the Kreps-Porteus
formulation in Equation (7) for the expected-utility function v = αu.
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While the KPDLR representation (and the Kreps-Porteus representation in particular)

has the virtue of being relatively parsimonious, its drawback is that it places nontrivial

restrictions the possible preferences for timing. To illustrate, consider any two menus A

and B such that V (A) = V (B). It then follows from Equation (8) that V (αA+(1−α)C) =

V (αB + (1 − α)C) for any other menu C. This implies that the preference for early or

late resolution of uncertainty exhibited for the menus A and C must be the same as that

exhibited for the menus B and C. In fact, the utility difference between early and late

resolution of uncertainty must be the same in both cases:

αV (A) + (1− α)V (C)− V (αA+ (1− α)C)

= αV (B) + (1− α)V (C)− V (αB + (1− α)C).

This shows that the preference for timing does not depend directly on the content of the

menus, only on the resulting utility values.

In particular, if a nonsingleton menu A satisfies V (A) = V ({p}) for some lottery p,

the preference for timing for two-stage lotteries involving A is the same as for lotteries

where {p} takes the place of A. This illustrates why in the Kreps-Porteus representation,

the preference for timing for general two-stage lotteries is completely determined by the

preference for timing for temporal lotteries (without period 2 choice). This feature of

their model is in contrast with the motivating example in Section 1.3 (and the costly con-

templation representation from the previous section), where the individual is indifferent

to timing of resolution of uncertainty when choosing among temporal lotteries, but may

exhibit a strict PERU when she faces non-degenerate choices in period 2.

To better illustrate the connection with our general model, we now provide an ax-

iomatic treatment of the KPDLR model and describe how it can be formulated as a

special case of our HA representation. Since the value function in Equation (8) is a mono-

tone transformation of the DLR (2001) additive representation, it follows that for any

menus A and B,

δA % δB ⇐⇒
∫
U

max
p∈A

u(p)µ(du) ≥
∫
U

max
p∈B

u(p)µ(du)

Therefore, the KPDLR representation must satisfy the DLR (2001) axioms on the re-

stricted domain of degenerate lotteries over menus. In fact, since V is determined up to

a monotonic transformation by the ranking of lotteries δA for A ∈ A, their axioms are

also sufficient for the KPDLR representation (when combined with Axiom 1). Aside from

weak order, continuity, and monotonicity, which were stated above, the key axiom for

their representation is an independence axiom for menus. The following is a translation

of their axiom to our two-stage setting.27

27The restrictions on preferences for timing in the KPDLR representation are also easily established
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Axiom 6 (Mixture Independence) For any A,B,C ∈ A and α ∈ (0, 1),

δA � δB ⇒ δαA+(1−α)C � δαB+(1−α)C .

To obtain the more specialized Kreps-Porteus representation, we need to strengthen

the monotonicity axiom to ensure there is no strict preference for flexibility. This is

accomplished by the following axiom from Kreps (1979), which guarantees that the indi-

vidual is indifferent between any menu and its best singleton subset. Kreps and Porteus

(1978) implicitly assume the same relationship between the individual’s ranking of menus

and alternatives.28

Axiom 7 (Strategic Rationality) For any A,B ∈ A, δA % δB implies δA ∼ δA∪B.

The following result formalizes the connection between these axioms and the KPDLR

representation.

Theorem 6 A. The preference % has a KPDLR representation if and only if it satisfies

Axiom 1, mixture independence, and monotonicity.29

B. (Kreps and Porteus (1978)) The preference % has a Kreps-Porteus representation

if and only if it satisfies Axiom 1, mixture independence, and strategic rationality.30

C. If the preference % has the KPDLR representation (φ, µ), then % satisfies PERU

[PLRU] if and only if φ is convex [concave].

Note that KPDLR preferences need not be a subset of HA preferences, since they may

violate PERU or PLRU. However, Theorem 6.C shows that a consistent preference for

timing corresponds to convexity or concavity of φ. The following theorem describes how

this subclass of KPDLR representations can be expressed in as special cases of our HA

representation.

as direct implications of the axioms. By continuity and mixture independence, if δA ∼ δB , then
δαA+(1−α)C ∼ δαB+(1−α)C for any menu C. By continuity and first-stage independence, αδA+(1−α)δC ∼
αδB + (1− α)δC . Thus, the preference for early or late resolution of uncertainty must be the same for A
and C as for B and C.

28To be precise, Kreps and Porteus (1978) considered both a period 1 preference % over first-stage
lotteries in 4(A) and a period 2 preference %2 over second-stage lotteries in 4(Z). It is easy to show
that imposing their temporal consistency axiom (Axiom 3.1 in their paper) on this pair of preferences
(%,%2) implies that the period 1 preference % satisfies strategic rationality. Conversely, if the period 1
preference % satisfies strategic rationality along with continuity, then there exists some period 2 preference
%2 such that the pair (%,%2) satisfies their temporal consistency axiom. Moreover, in this case, the period
1 preference % satisfies our mixture independence axiom if and only if this period 2 preference %2 satisfies
the substitution axiom of Kreps and Porteus (1978, Axiom 2.3).

29It is not necessary to include indifference to randomization (IR) explicitly in this result since it is
implied by mixture independence.

30Kreps and Porteus (1978) only required that the transformation φ be continuous. We additionally
require Lipschitz continuity of φ since we impose the L–continuity axiom throughout the paper.
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Theorem 7 Let V : A → R and let µ be a nonzero finite Borel measure on U . Then, the

following are equivalent:

1. There exists a KPDLR representation (φ, µ) with convex [concave] φ such that V is

given by Equation (8).

2. There exists a max-HA [min-HA] representation (M, c) such that V is given by

Equation (2) [ (3)] where:

(a) M⊂ {λµ : λ ∈ R+}.

(b) 0 is not an isolated point of M and if 0 ∈M then

lim
λ↘0:λµ∈M

c(λµ)− c(0)

λ
= min

A∈A

∫
U

max
p∈A

u(p)µ(du)

[
lim

λ↘0:λµ∈M

c(λµ)− c(0)

λ
= −max

A∈A

∫
U

max
p∈A

u(p)µ(du)

]
.

Theorem 7 shows that for any KPDLR representation satisfying PERU or PLRU, the

hidden actions in the corresponding HA representation can be indexed by a real number λ.

In particular, condition (2.a) shows that every hidden action is a scalar multiple of a fixed

measure µ. Condition (2.b) is merely a technical regularity condition on the derivative of

the cost function c at 0 which ensures that φ is strictly increasing.

The form of the HA representation in condition (2) suggests the following interpreta-

tion: The distribution of possible tastes (determined by µ) is the same for every hidden

action, and changing the action simply changes he magnitude of the ex post utilities by a

common scalar multiple λ. The optimal action for a given menu A is therefore determined

entirely by the value
∫
U maxp∈A u(p)µ(du) and the shape of the cost function c. This im-

plies that if this integral expression takes the same value for any two menus A and B, the

optimal hidden action must be the same for both menus. Consequently, the preference

for timing in any two-stage lottery involving A must be the same if B takes the place of A

in the lottery. Thus, condition (2) corresponds to the same restrictions on preferences for

timing that were described already for the KPDLR representation, but expresses them

in a different way: Condition (2) restricts the possible preferences for timing by placing

strong restrictions on the complementarities between menus and hidden actions.

As noted above, one benefit of the KPDLR representation is that it is relatively parsi-

monious. Taking this perspective, one can think of Theorem 7 as describing the instances

in which the KPDLR representation can be used as a reduced-form representation for a

hidden action model. However, since condition (2) is quite restrictive, one implication of

this result is that the KPDLR representation will only be appropriate in a rather limited
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set of circumstances.31 Since the Kreps-Porteus representation is a special case — where

µ = αδu and the corresponding hidden action representation exhibits no uncertainty about

the ex post preference ranking — this argument applies to that model a fortiori.

On a final note, Theorem 7 generalizes several results from Kreps and Porteus (1979),

who considered a class of hidden action representations and determined the conditions on

the representation under which the resulting preference satisfies the axioms of Kreps and

Porteus (1978). Specifically, Propositions 5 and 6 in Kreps and Porteus (1979) show that

a hidden action representation corresponds to a Kreps-Porteus preference if and only if it

takes a functional form that is essentially equivalent to the one described by condition (2)

for a measure of the form µ = αδu. Thus, their results follow when Theorem 7 is applied

to measures taking the Kreps-Porteus form described in Definition 5.

31It is well-known that independence will in general be violated if the individual takes a payoff-relevant
action prior to the resolution of uncertainty; for instance, see Markowitz (1959, Chapters 10–11), Mossin
(1969), and Spence and Zeckhauser (1972). Theorem 7 characterizes precisely those special cases in which
independence is not violated.
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Appendix

A Mathematical Preliminaries

In this section, we present some general mathematical results that will be used to prove our

representation and uniqueness theorems. Our main results will center around a classic duality

relationship from convex analysis. Throughout this section, let X be a real Banach space, and

let X∗ denote the space of all continuous linear functionals on X.

Definition 6 Suppose C ⊂ X. A function f : C → R is said to be Lipschitz continuous if there

is some real number K such that |f(x)− f(y)| ≤ K‖x− y‖ for every x, y ∈ C. The number K

is called a Lipschitz constant of f .

We now introduce the standard definition of the subdifferential of a function.

Definition 7 Suppose C ⊂ X and f : C → R. For x ∈ C, the subdifferential of f at x is

defined to be

∂f(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) for all y ∈ C}.

The subdifferential is useful for the approximation of convex functions by affine functions. It

is straightforward to show that x∗ ∈ ∂f(x) if and only if the affine function h : X → R defined

by h(y) = f(x) + 〈y− x, x∗〉 satisfies h ≤ f and h(x) = f(x). It should also be noted that when

X is infinite-dimensional it is possible to have ∂f(x) = ∅ for some x ∈ C, even if f is convex.

However, the following result shows that a Lipschitz continuous and convex function always has

a nonempty subdifferential:

Lemma 2 (Ergin and Sarver (2010b)) Suppose C is a convex subset of a Banach space X.

If f : C → R is Lipschitz continuous and convex, then ∂f(x) 6= ∅ for all x ∈ C.

We now introduce the definition of the conjugate of a function.

Definition 8 Suppose C ⊂ X and f : C → R. The conjugate (or Fenchel conjugate) of f is

the function f∗ : X∗ → R ∪ {+∞} defined by

f∗(x∗) = sup
x∈C

[
〈x, x∗〉 − f(x)

]
.

There is an important duality between f and f∗. Lemma 3 summarizes certain properties

of f∗ that are useful in establishing this duality.32 The proof is standard and can be found, for

example, in the supplementary appendix of Ergin and Sarver (2010a).

Lemma 3 Suppose C ⊂ X and f : C → R. Then,

32For a complete discussion of the relationship between f and f∗, see Ekeland and Turnbull (1983) or
Holmes (1975). A finite-dimensional treatment can be found in Rockafellar (1970).
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1. f∗ is lower semi-continuous in the weak* topology.

2. f(x) ≥ 〈x, x∗〉 − f∗(x∗) for all x ∈ C and x∗ ∈ X∗.

3. f(x) = 〈x, x∗〉 − f∗(x∗) if and only if x∗ ∈ ∂f(x).

Suppose that C ⊂ X is convex and f : C → R is Lipschitz continuous and convex. As noted

above, this implies that ∂f(x) 6= ∅ for all x ∈ C. Therefore, by parts 2 and 3 of Lemma 3, we

have

f(x) = max
x∗∈X∗

[
〈x, x∗〉 − f∗(x∗)

]
(9)

for all x ∈ C.33 In order to establish the existence of a minimal set of measures in the proof of

Theorem 1, it is useful to establish that under certain assumptions, there is a minimal compact

subset of X∗ for which Equation (9) holds. Let Cf denote the set of all x ∈ C for which the

subdifferential of f at x is a singleton:

Cf = {x ∈ C : ∂f(x) is a singleton}. (10)

Let Nf denote the set of functionals contained in the subdifferential of f at some x ∈ Cf :

Nf = {x∗ ∈ X∗ : x∗ ∈ ∂f(x) for some x ∈ Cf}. (11)

Finally, let Mf denote the closure of Nf in the weak* topology:

Mf = Nf . (12)

Before stating our first main result, recall that the affine hull of a set C ⊂ X, denoted

aff(C), is defined to be the smallest affine subspace of X that contains C. Also, a set C ⊂ X is

said to be a Baire space if every countable intersection of dense open subsets of C is dense.

Theorem 8 (Ergin and Sarver (2010b)) Suppose (i) X is a separable Banach space, (ii) C

is a convex subset of X that is a Baire space (when endowed with the relative topology) such that

aff(C) is dense in X,34 and (iii) f : C → R is Lipschitz continuous and convex. Then, Mf is

weak* compact, and for any weak* compact M⊂ X∗,

Mf ⊂M ⇐⇒ f(x) = max
x∗∈M

[
〈x, x∗〉 − f∗(x∗)

]
∀x ∈ C.

The intuition for Theorem 8 is fairly simple. We already know from Lemma 3 that for any

x ∈ Cf , f(x) = maxx∗∈Nf [〈x, x∗〉 − f∗(x∗)]. Ergin and Sarver (2010b) show that under the

assumptions of Theorem 8, Cf is dense in C. Therefore, it can be shown that for any x ∈ C,

f(x) = max
x∗∈Mf

[
〈x, x∗〉 − f∗(x∗)

]
.

33This is a slight variation of the classic Fenchel-Moreau theorem. The standard version of this the-
orem states that if f : X → R ∪ {+∞} is lower semi-continuous and convex, then f(x) = f∗∗(x) ≡
supx∗∈X∗ [〈x, x∗〉 − f∗(x∗)]. See, e.g., Proposition 1 in Ekeland and Turnbull (1983, p97).

34In particular, if C is closed, then by the Baire Category theorem, then C is a Baire space. Also, note
that if C contains the origin, then the affine hull of C is equal to the span of C.
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In addition, if M is a weak* compact subset of X∗ and Mf is not a subset of M, then there

exists x∗ ∈ Nf such that x∗ /∈ M. That is, there exists x ∈ Cf such that ∂f(x) = {x∗} and

x∗ /∈M. Therefore, Lemma 3 implies f(x) > maxx∗∈M[〈x, x∗〉 − f∗(x∗)].
In the proof of Theorem 1, we will construct an HA representation in which Mf , for a

certain function f , is the set of measures. We will then use the following result to establish

that monotonicity leads to a positive set of measures. For this next result, assume that X is

a Banach lattice.35 Let X+ = {x ∈ X : x ≥ 0} denote the positive cone of X. A function

f : C → R on a subset C of X is monotone if f(x) ≥ f(y) whenever x, y ∈ C are such that

x ≥ y. A continuous linear functional x∗ ∈ X∗ is positive if 〈x, x∗〉 ≥ 0 for all x ∈ X+.

Theorem 9 (Ergin and Sarver (2010a, Supplementary Appendix)) Suppose C is a

convex subset of a Banach lattice X, such that at least one of the following conditions holds:

1. x ∨ x′ ∈ C for any x, x′ ∈ C, or

2. x ∧ x′ ∈ C for any x, x′ ∈ C.

Let f : C → R be Lipschitz continuous, convex, and monotone. Then, the functionals in Mf

are positive.

Finally, the following result will be used in the proof of Theorem 2 to establish the uniqueness

of the HA representation.

Theorem 10 (Ergin and Sarver (2010a, Supplementary Appendix)) Suppose X is a

Banach space and C is a convex subset of X. Let M be a weak* compact subset of X∗, and let

c :M→ R be weak* lower semi-continuous. Define f : C → R by

f(x) = max
x∗∈M

[
〈x, x∗〉 − c(x∗)

]
. (13)

Then,

1. The function f is Lipschitz continuous and convex.

2. For all x ∈ C, there exists x∗ ∈ ∂f(x) such that x∗ ∈M and f∗(x∗) = c(x∗). In particular,

this implies Nf ⊂M, Mf ⊂M, and f∗(x∗) = c(x∗) for all x∗ ∈ Nf .

3. If C is also compact (in the norm topology), then f∗(x∗) = c(x∗) for all x∗ ∈Mf .

B Proof of Theorem 1

In this section, we prove two results. We first prove a general representation theorem for pref-

erences that may violate monotonicity and subsequently establish Theorem 1 as a special case.

The following is a generalization of the HA representation to allow for signed measures:

35See Aliprantis and Border (1999, p302) for a definition of Banach lattices.
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Definition 9 A signed max-HA [min-HA] representation is a pair (M, c) consisting of a com-

pact set of finite signed Borel measuresM on U and a lower semi-continuous function c :M→ R
such that:

1. P % Q if and only if EP [V ] ≥ EQ[V ], where V : A → R is defined by Equation (2) [(3)].

2. The setM is minimal : For any compact proper subsetM′ ofM, the function V ′ obtained

by replacing M with M′ in Equation (2) [(3)] is different from V .

The pair (M, c) is an signed HA representation if it is a signed max-HA or a signed min-HA

representation.

In this section, we prove the following theorem:

Theorem 11 A. The preference % has a signed max-HA [min-HA] representation if and only

if it satisfies Axiom 1 and PERU [PLRU].

B. The preference % has a max-HA [min-HA] representation if and only if it satisfies Ax-

iom 1, PERU [PLRU], and monotonicity.

Theorem 11.B is simply a restatement of Theorem 1, and Theorem 11.A characterizes the

signed HA representation. It has been shown that an individual’s preferences may violate

monotonicity, referred to as a preference for commitment, due to psychological features such as

regret and temptation (see, e.g., Sarver (2008), Gul and Pesendorfer (2001), and DLR (2009)).

Therefore, Theorem 11.A may be a useful starting point for incorporating regret and temptation

into our model of temporal preferences. However, we leave the study of specific violations of

monotonicity that correspond to these phenomena within our model as a subject for future

research.

The remainder of this section is devoted to the proof of Theorem 11. Note that A is a

compact metric space since4(Z) is a compact metric space (see, e.g., Munkres (2000, p280–281)

or Theorem 1.8.3 in Schneider (1993, p49)). We begin by showing that weak order, continuity,

and first-stage independence imply that % has an expected-utility representation.

Lemma 4 A preference % over 4(A) satisfies weak order, continuity, and first-stage indepen-

dence if and only if there exists a continuous function V : A → R such that % is represented by

EP [V ]. Furthermore, if V : A → R and V ′ : A → R are continuous functions such that EP [V ]

and EP [V ′] represent the same preference over 4(A), then there exist α > 0 and β ∈ R such

that V ′ = αV + β.

Proof: This is a standard result. For example, it is asserted without proof in Corollary 5.22

of Kreps (1988). It is also a consequence of Theorem 10.1 of Fishburn (1970) together with some

simple arguments to establish continuity of V from the continuity axiom. �

Let Ac ⊂ A denote the collection of all convex menus. It is a standard exercise to show that

Ac is a closed subset of A, and hence Ac is also compact (see Theorem 1.8.5 in Schneider (1993,

p50)). Our strategy for proving the sufficiency of the axioms will be to show that the function
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V described in Lemma 4 satisfies the max-HA [min-HA] formula on Ac. Using the IR axiom, it

will then be straightforward to show that V satisfies the max-HA [min-HA] formula on all of A.

The following lemma shows the implications of our other axioms.

Lemma 5 Suppose that V : A → R is a continuous function such that EP [V ] represents the

preference % over 4(A). Then:

1. If % satisfies L–continuity, then V is Lipschitz continuous on Ac, i.e., there exists K ≥ 0

such that |V (A)− V (B)| ≤ Kdh(A,B) for any A,B ∈ Ac.36

2. If V is Lipschitz continuous (on A), then % satisfies L–continuity.

3. The preference % satisfies PERU [PLRU] if and only if V is convex [concave].

4. The preference % satisfies monotonicity if and only if V is monotone (i.e., A ⊂ B implies

V (B) ≥ V (A) for any A,B ∈ A).

Proof: Claims 3 and 4 follow immediately from the definitions. To prove claim 1, suppose %
satisfies L–continuity for M ≥ 0 and A∗, A∗ ∈ A. First, note that if M = 0, then L–continuity

implies that V (A) = V (B) for all A,B ∈ A, i.e., V is Lipschitz continuous with a Lipschitz

constant K = 0. If M > 0, then let K ≡ 2M [V (A∗) − V (A∗)] ≥ 0. We first show that for any

A,B ∈ Ac:
dh(A,B) ≤ 1

2M =⇒ |V (A)− V (B)| ≤ Kdh(A,B). (14)

Suppose that dh(A,B) ≤ 1
2M and let α ≡Mdh(A,B). Then, α ≤ 1/2 and

V (B)− V (A) ≤ α
1−α [V (A∗)− V (A∗)] ≤ 2α[V (A∗)− V (A∗)] = Kdh(A,B),

where the first inequality follows from L–continuity, the second inequality follows from α ≤ 1/2,

and the equality follows form the definitions of α and K. Interchanging the roles of A and B

above, we also have that V (A)− V (B) ≤ Kdh(A,B), proving Equation (14).

Next, we use the argument in the proof of Lemma 8 in the supplementary appendix of DLRS

(2007) to show that for any A,B ∈ Ac:

|V (A)− V (B)| ≤ Kdh(A,B), (15)

i.e., the requirement dh(A,B) ≤ 1
2M in Equation (14) is not necessary. To see this, take any

sequence 0 = λ0 < λ1 < . . . < λn < λn+1 = 1 such that (λi+1 − λi)dh(A,B) ≤ 1
2M . Let

Ai = λiA+ (1− λi)B. It is straightforward to verify that:37

dh(Ai+1, Ai) = (λi+1 − λi)dh(A,B) ≤ 1
2M .

36If % also satisfies IR, then it can be shown that V is Lipschitz continuous on A.
37Note that the convexity of the menus A and B is needed for the first equality.
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Combining this with the triangle inequality and Equation (14), we obtain

|V (A)− V (B)| ≤
n∑
i=0

|V (Ai+1)− V (Ai)|

≤ K
n∑
i=0

dh(Ai+1, Ai) = K
n∑
i=0

(λi+1 − λi)dh(A,B) = Kdh(A,B).

This establishes Equation (15), which implies V is Lipschitz continuous on Ac with a Lipschitz

constant K.

To prove claim 2, suppose that V is Lipschitz continuous, and let K > 0 be a Lipschitz

constant of V . Let A∗ be a maximizer of V on A and let A∗ be a minimizer of V on A. If

V (A∗) = V (A∗), then P ∼ Q for any P,Q ∈ 4(A), implying that L–continuity holds trivially

for A∗, A∗, and M = 0. If V (A∗) > V (A∗), then let M ≡ K/[V (A∗) − V (A∗)] > 0. For any

A,B ∈ A and α ∈ [0, 1] with α ≥Mdh(A,B), we have

(1− α)[V (B)− V (A)] ≤ V (B)− V (A) ≤ Kdh(A,B) ≤ Kα/M = α[V (A∗)− V (A∗)],

which implies the conclusion of L–continuity. �

We now follow a construction similar to the one in DLR (2001) to obtain from V a function

W whose domain is the set of support functions. As in the text, let

U =

{
u ∈ RZ :

∑
z∈Z

uz = 0,
∑
z∈Z

u2
z = 1

}
.

For any A ∈ Ac, the support function σA : U → R of A is defined by σA(u) = maxp∈A u · p.
For a more complete introduction to support functions, see Rockafellar (1970) or Schneider

(1993). Let C(U) denote the set of continuous real-valued functions on U . When endowed with

the supremum norm ‖·‖∞, C(U) is a Banach space. Define an order ≥ on C(U) by f ≥ g if

f(u) ≥ g(u) for all u ∈ U . Let Σ = {σA ∈ C(U) : A ∈ Ac}. For any σ ∈ Σ, let

Aσ =
⋂
u∈U

{
p ∈ 4(Z) : u · p =

∑
z∈Z

uzpz ≤ σ(u)

}
.

The next lemma summarizes some important properties of support functions. See DLR (2001)

or Ergin and Sarver (2010a, Lemmas 5 and 6) for precise references and additional details.

Lemma 6 1. For all A ∈ Ac and σ ∈ Σ, A(σA) = A and σ(Aσ) = σ. Hence, σ is a bijection

from Ac to Σ.

2. For all A,B ∈ Ac and any λ ∈ [0, 1], σλA+(1−λ)B = λσA + (1− λ)σB.

3. For all A,B ∈ Ac, dh(A,B) = ‖σA − σB‖∞.

4. Σ is convex and compact, and 0 ∈ Σ.
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Using the properties of support functions established in Lemma 6, the following result shows

that a function defined on Ac can be transformed into a function on Σ, while maintaining the

properties described in Lemma 5. For a proof, see Ergin and Sarver (2010a, Lemma 7).

Lemma 7 Suppose V : Ac → R, and define a function W : Σ→ R by W (σ) = V (Aσ). Then:

1. V (A) = W (σA) for all A ∈ Ac.

2. V is Lipschitz continuous if and only if W is Lipschitz continuous.

3. If V is convex [concave] if and only if W is convex [concave].

4. V is monotone if and only if W is monotone (i.e., σ ≤ σ′ implies W (σ) ≤W (σ′) for any

σ, σ′ ∈ Σ).

We denote the set of continuous linear functionals on C(U) (the dual space of C(U)) by

C(U)∗. It is well-known that C(U)∗ is the set of finite signed Borel measures on U , where the

duality is given by:

〈f, µ〉 =

∫
U
f(u)µ(du)

for any f ∈ C(U) and µ ∈ C(U)∗.38

For any function W : Σ → R, define the subdifferential ∂W and the conjugate W ∗ as in

Appendix A. Also, define ΣW , NW , andMW as in Equations (10), (11), and (12), respectively:

ΣW = {σ ∈ Σ : ∂W(σ) is a singleton},
NW = {µ ∈ C(U)∗ : µ ∈ ∂W(σ) for some σ ∈ ΣW },

MW = NW ,

where the closure is taken with respect to the weak* topology. We now apply Theorem 8 to the

current setting.

Lemma 8 Suppose W : Σ → R is Lipschitz continuous and convex. Then, MW is weak*

compact, and for any weak* compact M⊂ C(U)∗,

MW ⊂M ⇐⇒ W (σ) = max
µ∈M

[
〈σ, µ〉 −W ∗(µ)

]
∀σ ∈ Σ.

Proof: We simply need to verify that C(U), Σ, and W satisfy the assumptions of Theo-

rem 8. Since U is a compact metric space, C(U) is separable (see Theorem 8.48 of Aliprantis and

Border (1999)). By part 4 of Lemma 6, Σ is a closed and convex subset of C(U) containing the

origin. Since Σ is a closed subset of a Banach space, it is a Baire space by the Baire Category

theorem. Although the result is stated slightly differently, it is shown in Hörmander (1954)

38Since U is a compact metric space, by the Riesz representation theorem (see Royden (1988, p357)),
each continuous linear functional on C(U) corresponds uniquely to a finite signed Baire measure on U .
Since U is a locally compact separable metric space, the Baire sets and the Borel sets of U coincide (see
Royden (1988, p332)). Hence, the set of Baire and Borel finite signed measures also coincide.
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that span(Σ) is dense in C(U). This result is also proved in DLR (2001). Since 0 ∈ Σ implies

that aff(Σ) = span(Σ), the affine hull of Σ is therefore dense in C(U). Finally, W is Lipschitz

continuous and convex by assumption. �

B.1 Sufficiency of the axioms for the max-HA representations

To prove the sufficiency of the axioms for the signed max-HA representation in part A, suppose

that % satisfies Axiom 1 and PERU. By Lemma 4, there exists a continuous function V : A → R
such that EP [V ] represents %. Moreover, by Lemma 5, the restriction of V to the set Ac of

convex menus is Lipschitz continuous and convex. With slight abuse of notation, we also denote

this restriction by V . By Lemma 7, the function W : Σ → R defined by W (σ) = V (Aσ) is

Lipschitz continuous and convex. Therefore, by Lemma 8, for all σ ∈ Σ,

W (σ) = max
µ∈MW

[
〈σ, µ〉 −W ∗(µ)

]
.

This implies that for all A ∈ A,

V (A) = V (co(A)) = W (σco(A))

= max
µ∈MW

(∫
U

max
p∈co(A)

u(p)µ(du)−W ∗(µ)

)
= max

µ∈MW

(∫
U

max
p∈A

u(p)µ(du)−W ∗(µ)

)
,

where the first equality follows from IR and the second equality follows from part 1 of Lemma 7.

The function W ∗ is lower semi-continuous by part 1 of Lemma 3, and MW is compact by

Lemma 8. It is also immediate from Lemma 8 that MW satisfies the minimality condition in

Definition 9. Therefore, (MW ,W
∗|MW

) is a signed max-HA representation for %.

To prove the sufficiency of the axioms for the (monotone) max-HA representation in part B,

suppose that, in addition, % satisfies monotonicity. Then, by Lemmas 5 and 7, the function W

is monotone. Also, note that for any A,B ∈ Ac, σA ∨ σB = σA∪B. Hence, σ ∨ σ′ ∈ Σ for any

σ, σ′ ∈ Σ. Therefore, by Theorem 9, the measures in MW are positive.

B.2 Sufficiency of the axioms for the min-HA representations

To prove the sufficiency of the axioms for the signed min-HA representation in part A, suppose

that % satisfies Axiom 1 and PLRU. By Lemma 4, there exists a continuous function V : A → R
such that EP [V ] represents %. By Lemmas 5 and 7, the function W : Σ→ R defined by W (σ) =

V (Aσ) is Lipschitz continuous and concave. Define a function W̄ : Σ→ R by W̄ (σ) = −W (σ).

Then, W̄ is Lipschitz continuous and convex, so by Lemma 8, for all σ ∈ Σ,

W̄ (σ) = max
µ∈MW̄

[
〈σ, µ〉 − W̄ ∗(µ)

]
.
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Let M ≡ −MW̄ = {−µ : µ ∈ MW̄ }, and define c :M→ R by c(µ) = W̄ ∗(−µ). Then, for any

σ ∈ Σ,

W (σ) = −W̄ (σ) = min
µ∈MW̄

[
− 〈σ, µ〉+ W̄ ∗(µ)

]
= min

µ∈M

[
− 〈σ,−µ〉+ W̄ ∗(−µ)

]
= min

µ∈M

[
〈σ, µ〉+ c(µ)

]
.

This implies that for all A ∈ A,

V (A) = V (co(A)) = W (σco(A))

= min
µ∈M

(∫
U

max
p∈co(A)

u(p)µ(du) + c(µ)

)
= min

µ∈M

(∫
U

max
p∈A

u(p)µ(du) + c(µ)

)
,

where the first equality follows from IR and the second equality follows from part 1 of Lemma 7.

The function W̄ ∗ is lower semi-continuous by part 1 of Lemma 3, which implies that c is lower

semi-continuous. The compactness of M follows from the compactness of MW̄ , which follows

from Lemma 8. Also, by Lemma 8 and the above construction, it is immediate thatM satisfies

the minimality condition in Definition 9. Therefore, (M, c) is a signed min-HA representation

for %.

To prove the sufficiency of the axioms for the (monotone) min-HA representation in part B,

suppose that, in addition, % satisfies monotonicity. Then, by Lemmas 5 and 7, the function

W is monotone. Let Σ̂ ≡ −Σ = {−σ : σ ∈ Σ}, and define a function Ŵ : Σ̂ → R by

Ŵ (σ) ≡ W̄ (−σ) = −W (−σ). Notice that Ŵ is monotone and convex: By the monotonicity of

W , for any σ, σ′ ∈ Σ̂,

σ ≤ σ′ =⇒ −σ ≥ −σ′ =⇒ Ŵ (σ) = −W (−σ) ≤ −W (−σ′) = Ŵ (σ).

By the concavity of W , for any σ, σ′ ∈ Σ̂ and λ ∈ [0, 1],

Ŵ (λσ + (1− λ)σ′) = −W (λ(−σ) + (1− λ)(−σ′))
≤ −λW (−σ)− (1− λ)W (−σ′) = λŴ (σ) + (1− λ)Ŵ (σ′).

Also, for any A,B ∈ Ac, (−σA) ∧ (−σB) = −(σA ∨ σB) = −σA∪B. Hence, σ ∧ σ′ ∈ Σ̂ for any

σ, σ′ ∈ Σ̂. Therefore, by Theorem 9, the measures in MŴ are positive. For any µ ∈ C(U)∗ and

σ, σ′ ∈ Σ̂, note that

Ŵ (σ′)− Ŵ (σ) ≥ 〈σ′ − σ, µ〉 ⇐⇒ W̄ (−σ′)− W̄ (−σ) ≥ 〈σ′ − σ, µ〉 = 〈−σ′ + σ,−µ〉,

and hence µ ∈ ∂Ŵ (σ) ⇐⇒ −µ ∈ ∂W̄ (−σ). In particular, Σ̂Ŵ = −ΣW̄ and NŴ = −NW̄ .

Taking closures, we have MŴ = −MW̄ =M. Thus, the measures in M are positive.
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B.3 Necessity of the axioms

We begin by demonstrating some of the properties of the function V defined by a signed HA

representation.

Lemma 9 Suppose (M, c) is a signed HA representation.

1. If (M, c) is a signed max-HA representation and V : A → R is defined by Equation (2),

then V is Lipschitz continuous and convex. In addition, defining the function W : Σ→ R
by W (σ) = V (Aσ), we have M =MW and c(µ) = W ∗(µ) for all µ ∈M.

2. If (M, c) is a signed min-HA representation and V : A → R is defined by Equation (3),

then V is Lipschitz continuous and concave. In addition, defining the function W : Σ→ R
by W (σ) = V (Aσ), we have M = −M−W and c(µ) = [−W ]∗(−µ) for all µ ∈M.

Proof: (1): By the definitions of V and W , we have

W (σ) = max
µ∈M

[
〈σ, µ〉 − c(µ)

]
, ∀σ ∈ Σ.

By part 1 of Theorem 10, W is Lipschitz continuous and convex. Therefore, the restriction of

V to Ac is Lipschitz continuous and convex by Lemma 7. Let K ≥ 0 be any Lipschitz constant

of V |Ac , and take any A,B ∈ A. It is easily verified that V (A) = V (co(A)), V (B) = V (co(B)),

and dh(co(A), co(B)) ≤ dh(A,B). Hence,

|V (A)− V (B)| = |V (co(A))− V (co(B))| ≤ Kdh(co(A), co(B)) ≤ Kdh(A,B),

which implies that V is Lipschitz continuous on all of A with the same Lipschitz constant K.

Also, for any A,B ∈ A and λ ∈ [0, 1],

V (λA+ (1− λ)B) = V (co(λA+ (1− λ)B)) = V (λco(A) + (1− λ)co(B))

≤ λV (co(A)) + (1− λ)V (co(B)) = λV (A) + (1− λ)V (B),

which implies that V is convex on A. Also, by parts 2 and 3 of Theorem 10 and the compactness

of Σ, MW ⊂ M and W ∗(µ) = c(µ) for all µ ∈ MW . By Lemma 8 and the minimality of M,

this implies M =MW , and hence c(µ) = W ∗(µ) for all µ ∈M.

(2): Define a function W̄ : Σ→ R by W̄ (σ) = −W (σ). Then, for any σ ∈ Σ,

W̄ (σ) = −W (σ) = − min
µ∈M

[
〈σ, µ〉+ c(µ)

]
= max

µ∈M

[
〈σ,−µ〉 − c(µ)

]
= max

µ∈−M

[
〈σ, µ〉 − c(−µ)

]
.

By the same arguments used above, this implies that W̄ is Lipschitz continuous and convex,

which in turn implies that V is Lipschitz continuous and concave. Moreover, the above arguments

imply that −M = MW̄ and c(−µ) = W̄ ∗(µ) for all µ ∈ −M. Thus, M = −MW̄ = −M−W
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and c(µ) = W̄ ∗(−µ) = [−W ]∗(−µ) for all µ ∈M. �

Suppose that % has a signed max-HA [signed min-HA] representation (M, c), and suppose

V : A → R is defined by Equation (2) [(3)]. Since EP [V ] represents % and V is continuous (by

Lemma 9), % satisfies weak order, continuity, and first-stage independence by Lemma 4. Since

V is Lipschitz continuous and convex [concave] by Lemma 9, % satisfies L–continuity and PERU

[PLRU] by Lemma 5. Since V (A) = V (co(A)) for all A ∈ A, it is immediate that % satisfies IR.

Finally, if the measures inM are positive, then it is obvious that V is monotone, which implies

that % satisfies monotonicity.

C Proof of Theorem 2

We next state and prove a generalization of Theorem 2 to signed-HA representations (see Defi-

nition 9). Theorem 2 is a special case of Theorem 12, and therefore follows directly.

Theorem 12 If (M, c) and (M′, c′) are two signed max-HA [signed min-HA] representations

for %, then there exist α > 0 and β ∈ R such that M′ = αM and c′(αµ) = αc(µ) + β for all

µ ∈M.

Proof: Throughout the proof, we will continue to use notation and results for support

functions that were established in Appendix B. Suppose (M, c) and (M′, c′) are two signed

max-HA representations for %. Define V : A → R and V ′ : A → R for these respective

representations, and defineW : Σ→ R andW ′ : Σ→ R byW (σ) = V (Aσ) andW ′(σ) = V ′(Aσ).

By part 1 of Lemma 9,M =MW and c(µ) = W ∗(µ) for all µ ∈M. Similarly,M′ =MW ′ and

c′(µ) = W ′∗(µ) for all µ ∈M′.
Since V is continuous (by Lemma 9), the uniqueness part of Lemma 4 implies that there

exist α > 0 and β ∈ R such that V ′ = αV − β. This implies that W ′ = αW − β. Therefore, for

any σ, σ′ ∈ Σ,

W (σ′)−W (σ) ≥ 〈σ′ − σ, µ〉 ⇐⇒ W ′(σ′)−W ′(σ) ≥ 〈σ′ − σ, αµ〉,

and hence ∂W ′(σ) = α∂W(σ). In particular, ΣW ′ = ΣW and NW ′ = αNW . Taking closures we

also have that MW ′ = αMW . Since from our earlier arguments M′ = MW ′ and M = MW ,

we conclude that M′ = αM. Finally, let µ ∈M. Then,

c′(αµ) = sup
σ∈Σ

[
〈σ, αµ〉 −W ′(σ)

]
= α sup

σ∈Σ
[〈σ, µ〉 −W (σ)] + β = αc(µ) + β,

where the first and last equalities follow from our earlier findings that c′ = W ′∗|MW ′ and

c = W ∗|MW
.

The proof of the uniqueness of the signed min-HA representation is similar and involves an

application of part 2 of Lemma 9. �
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D Proof of Theorem 3

(1 ⇒ 3): Fix a min-HA representation (M, c), and define V by Equation (3). Since M is

compact, there is κ > 0 such that µ(U) ≤ κ for all µ ∈ M. Let Ω = ∪λ∈[0,κ]λU and let F
be the Borel σ-algebra generated by the relative topology of Ω in RZ . Define U : Ω → RZ by

U(ω) = ω.

For each µ ∈M, define the probability measure πµ on (Ω,F) as follows. If µ(U) = 0, let πµ
be the degenerate probability measure that puts probability one on 0 ∈ Ω, i.e., for any E ∈ F ,

πµ(E) = 1 if 0 ∈ E, and πµ(E) = 0 otherwise. If µ(U) > 0, then define the probability measure

µ̃ on U and its Borel σ-algebra by µ̃(E) = 1
µ(U)µ(E) for any measurable E ⊂ U . Define the

function fµ : U → Ω by fµ(u) = µ(U)u. Note that f is measurable because it is continuous.

Finally, let πµ be defined by πµ = µ̃ ◦ f−1
µ . Then,∫

Ω
max
p∈A

U(ω) · p πµ(dω) =

∫
U

max
p∈A

u(p)µ(du)

for any A ∈ A.39 Let Π = {πµ : µ ∈ M} and c̃(πµ) = c(µ). Then, V can be expressed in the

following SSV form:

V (A) = min
π∈Π

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c̃(π)

)
.

(3 ⇒ 2): Let ((Ω,F), U,Π, c) be an SSV representation, and define V by Equation (5). Let

the subset Π′ ⊂ Π stand for the set of π ∈ Π such that there exists A ∈ A for which π solves

the minimization problem in Equation (5). Note that Equation (5) continues to hold when Π is

replaced by Π′, i.e.,

V (A) = min
π∈Π′

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c(π)

)
(16)

for all A ∈ A.

We first show that c is bounded on Π′. Note that since U is bounded, there exists κ > 0

such that the absolute value of the integral term in Equation (16) is bounded by κ for every

menu A ∈ A and probability measure in π ∈ Π′. Take any π, π′ ∈ Π′, and suppose that they

solve the minimization in Equation (16) for menus A and A′, respectively. Then, optimality of

39 This is easy to see if µ(U) = 0. If µ(U) > 0, then define the function g : Ω → R by g(ω) =
maxp∈A U(ω) · p. To see that g is F-measurable, let B be a countable dense subset of A. At each ω ∈ Ω,

maxp∈A Ũ(ω) · p exists and is equal to supp∈B Ũ(ω) · p. For each p ∈ B, Ũ · p is F–measurable as a
convex combination of F–measurable random variables. Hence, g an F–measurable as the pointwise
supremum of countably many F–measurable random variables (see Billingsley (1995, p184), Theorem
13.4(i)). Then, ∫

Ω

max
p∈A

U(ω) · p πµ(dω) =

∫
U

max
p∈A

µ(U)u(p) µ̃(du) =

∫
U

max
p∈A

u(p)µ(du),

where the first equality follows from the change of variables formula
∫

Ω
g(ω) (µ̃ ◦ f−1

µ )(dω) =∫
U g(fµ(u)) µ̃(du).
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π at A implies:

c(π)− c(π′) ≤
∫

Ω
max
p∈A

U(ω) · p π′(dω)−
∫

Ω
max
p∈A

U(ω) · p π(dω) ≤ 2κ.

Similarly, optimality of π′ at A′ implies:

−2κ ≤
∫

Ω
max
p∈A′

U(ω) · p π′(dω)−
∫

Ω
max
p∈A′

U(ω) · p π(dω) ≤ c(π)− c(π′).

Therefore, |c(π)− c(π′)| ≤ 2κ for any π, π′ ∈ Π′, implying that c is bounded on Π′.

Let Ω̃ = Ω × Π′. Let G be any σ-algebra on Π′ that contains all singletons and such that

c|Π′ : Π′ → R is G-measurable (e.g., G = 2Π′). Let F̃ = F ⊗ G be the product σ-algebra on

Ω̃. Let 1 ∈ RZ denote the vector whose coordinates are equal to 1, and define Ũ : Ω̃ → RZ by

Ũ(ω, π) = U(ω) + c(π)1 for any ω̃ = (ω, π) ∈ Ω̃. Note that Ũ is F̃-measurable and bounded.40

For any π ∈ Π′, define the function fπ : Ω → Ω̃ by fπ(ω) = (ω, π). Note that fπ is

measurable.41 Define the probability measure ρπ on (Ω̃, F̃) by ρπ = π ◦ f−1
π . For any A ∈ A,∫

Ω̃
max
p∈A

Ũ(ω̃) · p ρπ(dω̃) =

∫
Ω

max
p∈A

Ũ(fπ(ω)) · p π(dω)

=

∫
Ω

[
max
p∈A

U(ω) · p+ c(π)

]
π(dω)

=

∫
Ω

max
p∈A

U(ω) · p π(dω) + c(π),

where the first equality above follows from the change of variables formula.42

Letting Π̃′ = {ρπ : π ∈ Π′}, by Equation (16), we see that V can be expressed in the following

SSMP form:

V (A) = min
ρ∈Π̃′

∫
Ω̃

max
p∈A

Ũ(ω̃) · p ρ(dω̃).

(2 ⇒ 1): Let ((Ω,F), U,Π) be an SSMP representation, and define V by Equation (4). It is

easy to see that V is monotone and concave. We next show that V is Lipschitz continuous. For

40Ũ is bounded because U is bounded on Ω and c is bounded on Π′. To see that Ũ is F̃-measurable, note
that since U is F-measurable and F̃ is the product of the σ-algebras F and G, the function f : Ω̃→ RZ
defined by f(ω, π) = U(ω) is F̃-measurable. Also note that since c|Π′ is G-measurable, and F̃ is the
product of the σ-algebras F and G, the function g : Ω̃ → RZ defined by g(ω, π) = c(π)1 is also F̃-
measurable. Therefore, Ũ is F̃-measurable as the sum of the two F̃-measurable functions f and g.

41To see this, note that the collection F̃ ′ of sets E ⊂ Ω̃ satisfying {ω ∈ Ω : (ω, π′) ∈ E} ∈ F for every
π′ ∈ Π′, is a σ-algebra. Since F̃ ′ contains both F × Π′ and Ω × G for every F ∈ F and G ∈ G, we
have that F̃ = F ⊗ G ⊂ F̃ ′. It is easy to see that fπ would be measurable if Ω̃ were endowed with the
σ-algebra F̃ ′. Therefore, fπ is measurable since Ω̃ is endowed with the coarser σ-algebra F̃ .

42To see this, define the function g : Ω̃ → R by g(ω̃) = maxp∈A Ũ(ω̃) · p. By a similar argument as

in Footnote 39, g is F̃-measurable. Then, the change of variables formula is
∫

Ω̃
g(ω̃) (π ◦ f−1

π )(dω̃) =∫
Ω
g(fπ(ω))π(dω).

44



every π ∈ Π, define fπ : A → R by

fπ(A) =

∫
Ω

max
p∈A

U(ω) · p π(dω).

Since U is bounded, there exists κ > 0 such that ‖U(ω)‖ ≤ κ for all ω ∈ Ω. Let A,B ∈ A.

Given a state ω ∈ Ω, let p∗ be a solution of maxp∈A U(ω) ·p. By definition of Hausdorff distance,

there exists q∗ ∈ B such that ‖p∗ − q∗‖ ≤ dh(A,B). Then,

max
p∈A

U(ω) · p−max
q∈B

U(ω) · q = U(ω) · p∗ −max
q∈B

U(ω) · q

≤ U(ω) · p∗ − U(ω) · q∗ ≤ ‖U(ω)‖ ‖p∗ − q∗‖ ≤ κ dh(A,B).

Taking the expectation of the above inequality with respect to π, we obtain:

fπ(A)− fπ(B) ≤ κ dh(A,B).

Hence fπ is Lipschitz continuous with a Lipschitz constant κ that does not depend on π ∈ Π.

Since V is the pointwise minimum of fπ over π ∈ Π, it is also Lipschitz continuous with the

same Lipschitz constant κ.

Since V : A → R is monotone, concave, Lipschitz continuous, and it satisfies the IR condition

V (A) = V (co(A)) for all A ∈ A, the construction in Appendix B.2 implies that there exists a

min-HA representation such that V is given by Equation (3).

E Proof of Theorem 5

We define the set of translations to be

Θ ≡
{
θ ∈ RZ :

∑
z∈Z

θz = 0

}
.

For A ∈ A and θ ∈ Θ, define A + θ ≡ {p + θ : p ∈ A}. Intuitively, adding θ to A in this sense

simply “shifts” A. Also, note that for any p, q ∈ 4(Z), we have p− q ∈ Θ.

Definition 10 A function V : A → R is translation linear if there exists v ∈ RZ such that for

all A ∈ A and θ ∈ Θ with A+ θ ∈ A, we have V (A+ θ) = V (A) + v · θ.

Lemma 10 Suppose that V : A → R is a function such that EP [V ] represents the preference %
over 4(A). Then, V is translation linear if and only if % satisfies RDD.

Proof: Assume that EP [V ] represents the preference %. Then, it is easy to see that %
satisfies RDD if and only if

V (αA+ (1− α){p})− V (αA+ (1− α){q}) = (1− α)[V ({p})− V ({q})] (17)

for any α ∈ [0, 1], A ∈ A, and p, q ∈ 4(Z).
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If there exists v ∈ RZ such that for all A ∈ A and θ ∈ Θ with A + θ ∈ A, we have

V (A+ θ) = V (A) +v · θ, then both sides of Equation (17) are equal to (1−α)v · (p− q), showing

that % satisfies RDD.

If% satisfies RDD, then define the function f : 4(Z)→ R by f(p) = V ({p}) for all p ∈ 4(Z).

Let α ∈ [0, 1] and p, q ∈ 4(Z), then

2f(αp+ (1− α)q) = [f(αp+ (1− α)q)− f(αp+ (1− α)p)]

+[f(αp+ (1− α)q)− f(αq + (1− α)q)] + f(p) + f(q)

= (1− α)[f(q)− f(p)] + α[f(p)− f(q)] + f(p) + f(q)

= 2[αf(p) + (1− α)f(q)],

where the second equality follows from Equation (17) and the definition of f . Therefore, f(αp+

(1− α)q) = αf(p) + (1− α)f(q) for any α ∈ [0, 1] and p, q ∈ 4(Z). It is standard to show that

this implies that there exists v ∈ RZ such that f(p) = v · p for all p ∈ 4(Z).

To see that V is translation linear, let A ∈ A and θ ∈ Θ be such that A + θ ∈ A. If θ = 0,

then the conclusion of translation linearity follows trivially, so without loss of generality assume

that θ 6= 0. Ergin and Sarver (2010a) show in the proof of their Lemma 4 that if A ∈ A and

A+ θ ∈ A for some θ ∈ Θ \ {0}, then there exist A′ ∈ A, p, q ∈ 4(Z), and α ∈ (0, 1] such that

A = (1− α)A′ + α{p}, A+ θ = (1− α)A′ + α{q}, and θ = α(p− q). Then

V (A+ θ)− V (A) = V ((1− α)A′ + α{p})− V ((1− α)A′ + α{q})
= α[V ({p})− V ({q})]
= α[v · p− v · q]
= v · θ,

where the second equality follows from Equation (17) and the third equality follows from the

expected utility form of f . Therefore, V is translation linear. �

We are now ready to prove Theorem 5. The necessity of RDD is straightforward and left to

the reader. For the other direction, suppose that % has a max-HA representation (M, c) and

that it satisfies RDD. In the rest of this section, we will continue to use the notation and results

from Appendix B. By Theorem 1, % satisfies Axiom 1 and PERU. Therefore, (MW ,W
∗|MW

)

constructed in Appendix B is also a max-HA representation for %. Since % satisfies RDD, by

Lemma 10, the value function V for this representation is translation linear. Let v ∈ RZ be

such that for all A ∈ A and θ ∈ Θ with A + θ ∈ A, we have V (A + θ) = V (A) + v · θ. Let

q = (1/|Z|, . . . , 1/|Z|) ∈ 4(Z). By Lemma 22 of Ergin and Sarver (2010a), for all µ ∈MW and

p ∈ 4(Z), 〈σ{p}, µ〉 = v · (p − q). The consistency of MW follows immediately from this fact

because for any µ, µ′ ∈MW and p ∈ 4(Z), we have∫
U
u(p)µ(du) = 〈σ{p}, µ〉 = v · (p− q) = 〈σ{p}, µ′〉 =

∫
U
u(p)µ′(du).

By Theorem 2, there exists α > 0 such that M = αMW . Therefore, (M, c) is also consistent.
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F Proof of Theorem 6

F.1 Proof of Theorem 6.A

The necessity of the axioms is straightforward. For sufficiency, suppose that % satisfies Axiom 1,

mixture independence, and monotonicity. By Lemma 4, there exists a continuous function

V : A → R such that P % Q if and only if EP [V ] ≥ EQ[V ].

Define a preference %′ on Ac by A %′ B ⇐⇒ δA % δB (or, equivalently, A %′ B ⇐⇒
V (A) ≥ V (B)). The axioms assumed on % then imply that %′ satisfies the DLR (2001) axioms:

Continuity of % implies continuity of %′; mixture independence implies that %′ satisfies indepen-

dence; and monotonicity of % implies that %′ satisfies monotonicity. Therefore, by Theorem S2

in the supplementary appendix of DLRS (2007), there exists a finite Borel measure µ on U such

that U : A → R defined by

U(A) =

∫
U

max
p∈A

u(p)µ(du)

represents %′. Moreover, since U is continuous and A is compact, there exist −∞ < a ≤ b < +∞
such that [a, b] = {U(A) : A ∈ A}. Since V (A) ≥ V (B) ⇐⇒ U(A) ≥ U(B), there exists a

strictly increasing function φ : [a, b]→ R such that

V (A) = φ
(
U(A)

)
.

To establish the Lipschitz continuity of φ, first recall that by Lemma 5, L–continuity implies

there exists K ≥ 0 such that |V (A) − V (B)| ≤ Kdh(A,B) for any A,B ∈ Ac (the set of

all convex menus). If a = b, then φ is trivially Lipschitz continuous. Next, suppose that

a < b. Take A∗, A
∗ ∈ Ac such that U(A∗) = a and U(A∗) = b. For any t ∈ [a, b], let

α(t) ≡ (t − a)/(b − a) ∈ [0, 1], which implies U(α(t)A∗ + (1 − α(t))A∗) = t. Note that for any

α, β ∈ [0, 1],

dh(αA∗ + (1− α)A∗, βA
∗ + (1− β)A∗) = |α− β|dh(A∗, A∗).

Thus, for any s, t ∈ [a, b],

|φ(t)− φ(s)| =
∣∣∣φ(U(α(t)A∗ + (1− α(t))A∗)

)
− φ

(
U(α(s)A∗ + (1− α(s))A∗)

)∣∣∣
=
∣∣V (α(t)A∗ + (1− α(t))A∗)− V (α(s)A∗ + (1− α(s))A∗)

∣∣
≤ K|α(t)− α(s)|dh(A∗, A∗)

= K|t− s|dh(A∗, A∗)/(b− a),

which implies φ is Lipschitz continuous with a Lipschitz constant of Kdh(A∗, A∗)/(b− a).

F.2 Proof of Theorem 6.B

The necessity of the axioms is straightforward. For sufficiency, suppose that % satisfies Axiom 1,

second-stage independence, and strategic rationality. By part A, % has a KPDLR representation

(φ, µ). It therefore suffices to show that µ has singleton support.
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Suppose for a contradiction that µ has more than one utility function in its support. Fix

any u′, u′′ ∈ supp(µ). Choose lotteries p, q ∈ 4(Z) such that u′(p) > u′(q) and u′′(q) > u′′(p).

Then, since these inequalities also hold on any small neighborhoods of u′ and u′′, respectively,

this implies∫
U

max
r∈{p,q}

u(r)µ(du) >

∫
U
u(p)µ(du) and

∫
U

max
r∈{p,q}

u(r)µ(du) >

∫
U
u(q)µ(du).

Therefore, V ({p, q}) > V ({p}) and V ({p, q}) > V ({q}), which constitutes a violation of the

strategic rationality axiom. Thus, if % satisfies strategic rationality, supp(µ) = {u} for some

u ∈ U . Taking α = µ({u}), we then have µ = αδu, as desired.

F.3 Proof of Theorem 6.C

Suppose % has a KPDLR representation (φ, µ). First, note that for any A,B ∈ A and any

α ∈ (0, 1),∫
U

max
p∈αA+(1−α)B

u(p)µ(du) = α

∫
U

max
p∈A

u(p)µ(du) + (1− α)

∫
U

max
p∈B

u(p)µ(du).

For any s, t ∈ [a, b], let A,B ∈ A be menus that satisfy s =
∫
U maxp∈A u(p)µ(du) and

t =
∫
U maxp∈B u(p)µ(du). Then, for any α ∈ (0, 1),

αδA + (1− α)δB % δαA+(1−α)B

⇐⇒ αV (A) + (1− α)V (B) ≥ V (αA+ (1− α)B)

⇐⇒ αφ

(∫
U

max
p∈A

u(p)µ(du)

)
+ (1− α)φ

(∫
U

max
p∈B

u(p)µ(du)

)
≥ φ

(
α

∫
U

max
p∈A

u(p)µ(du) + (1− α)

∫
U

max
p∈B

u(p)µ(du)

)
⇐⇒ αφ(s) + (1− α)φ(t) ≥ φ(αs+ (1− α)t).

Thus, % satisfies PERU if and only if φ is convex. A similar argument shows that % satisfies

PLRU if and only if φ is concave.

G Proof of Theorem 7

Throughout this section, we use the notation ∂f , f∗, Nf , and Mf introduced in Appendix A.

Lemma 11 Let a, b ∈ R with a < b and let φ : [a, b] → R be Lipschitz continuous and convex.

Then, 1⇔ 2⇒ 3:

1. φ is strictly increasing.

2. (a) Mφ ⊂ R+.

(b) The right-derivative of φ∗ at 0, dφ∗

dλ+ (0), exists and is equal to a.
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3. 0 is not an isolated point of Mφ.

Proof: (1⇒ 2) Part a follows from Theorem 9.

To see part b, it is enough to show that for all t ∈ (a, b], there exists λ > 0 such that

λ′a ≤ φ∗(λ′)− φ∗(0) ≤ λ′t ∀λ′ ∈ (0, λ). (18)

Since φ is nondecreasing, 0 ∈ ∂φ(a). Along with Lemma 3, this implies that −φ∗(0) = φ(a) ≥
λ′a−φ∗(λ′) for any λ′ ≥ 0, establishing the first inequality in Equation (18). Take any t ∈ (a, b].

By Lemma 2 there exists λ ∈ ∂φ(t). Note that λ > 0. Otherwise, if λ ≤ 0, then by Lemma 3,

φ(a) ≥ λa− φ∗(λ) ≥ λt− φ∗(λ) = φ(t),

a contradiction to φ being strictly increasing. Let λ′ ∈ (0, λ). Since φ is continuous and its

domain is compact, there exists t′ ∈ [a, b] such that φ∗(λ′) = t′λ′ − φ(t′). By Lemma 3, this

implies that λ′ ∈ ∂φ(t′). Monotonicity of the subdifferential ∂φ implies that t′ ≤ t.43 Then, by

Lemma 3 and φ being nondecreasing,

−φ∗(0) = φ(a) ≤ φ(t′) = λ′t′ − φ∗(λ′) ≤ λ′t− φ∗(λ′),

which implies the second inequality in Equation (18).

(2⇒ 1) Theorem 8 and part a imply that φ is nondecreasing. Therefore, 0 ∈ ∂φ(a), implying

φ(a) = −φ∗(0) by Lemma 3.

We will first show that φ(a) < φ(t) for any t ∈ (a, b]. Suppose for a contradiction that

φ(a) = φ(t) for some t ∈ (a, b]. Then, for any λ > 0,

φ∗(λ) ≥ λt− φ(t) = λt− φ(a) = λt+ φ∗(0)

implying that φ∗(λ)−φ∗(0)
λ ≥ t > a for any λ > 0, a contradiction to dφ∗

dλ+ (0) = a.

To conclude that φ is strictly increasing, it remains to show that φ(t) < φ(t′) for any

t, t′ ∈ (a, b] such that t < t′. By Lemma 2, there exists λ ∈ ∂φ(t). If λ ≤ 0, then

φ(a) ≥ λa− φ∗(λ) ≥ λt− φ∗(λ) = φ(t)

by Lemma 3, contradicting φ(a) < φ(t). Therefore, λ > 0, implying

φ(t) = λt− φ∗(λ) < λt′ − φ∗(λ) ≤ φ(t′),

by Lemma 3, as desired.

43To see that ∂φ is monotone, note that by the definition of the subdifferential, λ ∈ ∂φ(t) implies
λ(t′ − t) ≤ φ(t′)− φ(t) and λ′ ∈ ∂φ(t′) implies λ′(t− t′) ≤ φ(t)− φ(t′). Summing these inequalities, we
have (λ− λ′)(t− t′) ≥ 0.
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(1 ⇒ 3) Suppose for a contradiction that 0 is an isolated point of Mφ. Then, 0 ∈ Nφ, i.e.,

there exists t ∈ [a, b] such that ∂φ(t) = {0}. Then, Lemma 3 implies

−φ∗(0) = φ(t) > λt− φ∗(λ) ∀λ ∈Mφ \ {0}.

Since 0 is an isolated point ofMφ andMφ is compact by Theorem 8,Mφ \{0} is also compact.

Therefore, the above inequality implies that

− φ∗(0) > max
λ∈Mφ\{0}

[
λt− φ∗(λ)

]
. (19)

Let ∆ > 0 be the difference of the left hand side and the right hand side in Equation (19)

and let M > 0 be such that Mφ ⊂ [0,M ]. Take any s ∈ [a, b] such that |t − s| < ∆
M . Then,

|λt−λs| < ∆ for any λ ∈Mφ\{0}, implying that Equation (19) continues to hold if t is replaced

by s. Therefore,

−φ∗(0) = max
λ∈Mφ

[
λs− φ∗(λ)

]
= φ(s),

where the second equality follows from Theorem 8. This implies that φ is constant at a ∆
M

neighborhood of t, contradicting the assumption that φ is strictly increasing. �

In the next lemma, Σ denotes the set of support functions defined in Appendix B.

Lemma 12 Let µ be a nonzero finite signed Borel measure on U and [a, b] = {〈σ, µ〉 : σ ∈ Σ}.
Let φ : [a, b]→ R be Lipschitz continuous and convex and define W : Σ→ R by W (σ) = φ(〈σ, µ〉)
for any σ ∈ Σ. Then,

1. W is Lipschitz continuous and convex.

2. W ∗(λµ) = φ∗(λ) for any λ ∈ R.

3. MW = {λµ : λ ∈Mφ}.

Proof: (1): Let K ≥ 0 be a Lipschitz constant for φ. Then, for any σ, σ′ ∈ Σ,

|W (σ)−W (σ′)| = |φ(〈σ, µ〉)− φ(〈σ′, µ〉)| ≤ K|〈σ, µ〉 − 〈σ′, µ〉| ≤ K‖µ‖‖σ − σ′‖,

implying that W is Lipschitz continuous with a Lipschitz constant K‖µ‖. W is convex as the

composition of a linear and a convex function.

(2): Let λ ∈ R. Then,

W ∗(λµ) = max
σ∈Σ

[〈σ, λµ〉 −W (σ)]

= max
σ∈Σ

[λ〈σ, µ〉 − φ(〈σ, µ〉)]

= max
t∈[a,b]

[λt− φ(t)]

= φ∗(λ).
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(3): We will first show that NW ⊂ {λµ : λ ∈Mφ}. This will imply thatMW = NW ⊂ {λµ :

λ ∈ Mφ} since Mφ is closed. Let ν ∈ NW , then there exists σ ∈ Σ such that ∂W (σ) = {ν}.
For any λ ∈ ∂φ(〈σ, µ〉),

W (σ′)−W (σ) = φ(〈σ′, µ〉)− φ(〈σ, µ〉) ≥ λ[〈σ′, µ〉 − 〈σ, µ〉] = 〈σ′ − σ, λµ〉) ∀σ′ ∈ Σ,

implying λµ ∈ ∂W (σ) = {ν}. Therefore, {λµ : λ ∈ ∂φ(〈σ, µ〉)} ⊂ {ν}. Since µ is nonzero and

∂φ(〈σ, µ〉) 6= ∅ by Lemma 2, there exists a unique λ ∈ R such that ∂φ(〈σ, µ〉) = {λ}. Note that

λ ∈ Nφ ⊂Mφ and ν = λµ, as desired.

Let M = {λ ∈ R : λµ ∈ MW }. We will next show that Mφ ⊂ M, which will imply

{λµ : λ ∈ Mφ} ⊂ MW . Since µ is nonzero and MW is compact by part 1 and Theorem 8, M
is also compact. Let t ∈ [a, b], and σ ∈ Σ be such that t = 〈σ, µ〉. Then,

φ(t) = W (σ) = max
ν∈MW

[〈σ, ν〉 −W ∗(ν)] = max
λ∈M

[〈σ, λµ〉 −W ∗(λµ)] = max
λ∈M

[λt− φ∗(λ)],

where the second equality follows from part 1 and Theorem 8, the third equality follows from

MW ⊂ {λµ : λ ∈ R}, and the last equality follows from part 2. Therefore, by Theorem 8,

Mφ ⊂M. �

Proof of Theorem 7: We will prove the result only for the convex case; the concave

case is similar. In the following, let W : Σ → R be defined by W (σ) = V (Aσ). Also, let

[a, b] = {
∫
U maxp∈A u(p)µ(du) : A ∈ A}.

(1⇒ 2): For any σ ∈ Σ,

W (σ) = V (Aσ) = φ(〈σ(Aσ), µ〉) = φ(〈σ, µ〉),

where the last equality follows from part 1 of Lemma 6. Since W is Lipschitz continuous and

convex by Lemma 12, V (A) = V (co(A)) for all A ∈ A, and W (σ) = V (Aσ) for all σ ∈ Σ, the

construction in Section B.1 implies that (M, c) := (MW ,W
∗|MW

) is a max-HA representation

such that V is given by Equation (2). By part 2.a of Lemma 11 and part 3 of Lemma 12,

MW ⊂ {λµ : λ ∈ R+}. By part 2.b of Lemma 11 and part 2 of Lemma 12,

lim
λ↘0

W ∗(λµ)−W ∗(0)

λ
=
dφ∗

dλ+
(0) = a ≡ min

A∈A

∫
U

max
p∈A

u(p)µ(du). (20)

By part 3 of Lemma 11, part 3 of Lemma 12, and µ being nonzero, 0 is not an isolated

point of MW . Therefore, if 0 ∈ MW , then the limit term in Equation (20) agrees with

limλ↘0:λµ∈MW

c(λµ)−c(0)
λ .

(2⇒ 1): The mapping λ 7→ c(λµ) is lower semi-continuous since c is lower semi-continuous,

and {λ ∈ R+ : λµ ∈M} is nonempty by part a, and it is compact since M is compact and µ is

nonzero. Therefore, we can define φ : [a, b]→ R by

φ(t) = max
λ∈R+:λµ∈M

[λt− c(λµ)] ∀t ∈ [a, b].
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By Theorem 10, φ is Lipschitz continuous and convex. Furthermore, for any A ∈ A,

V (A) = max
λ∈R+:λµ∈M

[〈σA, λµ〉 − c(λµ)] = max
λ∈R+:λµ∈M

[λ〈σA, µ〉 − c(λµ)] = φ(〈σA, µ〉),

where the first equality follows from Equation (2) and part a. Therefore, it only remains to

show that φ is strictly increasing.

By Lemma 9, M =MW and c(ν) = W ∗(ν) for all ν ∈M. Note that

W (σ) = V (Aσ) = φ(〈σ(Aσ), µ〉) = φ(〈σ, µ〉) ∀σ ∈ Σ,

where the last equality follows from part 1 of Lemma 6. By part 3 of Lemma 12,M = {λµ : λ ∈
Mφ}. Therefore, since µ is nonzero: 0 ∈ M if and only if 0 ∈ Mφ; part a implies Mφ ⊂ R+;

and the first part of b implies that 0 is not an isolated point of Mφ.

First suppose that 0 /∈ M, implying 0 /∈ Mφ. Let t, t′ ∈ [a, b] be such that t < t′. By

Theorem 8,

φ(s) = max
λ∈Mφ

[λs− φ∗(λ)] ∀s ∈ [a, b].

Let λ̂ > 0 be a solution of the above maximization at s = t. Then,

φ(t) = λ̂t− φ∗(λ̂) < λ̂t′ − φ∗(λ̂) ≤ max
λ∈Mφ

[λt′ − φ∗(λ)] = φ(t′).

Next suppose that 0 ∈M, implying that 0 ∈Mφ. Then,

a = lim
λ↘0:λµ∈M

c(λµ)− c(0)

λ
= lim

λ↘0:λ∈Mφ

φ∗(λ)− φ∗(0)

λ
(21)

where the first equality follows from part b and the second equality follows fromM = {λµ : λ ∈
Mφ}, µ being nonzero, c = W ∗|M, and part 2 of Lemma 12. For any λ ∈ (0,∞), define aλ ∈ R
by aλ = φ∗(λ)−φ∗(0)

λ . Since 0 ∈ Mφ is not an isolated point of Mφ, Equation (21) implies that

there exists a sequence λn in Mφ \ {0} such that λn ↘ 0 and limn aλn = a. Since φ∗ is convex,

aλ is nondecreasing in λ ∈ (0,∞). Therefore, for any sequence λ′n in (0,∞) such that λ′n ↘ 0,

limn aλ′n = limn aλn . This implies that the limit on the right hand side of Equation (21) is equal

to dφ∗

dλ+ (0). By Lemma 11, φ is strictly increasing. �
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