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Abstract

We study a seller’s optimal mechanism for maximizing revenue when the buyer may
present evidence relevant to the buyer’s value, or when different types of buyer have
a differential ability to communicate. We introduce a dynamic bargaining protocol in
which the buyer first makes a sequence of concessions in a cheap talk phase, and then
at a time determined by the seller, the buyer presents evidence to support his previous
assertions, and then the seller makes a take-it-or-leave-it offer. Our main result is that
the optimal mechanism can be implemented as a sequential equilibrium of our dynamic
bargaining protocol. Unlike the optimal mechanism to which the seller can commit, the
equilibrium of the bargaining protocol also provides incentives for the seller to behave
as required. We thereby provide a natural procedure whereby the seller can optimally
price discriminate on the basis of the buyer’s evidence.

JEL Classification: C78, D82, D83.

Keywords: price discrimination, communication, bargaining, commitment, evidence,
network flows.

1 Introduction

In economics it is common to model communication as cheap talk, but cheap talk seems
useless for some fundamental economic interactions. Consider a buyer and seller negotiating
over price. If some buyer type could persuade the seller to lower the price via some cheap talk
message, then all buyer types could achieve the discount in the same way. Yet, many buyer
seller transactions involve communication prior to price setting. To understand why, we
allow for differential communication ability among buyers. We model this by giving different
types of buyers access to different sets of messages. These messages can be interpreted as
∗Economics Department, University of Minnesota. Email: isher@umn.edu.
†Kellogg School of Management, MEDS Department, Northwestern University. Email: r-

vohra@kellogg.northwestern.edu.
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hard evidence. We also allow for cheap talk, which can serve a valuable role in combination
with evidence.

Evidence can take many different forms. An example is an advertisement that shows
the price at which the consumer could buy a substitute for the seller’s product elsewhere.
However, the buyer need not present a physical document; a buyer who knows the market
may demonstrate this through her words alone, whereas an ignorant buyer could not produce
those words. As another example, when purchasing a house, the buyer may claim that a
loan with favorable terms for which she qualifies has a cap below the asking price. The
seller may verify this, or alternatively, he may believe that if the buyer did not know of
such a loan, she would not have thought of mentioning it. The seller could also take control
of the process. In the early days of the internet it may have made sense for car dealers to
ask potential buyers for their email address. Having an email address is a signal the buyer
is more likely to be surfing the web doing price comparisons, so the dealer would have an
incentive to offer a lower price.1

In this setting we study the optimal direct mechanism that maximizes the seller’s ex-
pected revenue. Say that type t can mimic type s if every message available to s is also
available to t. With evidence, we need only impose a subset of the incentive constraints
which we would have to consider if there were only cheap talk. In particular, we only impose
an incentive constraint that discourages type t from claiming to be type s if t can mimic s.

In contrast to Myerson (1981), for example, the optimal mechanism in our setting will
involve both price discrimination and randomization. Different buyer types will receive
different prices and receive the object with different probabilities depending on the evidence
that they can present.

When all incentive constraints must be respected, we know that the downward adjacent
constraints will bind. In our setting, the absence of some incentive constraints makes it
difficult to say a priori which of them will bind at optimality; if type t can mimic both
lower value types s and r, but s and r cannot mimic each other, which type will t want
to mimic at the optimal mechanism? This makes the optimal direct mechanism difficult to
interpret. To remedy this, we show that the optimal direct mechanism can be implemented
via a natural bargaining protocol in which the buyer and seller engage in several rounds of
cheap talk communication followed by the presentation of evidence by the buyer and then a
take-it-or-leave-it offer by the seller. This implementation also suggests that in addition to
the usual determinants of bargaining (patience, outside option, risk aversion, commitment)
the persuasiveness of arguments is also relevant.

Communication in the sequential equilibrium of our bargaining protocol is monotone
in two senses: the buyer makes a sequence of concessions in which she claims to have
successively higher valuations and at the same time the buyer admits to having more and

1We thank Simon Board for this example.
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more evidence as communication proceeds. To see how the two are related, imagine that the
buyer has evidence suggesting she is of an intermediate value. When the buyer and seller
are arguing over whether the price should be low or intermediate, the buyer would like to
withhold this evidence, but once the buyer admits to an intermediate value, she would like
to present this evidence to prevent a high price.

Throughout, the buyer’s communication is disciplined by the need to present the sup-
porting evidence at the end. The seller decides when to exit the cheap talk phase and enter
the evidence presentation phase. The seller faces an optimal stopping problem: should
he ask for a further concession from the buyer which would yield additional information
about the buyer’s type but risk the possibility that the buyer will be unwilling to make an
additional concession and thus drop out?

The seller’s optimal stopping strategy is determined by the optimal mechanism. The
seller asks for another cheap talk message when the buyer claims to be of a type that is
not optimally served and requests supporting evidence in preparation for an offer and sale
when the buyer claims to be of a type that is served. Most interesting is when the buyer
claims to be of a type which is optimally served with an intermediate probability; then the
seller randomizes between asking for more cheap talk and proceeding to the sale.

The buyer’s strategy is determined by an optimal solution to the dual of the seller’s
optimal mechanism problem. In particular, an optimal dual solution determines a proba-
bility distribution of paths through types connected by binding incentive constraints. The
buyer randomizes according to this distribution and her reporting strategy–her sequence
of concessions–follows such a path. The fact that the reports are concessions–the buyer
admits to successively higher values–follows from a nontrivial lemma that binding incentive
constraints point from higher to lower value types. That the buyer claims to have succes-
sively more and more evidence follows from the fact that we need only consider incentive
constraints in the direction of increasing evidence.

An interesting byproduct of the analysis is that the optimal mechanism can be imple-
mented with no more commitment than the ability to make a take-it-or-leave-it offer.

When the optimal mechanism is deterministic, we show that the back-and-forth cheap
talk communication in the bargaining protocol collapses to a single stage. Nevertheless,
randomization is still required on the buyer’s part. A much stronger assumption is required
to eliminate all randomization from the bargaining protocol. Contrariwise, when the optimal
mechanism requires randomization, the bargaining protocol requires several rounds of cheap
talk. In this case, sequential communication is required to ease the seller’s commitment
requirements. We present a family of examples which contains arbitrarily many rounds of
communication. Finally, we show that with binary values our model has a close connection
to the Glazer & Rubinstein (2004) model of optimal persuasion.

The outline of the paper is as follows: In section 2, we present the model. In section
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3, we study the optimal mechanism. In sections 4 and 5, we present our dynamic bar-
gaining protocol and prove that the optimal mechanism can be implemented as a Bayesian
Nash equilibrium of our bargaining protocol. Section 6 strengthens the solution concept to
sequential equilibrium. Section 7 presents the family of examples showing that communica-
tion may contain arbitrarily many rounds. Section 8 examines several special cases of the
model which have some additional structure. Section 9 concludes. An appendix contains
proofs which were omitted from the main body.

1.1 Prior Literature

Our work is closely related to the models of persuasion (Milgrom & Roberts 1986, Shin 1994,
Lipman & Seppi 1995, Glazer & Rubinstein 2004, Glazer & Rubinstein 2006, Sher 2011, Sher
2010). These models deal with situations in which a speaker attempts to persuade a listener
to take some action. Our model deals in particular with arguments attempting to persuade
a seller to lower his price. Our result has an interesting relation to the credibility result of
Glazer & Rubinstein (2004); that paper studied persuasion with respect to a binary decision
involving no exchange of money. A detailed discussion of the relationship is presented in
Section 8.3.

This paper is also a contribution to the body of research on mechanism design with
evidence (Green & Laffont 1986, Singh & Wittman 2001, Forges & Koessler 2005, Bull &
Watson 2007, Ben-Porath & Lipman 2008, Deneckere & Severenov 2008, Kartik & Tercieux
2009). These papers study general mechanism design environments, establishing revelation
principles and necessary and sufficient conditions for partial and full implementation. In
contrast, our focus is on optimal price discrimination. A related application has been
investigated by Severenov & Deneckere (2006) in which some agents are strategic and may
mimic any other type whereas others are nonstrategic, and the latter must report their
information truthfully. Celik (2006) studies an adverse selection problem in which higher
types can pretend to be lower types but not vice versa, and shows that the weakening of
incentive constraints does not alter the optimal mechanism.2

A related line of work is Blumrosen, Nisan & Segal (2007) and Kos (2011) which assumes
that bidders can only report one of a finite number of messages. However, unlike the models
we consider, all messages are available to each bidder. There is a also a body of literature
that studies the relation between between incentive compatible mechanisms and outcomes
that can be implemented in infinite horizon bargaining games with discounting (Ausubel
& Deneckere 1989, Gerardi, Horner & Maestri 2010). This literature does not study the
role of evidence, which is our main focus. Moreover our results are quite different both in
substance and technique. Finally, our work contributes to the linear programming approach
to mechanism design (Vohra 2011).

2Technically, a closely related analysis is that of Moore (1984).
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2 The Model

Suppose a seller possesses a single item he does not value which he would like to sell to a
buyer. Let T be a finite set of buyer types. πt and vt are respectively the probability of
and valuation of type t. There is also a finite set M of hard messages. For any type t ∈ T
there is a finite set σ(t) ⊆ M of messages which are available to type t. σ is the message

correspondence. We may interpret the message correspondence in terms of evidence. We
assume that for any subset of S of σ(t), the buyer can present S. In particular, the buyer
can present all evidence in σ(t). It is convenient to define: St := {m : m ∈ σ(t)}. Of course
formally, St and σ(t) are the same set of messages. However, if we think of σ(t) as encoding
the buyer’s choice set, we think of St as encoding a particular choice: namely the choice
to present all messages in σ(t). Note that a type s 6= t may also be able to present St if
σ(t) ⊆ σ(s).

Our assumption that the seller can present any subset of messages is technically stronger
than the assumption of normality of Bull & Watson (2007). However, for our purposes,
the two are equivalent.34

We assume that there is a zero type 0 ∈ T with vt = πt = 0 and σ(t) = {m0} where
m0 ∈ σ(t), ∀t ∈ T . It is also convenient to assume that for all t ∈ T \ 0, σ(t) 6= σ(0). The
zero type plays the role of the outside option. We assume that for all t ∈ T \ 0, vt > 0 and
πt > 0.

In addition to the hard messages M , we assume that the buyer has access to an unlimited
supply of cheap talk messages. These cheap talk messages are available to all buyer types.
In the bargaining protocol described in Section 4 we restrict the set of cheap talk messages
to correspond with the set T of types (but allow many messages to be sent). Nothing
would be gained if we allowed the buyer access to a larger set of cheap talk messages in the
bargaining protocol.

2.1 Incentive Graphs

It is useful for the analysis to define a directed graph. The set of vertices in this graph is
the set T of types, and the set of edges E ⊆ T × T , where:

(s, t) ∈ E ⇔ [σ(s) ⊆ σ(t) and s 6= t] (1)

Notice that our assumptions on the zero type are such that:

∀t ∈ T \ 0, (0, t) ∈ E (2)

3In particular, for any normal message structure, we can construct a message correspondence satisfying
our assumption which leads to the same optimal mechanism.

4Another related assumption from the literature, which is also essentially equivalent for our purposes is
the nested range condition of Green & Laffont (1986).

5



It is also true (but less important) that for all t ∈ T, (t, 0) 6∈ E. We refer to a graph as just
described as an incentive graph. Note that E is transitive, except that self edges of the
form (t, t) are excluded. The term “transitivity” is to be understood with this qualification
below.

3 The Optimal Mechanism

In this section, we study the optimal mechanism. Section 3.1 formulates the problem and
studies its properties. Section 3.2 provides a useful reformulation of the problem.

3.1 Properties of the Optimum

We consider an optimal mechanism design problem that is formulated below. qt is the
probability that type t receives the object and pt is the expected payment of type t.

Primal Problem (Edges)

maximize
∑
t∈T

πtpt (3)

subject to

∀(s, t) ∈ E, vtqt − pt ≥ vtqs − ps (4)

∀t ∈ T, 0 ≤ qt ≤ 1 (5)

p0 = 0 (6)

The seller’s objective is to maximize expected revenue (3). The problem (3-6) resembles
a standard mechanism design problem with the exception that the optimal mechanism does
not have to honor all incentive constraints, but only incentive constraints for pairs of types
(s, t) with (s, t) ∈ E. Indeed the label “edges” refers to the fact that there is an incentive
constraint for each edge of the incentive graph, and is to be contrasted with the formulation
in terms of paths to be presented in section 3.2. The interpretation is that we only impose
an incentive constraint saying that t should not want to claim to be s if t can mimic s in
the sense that any evidence that s can present can also be presented by t. The individual
rationality constraint is encoded by (6) and the instances of (4) with s = 0 (recall that
(0, t) ∈ E for all t ∈ T \ 0).

Although they did not explicitly study the notion of an incentive graph, the fact that
in searching for the optimal mechanism we only need to consider the incentive constraints
in (4) follows from Corollary 1 of Deneckere & Severenov (2008), which may be viewed
as a version of the revelation principle for general mechanism design problems with evi-
dence. More specifically, given a social choice function f mapping types into outcomes,
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these authors show that when agents can reveal all subsets of their evidence, there exists
a (possibly dynamic) mechanism Γ which respects the right of agents to decide which of
their own evidence to present and is such that Γ implements f if and only if f satisfies
all (s, t)-incentive constraints for which σ(s) ⊆ σ(t). This justifies the program (3-6) for
our problem. For further details, the reader is referred to Deneckere & Severenov (2008).
Related arguments are presented by Bull & Watson (2007). (Note that our model satisfies
their normality assumption because each the type t buyer can present all subsets of σ(t)).5

In our analysis, the dual of (3-6) will play an important role. In particular, the dual will
allow us to identify the buyer’s strategy in our dynamic bargaining protocol.

Dual Problem (Edges)

minimize
∑
t∈T

µt (7)

subject to

∀t ∈ T \ 0,
∑

s:(s,t)∈E

λ(s, t)−
∑

s:(t,s)∈E

λ(t, s) = πt (8)

∀t ∈ T, vtπt −
∑

s:(t,s)∈E

λ(t, s)(vs − vt) ≤ µt (9)

∀(s, t) ∈ E λ(s, t) ≥ 0, (10)

∀t ∈ T, µt ≥ 0 (11)

The dual has a network interpretation. The multipliers λ(s, t) on the incentive con-
straints can be interpreted as a flow on the edge (s, t) of the incentive graph. Each nonzero
type t is a demand vertex with demand equal to the probability of t, πt. Constraint (8)
is a flow conservation constraint saying that the net flow of vertex t (the inflow minus the
outflow) is equal to the demand of vertex t. So that supply equals demand, we view vertex
0 (with (0, t) ∈ E,∀t ∈ T \ 0) as a supply vertex with supply

∑
t∈T\0 πt = 1.

Next we interpret constraint (9). It is convenient to introduce the notation:6

ψt := vt −
∑

s:(t,s)∈E λ(t, s)(vs − vt)
πt

(12)

Evaluated at a dual optimum, we may interpret ψt as the virtual valuation of type t. ψt
is analogous to the virtual valuation in traditional mechanism design (i.e., when we impose
all incentive constraints, not just those in the incentive graph). Constraint (9) together
with the minimization (7) serve to establish the following relation, which must hold at the

5Bull & Watson (2007) also explain the close relation of their normality assumption to the nested ranged
condition of Green & Laffont (1986) and relate their analysis to that of the latter paper.

6Notice in particular that because π0 = 0, ψ0 = −∞.
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optimum:

µt = max{ψt, 0}πt (13)

In other words µt is the positive part of the virtual valuation of type t multiplied by
the probability of type t. The following proposition now follows from strong duality and
complementary slackness:

Proposition 3.1 At any optimal mechanism a buyer type is served with probability one if
she has a positive virtual valuation and with probability zero if she has a negative virtual
valuation. Types with zero virtual valuation are served with some (possibly zero) probability.
The seller’s revenue is equal to the expected value of the positive part of the virtual valuation:∑

t∈T
max{ψt, 0}πt

Let us compare Proposition 3.1 to the standard mechanism design problem in which we im-
pose all incentive constraints. In this case, assume wlog that the set of types is {0, 1, . . . , n}
and i < j ⇒ vi < vj . In that problem (with monotone virtual valuations), we know that
the downward adjacent constraints bind (even without imposing a monotonicity constraint)
and moreover at the optimum, we would have:7

∑
s

λ(i, s) = λ(i, i+ 1) =
n∑

j=i+1

πj (14)

so that the virtual value can be written:

ψi = vi − (vi+1 − vi)
∑n

j=i+1 πj

πi

Once we know which incentive constraints are binding, it is easy to solve for the exact values
of the multipliers λ(s, t) and hence to determine the virtual values. In contrast, in our case
with only a subset of incentive constraints, we do not know a priori which constraints will
bind. For this reason, we do not know in which “direction” the cumulative distribution
function which typically features in the expression for the virtual valuation should point.
In (12), the flow λ emerging from an optimal dual solution gives that direction (or rather
those directions). The flow conservation constraints (8) relate the flow emanating from t to
the cumulative probability mass of types “above” t which can reach t by passing through a
sequence of binding incentive constraints.8 Such a conceptualization should be useful more
generally for multi-dimensional mechanism design problems with or without evidence.

7To be precise, in this case, (14) always holds at some optimal solution.
8The possibility of flow on cycles may initially appear to interfere with this interpretation. However, as

we explain below, it is always possible to find an optimal dual solution without any flow on cycles.
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Despite the differences between our problem and the standard problem, once the virtual
values are found, Proposition 3.1 shows that the solution to our problem is similar to the
solution to the standard problem in the sense that seller serves only types with non-negative
virtual value (with probability one if the virtual value is positive) and earns the expected
positive part of the virtual value.

We now present some examples which highlight some differences between our problem
and the standard problem:

Example 1 Let T = {0, 1, . . . , 7}, and consider the following diagram, illustrating the in-
centive graph:

4 7 5 6

3

^^>>>>>>>

@@�������
2

^^>>>>>>>

@@�������

1

ggNNNNNNNNNNNNNN

77pppppppppppppp

0

OO

Figure 1: An Incentive Graph

Suppose the edge (s, t) ∈ E if in Figure 1 there is a directed path from s to t. For example,
(1, 7) ∈ E even though in Figure 1 an edge from 1 to 7 is absent. Such an incentive graph
can be induced by a message correspondence in which each type t has message mt and in
addition for each s such that (s, t) ∈ E, t has message ms (where s 6= t⇒ ms 6= mt).

Suppose, moreover that the numbers of the types also represent their values for the object
so that for t = 0, 1, . . . , 7, vt = t. Suppose moreover that π0 = 0, π1 = π2 = π3 =: πa and
π4 = π5 = π6 = π7 =: πb, and define:

K :=
πb
πa
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If K is sufficiently small, then the unique optimal mechanism is given by the following table:

t qt pt

7 1 3
6 1 2
5 1 2
4 1 3
3 1 3
2 1 2
1 0 0
0 0 0

In particular, type 2 receives the object for a price of 2, type 3 receives the object for a price
of 3, and type 1 is not served. Types 4 and 7 mimic type 3, and types 5 and 6 mimic type
2. None of the types receiving the higher price of 3 can mimic any of the types receiving the
lower price of 2. This example illustrates that, in contrast to the case where all incentive
constraints are imposed, the optimal solution may satisfy:

Price Discrimination Different types pay different prices.

Next observe that if K is sufficiently large, then the optimal mechanism becomes:

t qt pt

7 1 7
6 1 6
5 1 5
4 1 4
3 0 0
2 0 0
1 0 0
0 0 0

In this case, types 2 and 3 are no longer served, and the seller achieves prefect price dis-
crimination for types 4, 5, 6, and 7. This illustrates that the optimal mechanism involves
endogenous segmentation. Buyer types are segmented into different classes with different
prices, but ex ante, we do not know how the types will be grouped into which classes.
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Example 2 Let T = {0, 1, 2, 3, 4}. Consider the incentive graph in Figure 2:

4

3

OO

1

@@�������
2

^^>>>>>>>

0

^^>>>>>>>

@@�������

Figure 2: An Incentive Graph

As in Example 1, edge (s, t) ∈ E if in the above diagram there is a directed path from s to
t.

Suppose again that types correspond to values so that vt = t for all types t. Finally the
probabilities of the types satisfy the following relations:

π2 > Kπ4 > K2π1 > K3π3 > π0 = 0 (15)

where K is some positive number. If (15) holds for K sufficiently large, then the unique
optimal mechanism is given by the following table:

t qt pt

4 1 2
3 2/3 2/3
2 1 2
1 2/3 2/3
0 0 0

To see this, observe that if K is sufficiently large, then the optimal mechanism must extract
the full surplus from type 2. The next priority will be to extract as much surplus as possible
from 4 given that she can mimic 2, which determines 4’s payment and allocation. Following
this, we would like to extract as much surplus from 1 as possible subject to the incentive
compatibility of the previously determined allocations and payments for 2 and 4. Since 1
can only mimic the zero type we can set p1 = q1, so the question becomes: how high can we
set q1? We can only set q1 = 2/3 because that is the point at which 4 becomes indifferent
between mimicking 1 and 2. For any higher value of q1, 4 would strictly prefer to mimic
1 than to mimic 2, and the lost revenue from 4 would not be compensated by the increased
revenue from 1. Finally, in the case of 3 we have little leeway. Of the types that 3 can
mimic (1 and 2), 3 prefers the payment and allocation of 1. If we attempted to set q3 > q1
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at a price increment that 3 would find attractive, 4 (who can mimic 3) would also find this
attractive, and the seller would lose too much money on 4 for this to be worthwhile.

This example illustrates two features that an optimal mechanism may possess.

Random Allocation Some types receive the item with a probability strictly between zero
and one.

Failure of Allocation Monotonicity A higher value type t can mimic a lower value type
s, and nevertheless, t receives the item with lower probability than s.

In our example, the higher value type t is 3, and the lower value type s is 2. Note that
random allocation introduces a second form of price discrimination which is distinct from
that found in Example 1, and more akin to second-degree price discrimination.

It is important to note that this example is not knife-edge. Indeed in this example, it
is easy to see that for sufficiently small changes in the parameters (vt, πt : t ∈ T \ 0), the
optimum will remain unique and will still have the properties of random allocation and allo-
cation monotonicity. With a view to Proposition 3.1, types with zero virtual valuation (the
only types eligible for random allocation at the optimum) are not a knife-edge phenomenon,
but rather are robust to small changes in the parameters.

In light of the above examples, it is useful to present the following proposition which
states some important properties of optimal solutions.

Proposition 3.2 There exists an optimal solution to the dual satisfying:

λ(s, t) > 0⇒ vs < vt ∀(s, t) ∈ E (16)

All optimal solutions to the primal and dual satisfy:

λ(s, t) > 0⇒ qs ≤ qt ∀(s, t) ∈ E (17)

Proof: In Appendix.

(16) says roughly that the binding incentive constraints point from higher value types
to strictly lower value types. Referring to edges (s, t) ∈ E with vs < vt as good edges and
with vs ≥ vt as bad edges, a flow λ satisfying (16) is said to avoid bad edges. In the
Examples 1 and 2 we considered incentive graphs without bad edges, although our theory
allows for bad edges.

(17) says that the allocation is increasing along the binding incentive constraints. This
can be thought of as a weaker form of the allocation monotonicity property discussed in
Example 2. In particular, (17) says that insofar as allocation monotonicity is violated, it
must be violated only along non-binding incentive constraints.
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3.2 A Reformulation in Terms of Paths

There is a natural reformulation of problem (3-6) in terms of paths, which will be essential
for our bargaining protocol. Given an allocation q = (qt : t ∈ T ), for each edge (s, t) ∈ E,
interpret vt(qt− qs) as the “length” of the edge. A path is a sequence of vertices t0 → t1 →
· · · → tk with k ≥ 1 and (ti, ti+1) ∈ E for all i = 1, . . . , k. The length of such a path is∑k

j=1 vtj (qtj − qtj−1). In this paper, a path will always assumed to be simple, i.e., paths
containing cycles are excluded. Let P be the set of all paths beginning in 0. For any paths
P and P ′, write P ′ ⊆ P if P ′ is an initial subsequence of P and t ∈ P if t is a vertex in P .

Notice that if we add the IC constraints (4) corresponding to each edge on a path
beginning at t0 = 0, and use p0 = 0, we obtain that

ptk ≤
k∑
j=1

vtj (qtj − qtj−1) = vtkqtk −
k−1∑
r=1

qtr(vtr+1 − vtr)− vt1qt0 . (18)

This observation leads to the following relaxed formulation of (3-6).

Primal Problem (Paths)

maximize
∑
t∈T

πtpt (19)

subject to

∀(t0, t1, . . . , tk) ∈ P, ptk ≤ vtkqtk −
k−1∑
r=1

qtr(vtr+1 − vtr)− vt1qt0 (20)

∀t ∈ T, 0 ≤ qt ≤ 1 (21)

p0 = 0 (22)

(18) says that the price pt is bounded above by the length of any path from 0 to t. This
formulation is relaxed because while the constraints (4) imply the constraints (20), the
converse is not true. Nevertheless, we establish the relevance of this program below.

To write down the dual to this problem, denote by Pt the set of paths that begin with
0 and terminate with t (where t ∈ T \ 0) and by Pt,s the set of paths that contain the edge
(t, s) ∈ E. If P ∈ Pt,s, we also write (t, s) ∈ P . The dual to the path formulation is:

13



Dual Problem (Paths)

minimize
∑
t∈T

µt (23)

subject to

∀t ∈ T \ 0,
∑
P∈Pt

λP = πt (24)

∀t ∈ T, vtπt −
∑

s:(t,s)∈E

∑
P∈Pt,s

λP (vs − vt) ≤ µt (25)

∀P ∈ P, λP ≥ 0, (26)

∀t ∈ T, µt ≥ 0 (27)

Proposition 3.3 Any optimal solution (λP : P ∈ P) to (23-27) induces an optimal solu-
tion (λ(s, t) : (s, t) ∈ E) to (7-11) via:

λ(s, t) =
∑

P∈Ps,t

λP ∀(s, t) ∈ E (28)

Similarly, any optimal solution to (3-6) is an optimal solution to (19-22).

Proof: In Appendix.

The edge and path formulations of our problem are not equivalent in terms of the set of
feasible solutions; however, Proposition 3.3 shows that the two formulations have a common
optimum; this holds for both the primal and the dual. Henceforth, whenever we refer to
an optimal dual solution, we mean an optimal solution which is common to both the path
and edge formulations. A similar comment applies to the primal. Notice finally that in
the above theorem when discussing optimal dual solutions, we did not explicitly mention
the vector µ = (µt : t ∈ T ). This is because the optimal µ is induced from the other
optimal dual variables via (12-13). Similarly we will often omit mention of µ below with
this understanding in mind.

The near equivalence of the edge and path formulations of the dual is closely related to
a well known path decomposition of network flows. Whereas the edge formulation specified
a flow λ(s, t) on edges (s, t), the path formulation specifies a flow λP on paths P . Indeed,
parallel to the discussion of the edge formulation, (24) is a flow conservation constraint
and (25) is related to the virtual valuation. The path decomposition mentioned above
tells us that any flow on edges can be decomposed as a flow on paths and cycles. The
decomposition (28) of Proposition 3.3 only decomposes the optimal flow on edges as a
flow on paths, excluding cycles, and indeed (23-27) does not contain any variables indexed
by cycles. Cycles can be excluded at the optimum in standard network flow problems
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such as the minimum cost flow problem, but as our problem differs somewhat,9 to exclude
cycles, we must appeal to (16) of Proposition 3.2, which tells us that we can always find
an optimal dual solution avoiding bad edges. Any such optimum cannot have any cycles in
its decomposition. Using the duality theorem, this also allows us to eliminate constraints
corresponding to cycles from the path formulation of the primal.

Next observe that
∑

P :t∈P λP is the total amount of flow that goes through t. This
includes flow that terminates in t (

∑
P :∈Pt λP ) as well as flow that passes through t. Given

an optimal dual solution λ denote by φ(s, t|λ) the fraction of all flow that either terminates
or passes through t which came via s. Notice that

φ(s, t|λ) =
λ(s, t)∑

r:(r,t)∈E λ(r, t)
=

∑
P∈Ps,t λP∑
P :t∈P λP

(29)

We shall refer to φ(s, t|λ) as the normalized flow on (s, t).
For any path P = (t0, . . . , tk) (where t0 is not necessarily 0), define:

Φ(P |λ) :=
k∏
i=1

φ(ti−1, ti|λ) (30)

Furthermore, let τ(P ) be the terminal vertex of path P .

Lemma 3.4 There exists an optimal dual solution λ satisfying (16) such that

λP = Φ(P |λ)πτ(P ) ∀P ∈ P (31)∑
P :(t0,...,tk)⊆P

λP =
k∏
i=1

φ(ti−1, ti|λ)
∑

P :tk∈P
λP ∀(t1, . . . , tk) ∈ P (32)

Proof: See Appendix.

In general, any flow on edges has many path decompositions, all of which lead to the
same objective function value. Property (31) of Lemma 3.4 says that we may always choose
a particular path decomposition which has a certain special relation to the flow on edges. In
particular, we may choose the path decomposition so that the flow on any path P is equal
to the the probability of the terminal vertex of P multiplied by the product of normalized
flows on edges in P . Any flow satisfying (31) also satisfies (32). We will call a flow on paths
satisfying (31-32) a proportional flow.

9If instead of (23-27), we were dealing the the closely related minimum cost flow problem, we could argue
that cycles could be excluded at the optimum because the extreme points of that problem do not contain
cycles. However our problem is not quite identical to the minimum cost flow problem because it contains
the additional constraint (9), which prevents us from immediately appealing to the standard argument.
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4 The Bargaining Game

We show that the optimal mechanism can be implemented as a sequential equilibrium of a
dynamic bargaining protocol in which the seller does not commit to his strategy ahead of
time. The dynamic bargaining protocol is as follows:

Dynamic Bargaining Protocol

1. Nature selects a type t ∈ T for the buyer with probability πt.

2. The buyer either:

(a) drops out and the interaction ends, or

(b) makes a cheap talk report of t̂ (where t̂ is a type in T ).

3. The seller either:

(a) requests another cheap talk message, in which case we return to step 2 (this
occurs at most |T | times),

(b) or requests evidence.

4. The buyer can

(a) drop out and the interaction ends, or

(b) present evidence S ⊆ σ(t).

5. The seller makes a take-it-or-leave-it-offer.

Note At step 3, when the seller requests a cheap talk message or evidence, the seller does
not specify which cheap talk message or which evidence is to be furnished.

The protocol is a model of bargaining between seller and buyer. As our main goal is
to interpret the optimal mechanism, there is no discounting so that we think of this as a
fast interaction. The buyer opens first with a claim/offer about the most she can pay. The
seller can respond either by asking for another offer or demanding proof in return for sale
at an announced price. Note that the buyer’s cheap talk claims contain information about
the evidence that she possesses as well as her value.

5 Equilibrium

We now describe an equilibrium of the bargaining protocol which implements the optimal
mechanism. In this section, for economy of exposition, we employ a relatively weak solution
concept, namely Bayesian Nash equilibrium. This requires only that the strategies of the
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players are mutual best replies. In section 6 we show how to strengthen our results using
the stronger solution concept of sequential equilibrium, which requires sequential rationality
off the equilibrium path with respect to beliefs that are consistent with the structure of the
game.

Our plan is as follows. In section 5.1, we present the equilibrium strategies of the two
players. In section 5.2, we verify that the strategies of section 5.1–if followed–implement
the optimal mechanism. Section 5.3 establishes that the buyer’s strategy is a best reply
to the seller’s strategy. Section 5.4 establishes that the seller’s strategy is a best reply to
the buyer’s strategy. We show that the seller’s problem may be interpreted as an optimal
stopping problem. In section 5.5 we state a theorem bringing together the various arguments
presented in this section. We also highlight some interesting qualitative properties of the
equilibrium.

5.1 Equilibrium Strategies

Here we exhibit the equilibrium strategies that implement the optimal mechanism in the
dynamic bargaining protocol. The seller’s strategy depends on an optimal solution to the
primal and the buyer’s strategy depends on an optimal solution to the dual (these problems
have been defined in section 3).

We first describe the buyer’s strategy. Throughout the description we use t to denote
the type chosen by nature. We may assume that after her type t is realized, the buyer
performs a private preliminary randomization which guides her behavior throughout the
course of the game. In particular the buyer randomizes over paths in Pt selecting path P

with probability:

λP
πt

where λ is an optimal dual solution avoiding bad edges and satisfying (31-32). Observe
that (24) implies that these probabilities sum to one. Throughout the description of the
buyer’s strategy, (t∗0, . . . , t

∗
n) denotes the outcome of the preliminary randomization. The

type t buyer reports along path (t∗0, . . . , t
∗
k, . . . , t

∗
n). If evidence is requested following cheap

talk report t∗k, she presents evidence St∗k . She drops out if asked for more cheap talk after
t∗n(= t).

We now present this buyer strategy a little more formally. The description is conditional
on the realization of the buyer’s type and the outcome of the preliminary randomization.
In this case, we have three parts: first, what cheap talk reports to make; second, what
evidence to offer when requested to do so; third, what offers to accept.
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Buyer’s Equilibrium Strategy Part 1

When the buyer is asked for the (k + 1)th report:

• if the previous cheap talk reports were (t∗1, . . . , t
∗
k) and k < n, the buyer makes cheap

talk claim t∗k+1.

• Otherwise, the buyer drops out.

Buyer’s Equilibrium Strategy Part 2

• If the buyer made reports (t∗0, . . . , t
∗
k) (for some k ≤ n) prior to the seller’s request for

evidence, then following this request, the buyer presents evidence St∗k .

• If the buyer made reports which do not correspond to an initial subsequence of the
outcome of her preliminary randomization, then following the evidence request, she
drops out.

Buyer’s Equilibrium Strategy Part 3

If the buyer has a strict preference concerning the seller’s take-it-or-leave-it offer, she follows
her preference, and if indifferent, she accepts.

Next we present a description of the seller’s equilibrium strategy in two parts. In the
first part, we specify whether the seller asks for a cheap talk message or for evidence as a
function of the history of cheap talk messages (i.e. sequence of types) sent by the buyer.
In the second part, we describe how the seller responds when the buyer offers evidence in
response to an evidence request. The seller’s strategy depends on an optimal allocation
(qt : t ∈ T ) in the primal problem.10

In what follows it is useful to define λ(t0) := 1. (Since P was defined so as to exclude
(t0), this has not been previously defined).11 In interpreting the seller’s strategy, it is useful
to keep in mind that if the buyer uses the strategy defined above and λP = 0, then the
probability that the seller will see the sequence of reports P is zero; this follows from the
fact that λ has been chosen to satisfy (31).12

10An optimal allocation (qt : t ∈ T ) is an allocation for which there exists (pt : t ∈ T ) such that
(qt, pt : t ∈ T ) is optimal in the primal.

11P does not include (t0) because we defined a path so that it must contain at least two vertices.
12In particular, (31) implies that

∑
P ′:P⊆P ′ λP ′ > 0⇔ λP > 0; this also implicitly relies on the fact that

for all t 6= 0, πt > 0.
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Seller’s Equilibrium Strategy Part 1

If the buyer made reports P = (t0, . . . , tk), then

• if λP > 0, then:

– if qtk−1
= 1, the seller requests evidence tk.

– if qtk−1
< 1:

∗ with probability 1−qtk
1−qtk−1

, the seller requests another cheap talk message, and

∗ with probability
qtk−qtk−1

1−qtk−1
, the seller requests evidence.

(Here we define qt−1 := 0.)13

• if λP = 0, the seller requests evidence.

Seller’s Equilibrium Strategy Part 2

If the buyer made reports P = (t0, . . . , tk) prior to the seller’s request for evidence, and
presented evidence S, then

• if λP > 0 and S = Stk , then the seller makes an offer at price vtk .

• Otherwise, the seller makes an offer at price:

max{vr : S ⊆ σ(r)}. (33)

We emphasize again–as argued below–the above strategies constitute a Bayesian Nash
equilibrium (i.e., they are mutual best replies), but not a sequential equilibrium. For se-
quential equilibrium, see section 6.

In what follows we refer to the buyer and seller strategies defined in this section as ζ∗

and ξ∗ respectively.

5.2 The Strategies Implement the Optimal Mechanism

We show that the strategies ζ∗ and ξ∗, if followed, implement the same outcome as the
optimal mechanism.

13(17) of Lemma 3.2 and (28) imply that if λP > 0, then qtk−1 ≤ qtk .
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For any path P ∈ Pt, let nP + 1 be the length of P (i.e., the number of vertices in P )
and tPi be the ith vertex in P so that we may write P = (tP0 , . . . , t

P
nP

), and moreover, let:

kP :=

{
min

{
k : qtPk = 1

}
if qtPnP = 1;

nP , otherwise.
(34)

(17) of Lemma 3.2 and (28) imply that qtPkP
= qtPnP

= qt whenever λP > 0. Also recall
the convention (from Section 5.1) that qtP−1

= 0. The strategy profile (ζ∗, ξ∗) induces a
probability of sale for type t buyer of:

∑
P∈Pt

λP
πt

kP∑
k=0

[
k−1∏
i=1

1− qtPi
1− qtPi−1

]
qtPk
− qtPk−1

1− qtPk−1

=
∑
P∈Pt

λP
πt

kP∑
k=0

(
qtPk
− qtPk−1

)
=
∑
P∈Pt

λP
πt
qtkP = qt,

where we have used the fact that by (24),
∑

P∈Pt
λP
πt

= 1. Similarly, the expected payment
of the type t buyer induced by (ζ∗, ξ∗) is:

∑
P∈Pt

λP
πt

kP∑
k=0

[
k−1∏
i=1

1− qtPi
1− qtPi−1

]
qtPk
− qtPk−1

1− qtPk−1

vtPk

=
∑
P∈Pt

λP
πt

kP∑
k=0

(
qtPk
− qtPk−1

)
vtPk

=
∑
P∈Pt

λP
πt

nP∑
k=0

(
qtPk
− qtPk−1

)
vtPk

=
∑
P∈Pt

λP
πt

[
vtP
nP
qtPnP

−
nP−1∑
k=1

qtPk

(
vtPk+1

− vtPk
)
− vtP1 qtP0

]
= pt,

where the second equality uses Theorem 3.2 and (34) and the last equality uses comple-
mentary slackness. It follows that we implement the optimal mechanism.

5.3 Buyer Optimization

Here we prove that ζ∗ is a buyer best reply to ξ∗. If the type t buyer had a profitable
deviation she would have a profitable pure strategy deviation including some sequence of
reports P = (t0, . . . , tk) which she would make before dropping out. We may assume that
P ∈ Ps for some s ∈ T with σ(s) ⊆ σ(t) and λP > 0 because at any moment that it becomes
evident to the seller that one of these conditions is violated, the buyer can no longer attain a
positive utility given the seller’s strategy and so the buyer may as well drop out.14 However,

14Observe in particular that if P = (t0, . . . , tk), λP > 0 and σ(ti) 6⊆ σ(t), then σ(ti+1) 6⊆ σ(t), and so once
ti is reached any seller offer will be weakly above vt. So the type t buyer may as well select the truncation
of P which ends in the last type s in P for which σ(s) ⊆ σ(t), and so drop out after s is reached.

20



it now follows from the arguments like those of section 5.2 that the buyer’s payoff from this
deviation would be vtqs − ps. Incentive compatibility ((4) in the primal problem) implies
this deviation would yield a payoff inferior to vtqt − pt, which by the argument of section
5.2, is the payoff that the type t buyer would attain if she used ζ∗.

5.4 Seller Optimization: An Optimal Stopping Problem

In this section, we argue that ξ∗ is a best reply to ζ∗.
Before proceeding it is useful to consider a few facts. Consider a seller strategy ξ which

always requests another cheap talk message. One can show that λP > 0 exactly if P is a
path that would be observed with positive probability if the seller used ξ against ζ∗ (see
footnote 12). So λP > 0 implies that P is a path, or sequence of reports, that the seller
would observe with positive probability if he did not bring the cheap talk communication
phase to an end by requesting evidence. Next, observe that given the buyer’s strategy ζ∗,
whenever the seller requests evidence following a sequence of reports P = (t0, . . . , tk) (with
λP > 0), the buyer will present evidence Stk

Call a seller strategy a stopping strategy if it agrees with part 2 of the definition of
the seller’s strategy ξ∗ (see section 5.1). If the seller uses a stopping strategy against ζ∗,
then following any sequence of reports P = (t0, . . . , tk), if the seller requests evidence, the
buyer will present evidence Stk , and the seller will make an offer at price vtk .

Lemma 5.1 There exists a seller best reply to ζ∗ which is a stopping strategy.

Proof: Let ξ be a best reply to ζ∗. There exists a deterministic best reply to any buyer
strategy, so for simplicity assume that ξ is deterministic. Consider a non-terminal history
h satisfying (i) following h, it is the seller’s turn to make an offer (step 5), and (ii) h occurs
with positive probability if the players use strategy profile (ζ∗, ξ). Let P = (t0, . . . , tk)
be the sequence of cheap talk reports which were made in h. (i-ii) imply that the buyer
presented evidence Stk . Suppose that conditional on h, ξ offers a price p different than
vtk . Then we may assume that vtk < p because given ζ∗, all buyer types consistent with h

have value at least equal to vtk . Now consider a seller strategy ξ′ that agrees with ξ except
on histories following the sequence of cheap talk reports P . Following P , ξ′ continues to
request cheap talk reports until the buyer presents a cheap talk report s with vs ≥ p, at
which point ξ′ requests evidence, and then behaves as in a stopping strategy, making an
offer of vs if the appropriate evidence is presented and offering (33) otherwise. Then notice
that conditional on the initial sequence of reports P , ξ and ξ′ will lead to the same collection
of buyer types being served, but each such buyer type will pay a weakly higher price under
ξ′ than under ξ. Since ξ was a best reply, it follows that ξ′ is also a best reply. By a
sequence of such modifications we can turn the strategy ξ into a seller strategy ξ0 which is
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a stopping strategy and also a best reply to ζ∗.15

Lemma 5.1 implies that in searching for a best reply to ζ∗, we can restrict attention
to stopping strategies. Since ξ∗ is a stopping strategy, it suffices to show that ξ∗ is better
than all other stopping strategies. This allows us to think of the seller’s problem as an
optimal stopping problem. Stopping corresponds to requesting evidence, and continuing
corresponds to requesting another cheap talk message. Conditional on stopping, there is
no further decision for the seller to make because we restrict attention to strategies where
the seller offers a price vtk where tk was the last cheap talk claim made by the buyer,16 and
all buyer types which have not dropped out by this point will accept so that the seller’s
payoff will be vt. If the seller continues, with some probability the buyer drops out, giving
the seller payoff of zero, and with some probability the buyer makes another report tk+1.
The stochastic process which the seller is facing is endogenous because the distribution of
reports tk+1 is determined by an optimal dual solution λ. Note that stopping strategies
allow the seller to randomize the decision of whether to stop.

Next we characterize the beliefs that the seller has as bargaining progresses.

Lemma 5.2 For any seller strategy ξ, if P = (t0, . . . , tk) is a sequence of cheap talk reports
that the seller observes with positive probability given (ζ∗, ξ), from the seller’s perspective, the
conditional probability that the buyer would–if given the opportunity–present another cheap
talk message (rather than dropping out) and moreover would present cheap talk message
tk+1 given that she has already presented P is:∑

P :(tk,tk+1)∈P λP∑
P :tk∈P λP

Proof: The probability that in the preliminary randomization, the buyer selected a se-
quence P with (t0, . . . , tk) ⊆ P is:

∑
t∈T

∑
P∈Pt:(t0,...,tk)⊆P

πt
λP
πt

=
∑

P∈P:(t0,...,tk)⊆P

λP =
k∏
i=1

φ(ti−1, ti|λ)
∑

P :tk∈P
λP (35)

where the last equality follows from our assumption that λ satisfies (31-32). Similarly, the
probability that the buyer selected P with (t0, . . . , tk, tk+1) ⊆ P is

k∏
i=1

φ(ti−1, ti|λ)
∑

P :tk+1∈P
λP (36)

15In order for ξ0 to be a stopping strategy, we may have to make some additional modifications conditional
on histories which occur with zero probability, and hence do not affect the seller’s payoff.

16Conditional on stopping, ζ∗ is such that (on the equilibrium path) the buyer will always present evidence
Stk .
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Dividing (36) by (35) and using (29), the desired conditional probability is:

φ(tk, tk+1|λ)
∑

P :tk+1∈P λP∑
P :tk∈P λP

=

∑
P :(tk,tk+1)∈P λP∑

P :tk∈P λP

Lemma 5.3 Suppose the buyer uses ζ∗ and let P = (t0, . . . , tk) and λP > 0. Restricting
attention to stopping strategies that induce history P with positive probability:

1. If qtk > 0, then conditional on P , the seller is weakly better off stopping immediately
then continuing for one more step and then stopping.

2. If qtk < 1, then conditional on P , the seller is weakly better off continuing for one
more step and then stopping than stopping immediately.

Proof: Using Lemma 5.2, the seller’s preference between stopping now and stopping in one
step is determined according to the resolution of the following inequality:

vtk︸︷︷︸
stopping now

R
∑

tk+1∈T
vtk+1

∑
P :(tk,tk+1)∈P λP∑

P :tk∈P λP︸ ︷︷ ︸
stopping in one step

This is equivalent to:

vtk
∑

{P :tk∈P}

λP R
∑

tk+1∈Tk+1

vtk+1

∑
{P :(tk,tk+1)∈P}

λP (37)

Using (24), the LHS of (37) can be rewritten:

vtk
∑
P∈Ptk

λP + vtk
∑
tk+1

∑
{P :(tk,tk+1)∈P}

λP = vtkπtk + vtk
∑
tk+1

∑
{P :(tk,tk+1)∈P}

λP .

Substituting into (37) and rearranging gives

vtkπtk R
∑

tk+1∈T
(vtk+1

− vtk)
∑

P∈Ptk,tk+1

λP (38)

To analyze (38) we invoke complementary slackness. If qt < 1, then µt = 0, which implies
via (25) that R becomes ≤ establishing part 2 of the lemma. On the other hand if qt > 0,
then (25) holds with equality, which implies that R becomes ≥ establishing part 1 of the
lemma.
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We now argue by backward induction that ξ∗ is optimal among all stopping strategies.
Consider a history P = (t0, . . . , tk) with λP > 0. First let P be such a history of maximal
length.17 (Here the length of P is the number of vertices in P ). In this case, we must
have qtk = 1,18 and clearly it is optimal to stop as required by ξ∗. Now suppose we have
established the result for all histories P ′ (with λP ′ > 0) that are longer than P . First
suppose that qtk > 0. It follows from Proposition 3.2 that for all P ′ = (t0, . . . , tk, tk+1) with
λP ′ > 0, qtk+1

> 0. It follows from the inductive hypothesis that conditional on any such
P ′, it would be optimal for the seller to stop. Lemma 5.3 now implies that following P ,
stopping immediately would be optimal as required by ξ∗. Next suppose that qtk < 1. Then
by Lemma 5.3, the seller would be weakly better off continuing one step and then stopping
than stopping immediately, and so continuing and then following ξ∗ (which by backwards
induction, is optimal) would be even better, again as required by ξ∗.

It now follows from Lemma 5.1 that ξ∗ is a best reply to ζ∗.

5.5 Summary of the Argument

We summarize the argument given above.

Theorem 5.4 (ζ∗, ξ∗) is a Bayesian Nash equilibrium of the dynamic bargaining protocol
which implements the optimal mechanism.

The following proposition gives some of the qualitative properties of the equilibrium.

Proposition 5.5 Let (t0, t1, . . . , tk) be any sequence of cheap talk reports that occur with
positive probability in the equilibrium described above. Then:

vt0 < vt1 < · · · < vtn (39)

St0 ⊆ St2 ⊆ · · · ⊆ Stn (40)

Proof: This follows from the fact that
∑

P∈Ps,t λP > 0 implies that both vs < vt and
Ss ⊆ St. The former inequality uses (28) and the fact we have chosen an optimal λ to avoid
bad edges in accordance with Lemma 3.2, while the latter inclusion does not even depend
on the optimality of λ but merely invokes (1).

In each round of the bargaining protocol the seller can ask the buyer for another cheap
talk message or for the presentation of evidence supporting the buyer’s current cheap talk

17Such a history exists because T is finite λ has no bad edges; in other words, a sequence of cheap talk
reports cannot form a cycle.

18Suppose that qtk < 1. Then by complementary slackness µtk = 0. But then the fact that vtkπtk > 0
and (25) imply that there must exist tk+1 ∈ T with vtk < vtk+1 and P ′ ∈ Ptk,tk+1 such that λP ′ > 0.
It follows that φ(tk, tk+1|λ) > 0. Since λ avoids bad edges, tk+1 6∈ (t0, . . . , tk). So consider the path

P ′′ = (t0, . . . , tk, tk+1). By Lemma 3.4, λP ′′ = λPφ(tk, tk+1|λ)
πtk+1
πtk

> 0, contradicting the assumption that

P was of maximal length.
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communication, ending the cheap talk phase. While not required by the protocol, in equi-
librium, the buyer will make a sequence of concessions, claiming to have successively higher
valuations or else drop out if the seller asks him to make concessions too many times ((39)
of Proposition 5.5). The cheap talk phase also contains cheap talk claims about the ev-
idence the buyer could present if called upon to do so. In equilibrium, these claims are
also increasing, in the sense that the buyer claims to have more and more evidence as the
protocol progresses ((40) of Proposition 5.5). The motive for withholding evidence is that
the evidence may suggest that the buyer has a higher value. As the buyer admits to having
successively higher values, she admits to possessing successively more evidence which she
previously withheld.

All along, the buyer’s communication is constrained by the need to present supporting
evidence at the end. When the seller finally requests evidence, the buyer presents the
evidence she claimed to have at her last cheap talk claim–which due to the increasing
nature of the evidential claims is the cumulative evidence that she has claimed to have
during the procedure. When the buyer presents the evidence she claimed to have in his
most recent cheap talk claim, the seller makes an offer to sell the object at the value the
buyer claimed to have during her most recent cheap talk claim. If the buyer were to fail to
present this evidence, the seller would offer to sell the object only at a high price. The seller
faces an optimal stopping problem: should he ask for a further concession from the buyer,
risking the possibility that the buyer will be unwilling to make one and thus drop out?
Updating on the equilibrium reporting strategy, each further cheap talk report gives the
seller more information about the buyer’s type, but at some point it is no longer worthwhile
for the seller to acquire additional information for fear of driving the buyer away.

6 Sequential Rationality off Equilibrium

In the previous section we exhibited a Bayesian Nash equilibrium of the dynamic bargaining
protocol which implements the optimal mechanism. In this section, we establish that this
can be extended to sequential equilibrium. Ordinarily, the definition of sequential equilib-
rium is problematic when players have a continuum of pure strategies. However, in our
game only the seller has a continuum of pure strategies (the buyer has finitely many strate-
gies) and the seller has no private information. Thus, the issue of disciplining the buyer’s
beliefs about the seller’s type–which would be the source of the problem–is moot.19

Theorem 6.1 There exists a sequential equilibrium of the dynamic bargaining protocol
which induces the same probability distribution over terminal histories as (ζ∗, ξ∗) and thereby
implements the optimal mechanism.

19It is also inessential that the seller has a continuum of strategies as we could restrict the seller to make
offers from the set {vt : t ∈ T} without materially changing the game.
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The proof is in the appendix. The strategies associated with this equilibrium are some-
what more complicated than those presented in Section 5.1. All the added complexity
involves only behavior off the equilibrium path. This result assures us that the equilibrium
studied in the previous section does not rely on non-credible threats.

7 Many Rounds of Communication

In this section, we present an example that illustrates various of the ideas discussed above.
In particular, the example is of interest because when the equilibrium constructed in Section
5.1 is applied to this example, it involves many rounds of cheap talk communication. Indeed,
the equilibrium involves arbitrarily many rounds depending on the choice of the number n
below. The appendix contains proofs of various claims we make below about this example.

Let T = X ∪ Y ∪ {0}, where X = {x1, . . . , xn}, Y = {y0, y1, . . . , yn}. So we partition
the set of types (other than the zero type) into two sets X and Y . Let us refer to the types
in X as x-types, and the types in Y as y-types. As usual, we assume that v0 = π0 = 0.
Moreover we assume that:

vx1 < vx2 < · · · < vxn < vy0 < vy1 < vy2 < · · · < vyn (41)

This means that within the set of x-types and within the set of y-types, valuations are
strictly increasing in the indices of the type. However, all y-types have higher valuations
than all x-types. The incentive graph is given by:

E = {(0, t) : t ∈ T \ 0} ∪ {(xi, xj) ∈ X ×X : i < j} ∪ {(xi, yj) ∈ X × Y : i ≤ j} (42)

∪ {(yi, yj) ∈ Y × Y : i < j}

This can be represented pictorially:

y0 // y1 // y2 // · · · // yn

0

OO

// x1

OO

// x2

OO

// · · ·

OO

// xn

OO

Figure 3: The Incentive Graph

Each directed path in Figure 3 corresponds to an edge in the incentive graph (42). So all
types can mimic the zero type, all x-types can mimic lower index x-types, all y-types can
mimic lower index y-types, and y-types can also mimic x-types with a weakly lower index.
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The above incentive graph can be induced by the message structure

σ(t) = {ms : (s, t) ∈ E} ∪ {mt} ∀t ∈ T \ 0

σ(0) = {m0}

Where we assume that if s 6= t, then ms and mt are distinct messages.
We now make some assumptions which allow us to explicitly solve for the optimal

mechanism. First, a definition is useful. Working backwards from n, we recursively define:

δn := 0 (43)

δi−1 := δi +
vxiπxi − (vxi+1 − vxi)

[
δi +

∑n
j=i+1 πxj

]
vyi − vxi

∀i = 1, . . . , n (44)

Note that when i = n, we define (vxi+1 − vxi)
[
δi +

∑n
j=i+1 πxj

]
:= 0, and similarly in (47)

below, when i = n, we define (vxi+1 − vxi)
[∑n

j=i+1 πxj+
∑n
j=i+1 πyj

πxi

]
:= 0. We also assume

that:

vyi − (vyi+1 − vyi)
∑n

j=i+1 πyj

πyi
> 0 ∀i = 0, 1, . . . , n− 1

(45)

vxi − (vxi+1 − vxi)
∑n

j=i+1 πxj

πxi
> (vxi+1 − vxi)

δi
πxi

∀i = 1, . . . , n− 1

(46)

vxi − (vxi+1 − vxi)

[∑n
j=i+1 πxj +

∑n
j=i+1 πyj

πxi

]
− (vyi − vxi)

πyi
πxi

< 0 ∀i = 1, . . . , n

(47)

For any profile of valuations satisfying (41), there are many probability distributions (πt :
t ∈ T ) such that (45-47) are satisfied. (45) implies that if (aside from the zero type) there
were only y-types (where we take the restriction of the incentive graph to these types and
the probabilities re-normalized to sum to one), then the optimal allocation would allocate
the object to each type with probability 1.

Similarly, (46) implies that if there were only x-types, then it would be optimal to
allocate the object to all types. But the assumption (46) for x-types is a stronger assumption
than the corresponding assumption (45) for y-types. Indeed, a simple induction using (46)
implies:

δi > 0 ∀i = 0, 1, . . . , n− 1, (48)
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and hence (46) also implies:

vxi − (vxi+1 − vxi)
∑n

j=i+1 πxj

πxi
> 0 ∀i = 1, . . . , n− 1 (49)

(47) says that if the set of types were of the form Ti := {xi, xi+1, . . . , xn}∪{yi, yi+1, . . . , yn}∪
{0} for i = 1, . . . , n, and the incentive graph were {(s, t) ∈ (Ti \ {yi}) × (Ti \ {yi, 0}) : s 6=
t} ∪ {(xi, yi)}, then it would be optimal not to allocate the object to xi. Notice that T1

differs from T because T contains y0 whereas T1 does not; we do not define a set T0 because
there is no type x0.

Given the above assumptions, the optimal prices and allocation for the y-types are given
by:

qyi := 1 ∀i = 0, 1, . . . , n (50)

pyi := vy0 ∀i = 0, 1, . . . , n (51)

For the x-types the optimal allocation and prices can be defined recursively as follows:

qx1 :=
vy1 − vy0
vy1 − vx1

(52)

px1 := vx1qx1 (53)

qxi :=
(vyi − vy0)− (vxiqxi−1 − pxi−1)

vyi − vxi
∀i = 2, . . . , n (54)

pxi := vxi(qxi − qxi−1) + pxi−1 ∀i = 2, . . . , n (55)

It is straightforward to verify that:

0 < qx1 < qx2 < · · · < qxn < 1 (56)

Moreover, the mechanism given by (50-55) is the unique optimal mechanism. It is also the
case that at every dual optimal solution we have that:

λ(xi−1, xi) > 0 ∀i = 2, . . . , n (57)

λ(0, x1) > 0 (58)

λ(xh, xi) = 0 ∀i = 2, . . . , n, ∀h < i− 1 (59)

λ(0, xi) = 0 ∀i = 2, . . . , n (60)

It follows that the unique path P from 0 to xn with λP > 0 is P = (0, x1, x2, . . . , xn), so type
xn is asked to submit a cheap talk report n+1 times in the equilibrium constructed in Section
5.1. To describe the equilibrium in more detail, each x-type xi, uses the sequence of reports
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(0, x1, x2, . . . , xi), dropping out if the seller requests another message after xi. Each y-type
yi randomizes over two sequences of reports at the preliminary phase: (0, x1, x2, . . . , xi, yi)
and (0, y0, y1, . . . , yi). If the seller receives the report y0, he requests evidence and then
given that evidence Sy0 = {m0,my0} is presented, he makes a take-it-or-leave-it offer at
price vy0 . If the seller receives the report xi, he randomizes between asking for another
cheap talk report and and requesting evidence.

8 Special Cases

In this section, we discuss some special cases of our model under which the optimal mech-
anism or dynamic bargaining protocol simplify.

8.1 Deterministic Optima

We have already seen in Example 2 and Section 7 that in general there may not exist an
optimal mechanism which is deterministic. Our first result concerns the case where there
exists an optimal mechanism which is deterministic.

Proposition 8.1 If there exists an optimal mechanism which is deterministic (i.e., with
qt ∈ {0, 1},∀t ∈ T ), then there exists a sequential equilibrium of the dynamic bargaining
protocol implementing the optimal mechanism in which the buyer always makes only one
cheap talk report before the seller requests evidence.

The proof of this theorem depends on a modification of the arguments supporting the
results in sections 5-6. Due to the overlap, we only sketch the proof here.

First, we present the strategies. As in section 5.1, the seller’s strategy depends on the
allocation q = (qt : t ∈ T ) at the optimal mechanism.

Seller’s Equilibrium Strategy

1. After the buyer’s first report t, the seller requests evidence.

2. If the buyer presented report t and then evidence S, then

• if qt = 1 and S = St, the seller makes an offer at price vt.

• otherwise, the seller makes an offer at price:

max{vr : S ∈ σ(r)}.

To describe the buyer’s strategy, we require an optimal dual solution λ avoiding bad
edges and satisfying (31-32). If the optimal allocation is deterministic, then (17) of Lemma
3.2 and (28) imply that for all t ∈ T with qt = 1 and all P = (t0, . . . , tk) ∈ Pt with λP > 0,
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there exists a unique vertex ti such that qtj = 1 for all j ≥ i and qtj = 0 for all j < i. Call
this vertex θ(P ). The following specifies the buyer’s behavior when she is of type t:

Buyer’s Equilibrium Strategy

1. At the cheap talk stage,

• if qt = 1, the buyer presents cheap talk message r with probability:∑
P∈Pt:θ(P )=r λP

πt
. (61)

• otherwise, the buyer drops out.

2. At the evidence presentation stage, if qt = 1 and the buyer presented cheap talk
message r with Sr ⊆ σ(t), then the buyer presents evidence Sr.

As in section 5.1, we assume that the buyer will accept a seller offer unless she strictly
prefers to reject. The above descriptions of the strategies are incomplete insofar as they do
not specify behavior in all counterfactual histories. Following the arguments similar to those
in section 5 and the proof of Theorem 6.1 in the appendix, one can extend these strategies
to all counterfactual histories in such a way that they form a sequential equilibrium imple-
menting the optimal mechanism. The key observation in modifying the above-mentioned
arguments is that a deterministic mechanism induces a deterministic seller strategy in sec-
tion 5. Moreover, this deterministic strategy decides whether to request evidence and what
price to offer (given that appropriate evidence is presented) based only on the last cheap
talk report presented. Once randomization has been eliminated from the seller’s strategy,
there is no point in having the buyer present a sequence of reports. If the buyer is of a
type that will ultimately be served, she may as well immediately present a message which
triggers an evidence request (under the seller’s strategy in section 5).20 If the buyer will
not be served, she may as well drop out immediately. We modify the seller’s strategy ac-
cordingly to be based only on this single cheap talk report. The seller experiences some loss
of information relative to the old equilibrium, but this does not force him to reconsider his
strategy because in the old equilibrium his strategy was in all essential respects measurable
with respect to the information that he now receives.

One can go further and eliminate the seller’s evidence request altogether. Since the seller
now immediately requests evidence conditional on any report, we may as well consider a
game in which the buyer presents his evidence at the same time that she presents her cheap
talk message, and the seller simply makes a take-it-or-leave-it offer. If qt = 1, the type t

20We do not mean that holding fixed ξ∗, it is a best reply for the buyer to claim to be the type that will
ultimately be served. Rather we may alter ξ∗ such that it is a best reply for the buyer to claim to be the
type that will ultimately be served, and this alteration will not affect anything of substance.
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buyer presents the report-evidence pair (r, Sr) with probability (61). However we emphasize
that such a simplification is only possible when the optimal mechanism is deterministic,
because when the optimal mechanism is random, the buyer generally cannot predict with
certainty whether the seller will request evidence and proceed to the take-it-or-leave-it offer
prior to making her claim.

We conclude this section by providing an example which shows that despite implement-
ing a deterministic mechanism the equilibria of the bargaining protocol described in this
section still involve randomization on the part of the buyer. Such randomization is generally
unavoidable when implementing the optimal deterministic mechanisms with our dynamic
bargaining protocol.

Example 3 Suppose that T = {0, x1, x2, y, z} where v0 = π0 = 0, vxi = 1 and πxi = 1/5
for i = 1, 2, vy = vz = 2, and πy = πz = 3/10. Suppose further that σ(0) = {m0}, σ(x1) =
{m0,m1}, σ(x2) = {m0,m2}, σ(y) = {m0,m1,m2}, σ(z) = {m0,m3}. Then the optimal
mechanism is such that q0 = p0 = 0, qt = pt = 1 for t ∈ {x1, x2, y} and qz = 1 and pz = 2.
On the other hand, in any sequential equilibrium of the dynamic bargaining protocol in which
the seller uses a pure strategy, the buyer must use a mixed strategy. One class of equilibria
implementing the optimum are such that if the seller sees a cheap talk claim t ∈ {x1, x2, z},
he requests evidence, and if the corresponding evidence St is presented, the seller makes a
take-it-or-leave-it offer at price vt; on the other side, the type 0 buyer drops out immediately,
types x1, x2, and z report their types truthfully at the first stage of the cheap talk phase, and
type y claims to be type x1 with probability α and type x2 with probability 1 − α where
1/3 ≤ α ≤ 2/3. If α were greater than 2/3, then conditional on seeing a cheap talk report
x1 and evidence Sx1 = {m0,m1}, the seller would prefer to make a take-it-or-leave-it offer
at price 2 (or even 2− ε to guarantee acceptance) than to make an offer at price vx1 = 1, as
required. Similarly, the equilibrium would unravel if α < 1/3. Certainly, within this class
of equilibria, the type y buyer cannot play a pure strategy. Indeed, there does not exist any
pure strategy sequential equilibrium implementing the optimum.

8.2 Deterministic Equilibria

Motivated by Example 3, in this section we present a condition under which there exist pure
strategy equilibria of the dynamic bargaining protocol implementing the optimal mechanism
(which of course also implies that the optimal mechanism is deterministic). In this case,
we also present an explicit formula for the virtual value and an explicit solution for the
optimal mechanism. The case considered here encompasses the standard case in which all
types can mimic all other types (the complete graph) and the virtual values are monotone,
but is considerably more general. Our explicit solutions for the virtual valuations and the
optimal mechanism generalize the well-known solutions for the standard case.

31



Define a (directed) tree to be a graph such that for some vertex 0 (called the root)
and any other vertex t, there is a unique path from 0 to t. A graph G = (V,E) is acyclic if
it does not contain a cycle (that is, there does not exist a sequence (t0, t1, . . . , tn) of vertices
with (ti−1, ti) ∈ E for i = 1, . . . , n and t0 = tn. For any graph G the transitive reduction

of G is the smallest subgraph of G whose transitive closure is equal to the transitive closure
of G.21 For any acyclic graph, the transitive reduction exists and is unique.

Given an incentive graph (T,E), define

E+ := {(s, t) ∈ E : vs < vt}

So E+ is the set of good edges. It is easy to see that the graph G+ := (T,E+) is acyclic.
If the transitive reduction of G+ is a tree, then we say that the incentive graph has tree

structure. It is easy to see that if G+ is a tree, it has root 0. The standard case of the
complete graph has tree structure. In that case, we enumerate the types {0, 1, . . . , n} so
that if i < j vi < vj , the transitive reduction of G+ contains precisely the edges of the form
(i, i + 1); so there will be edges only among adjacent types pointing from a lower type to
a higher type. More generally, the transitive reduction will have a similar character, with
edges connecting adjacent types, but the types will not necessarily form a linear order but
rather will allow for a more general tree structure. Example 1 falls into this more general
case of tree structure. Figure 1 actually displays not the entire graph G+ (or G)22 but
rather only the edges in the transitive reduction of G+.

If the incentive graph has tree structure, then for any t ∈ T , let P t refer to the unique
path from 0 to t in the transitive reduction of G+. Let ϕ(t) be the unique vertex preceding
t in P t. ϕ(t) is the predecessor of t.

Under tree structure, for each t ∈ T , define:

ψ̂t := vt −
∑

s:t=ϕ(s)

(vs − vt)
πs +

∑
r:(s,r)∈E+ πr

πt

We refer to ψ̂t as type t’s quasi-virtual valuation on a tree. Such quasi-virtual valuations
have expressions analogous to the virtual valuation in Myerson (1981) but adapted to the
tree structure of the incentive graph. However, if the notion of virtual value is defined in
terms of the Lagrangian for the mechanism designer’s problem as in section 10.5 of Myerson
(1991), or equivalently if it is defined as in (12), the virtual value need not coincide with
the quasi-virtual value.

21For a more formal definition and treatment see Aho, Garey & Ullman (1972).
22In Example 1, it so happens that G+ = G, but this is inessential.
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We say that the incentive graph has single-crossing quasi-virtual valuations if:

(s, t) ∈ E+ ⇒
(
ψ̂s ≥ 0⇒ ψ̂t ≥ 0

)
A stronger condition implies single-crossing quasi-virtual valuations is monotone quasi-

virtual valuations:

(s, t) ∈ E+ ⇒ ψ̂s ≤ ψ̂t

The advantage of this latter stronger condition is that it would be more promising if we
were to attempt to extend Proposition 8.2 to a setting with multiple buyers.

Proposition 8.2 Assume that the incentive graph has tree structure and single-crossing
quasi-virtual valuations. Then there exists an optimal dual solution such that:

ψ̂t = ψt, ∀t ∈ T (62)

An optimal mechanism is given by:

qt =

{
1, if ψ̂t ≥ 0;
0, otherwise.

pt =

{
min

(
{vt} ∪ {vs : (s, t) ∈ E, ψ̂s ≥ 0}

)
, if ψ̂t ≥ 0;

0, otherwise.
(63)

Moreover, there exists a deterministic equilibrium involving only one round of cheap talk in
the bargaining protocol implementing the optimal mechanism. In this equilibrium, a type t
buyer claims to be the first type r in P t with ψ̂r ≥ 0 if ψ̂t ≥ 0 and immediately drops out if
ψ̂t < 0. The seller offers price vr following a cheap talk claim r if r is the unique type in P r

with non-negative virtual valuation and the appropriate verifying evidence Sr is presented.

Proof: In Appendix.

In addition to tree structure, Example 1 satisfies monotone quasi-virtual values (hence
also single-crossing quasi-virtual values), and so illustrates the proposition. In that example,
the types with non-negative virtual values are the types who are served, and the price paid
by any such type t is the value of the first type s with non-negative virtual value on the
unique path from 0 to t in the transitive reduction of G+. The difference between the
solutions for K small and K large in that example is explained by the fact that when K is
small, all types except 0 and 1 have non-negative quasi virtual values, whereas when K is
large only types 4, 5, 6, and 7 have non-negative virtual values, so that increasing K causes
virtual values to turn positive further up on the tree.
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8.3 Binary Values

In this section, we consider the special case in which all types (except type 0) are of one
of two values vL and vH with 0 < vL < vH . Notice however that different types with the
same value generally have different messages. This case is closely related to the persuasion
models presented in Glazer & Rubinstein (2004), Glazer & Rubinstein (2006), and Sher
(2010). That model involved a speaker and listener. The speaker knows the state in a set
x ∈ X and the listener does not. In each state x the speaker has a set of messages σ(x).
The listener must make a binary decision, to either accept or reject the speaker’s request.
The listener would like to accept the speaker’s request if x ∈ A (the set of accept states),
and reject the speaker’s request if x belongs to the complementary set R (the set of reject

states.)
One difference is that in the model of persuasion, it is assumed that the speaker can

only present one message in σ(x) whereas in our model, the buyer can produce any subset
of σ(t). However define:

σ∗(t) := {S : S ⊆ σ(t)} (64)

This is a message correspondence in which the individual messages are in fact sets of mes-
sages. Assuming the buyer can produce one message in σ∗(t) is equivalent to assuming
that the buyer may present any number of messages from σ(t). Message structures of the
form (64) are strictly less general than general message structures when one assumes that
the speaker/buyer can only present one hard message. Such message structures correspond
roughly to the class of normal message structures (see Bull & Watson (2007), Sher (2010))
and for the purpose of the persuasion model, there is no additional generality in allowing
for message correspondences that are normal but not of the form (64).

Glazer & Rubinstein (2004) proved a credibility result showing that there is no value
to commitment for the listener in this problem, and Sher (2010) generalized this result to
allow for a broader class of message correspondences.23 The dynamic game implementing
the optimum involves the speaker presenting for a cheap talk claim, followed by an evidence
request by the listener and then a possibly random decision (accept or reject) contingent
on the cheap talk claim and evidence presented.

23In the context of a different version of the model which does not allow evidence presentation to be pre-
ceded by back-and-forth cheap talk communication, Glazer & Rubinstein (2006) proved a distinct credibility
result.
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Proposition 8.3 With binary values, the model presented here is equivalent to the optimal
persuasion model in Sher (2010) (a generalization of Glazer & Rubinstein (2004)) when the
message structure is given by (64), the set of states is the set of types T \ 0, and:

A := {t : vt = vL} (65)

R := {t : vt = vH} (66)

Sher (2010) is strictly more general than the binary value version of the model presented
here because it does not require the message correspondence to be of the form (64).

The translation between the price discrimination and persuasion models established by
Proposition 8.3 is as follows: The speaker is a buyer who would like to persuade the listener,
a seller, to charge a low price vL. The seller would like to accept the request and charge
a low price if the buyer has a low value and reject the request charging a high price if the
buyer has a high value.

With binary values our main theorem corresponds to the credibility result for the optimal
persuasion model.

Sher (2010) showed that when the message structure is normal, then there exists an
optimal dynamic persuasion rule which is deterministic.24 An optimal dynamic persuasion
rule corresponds to an optimal mechanism in our setting.25 It then follows from Propositions
8.1 and 8.3 that:

Proposition 8.4 With binary values there always exists an optimal mechanism which is
deterministic. There is a sequential equilibrium implementing the optimal mechanism in
the bargaining protocol which contains only one round of cheap talk communication.

Sher (2010) also showed that under normality, the dynamic persuasion model could
be solved by solving a maximum flow problem. This also yields a method of solution for
the optimal mechanism in our model with binary values, as well as the equilibrium of the
bargaining protocol supporting this optimal mechanism. In particular, define A and R as
in (65-66). Then form a graph with with vertices {x, y}∪ (T \0). Here x is a source and y is
a sink. The graph has an edge (x, s) for all s ∈ A, and edge (t, y) for all t ∈ R and an edge
(s, t) whenever σ(s) ⊆ σ(t), s ∈ A, and t ∈ R. Each edge of the form (x, s) has capacity
πs, each edge of the form (t, y) has capacity πt, and each edge of the form (s, t) has infinite

24Glazer & Rubinstein (2006) showed that in general the optimal static persuasion rule is deterministic
regardless of normality; see Sher (2010) for the distinction between static and dynamic persuasion rules.

25The reader may wonder about the qualifier “dynamic” on persuasion rules given that in our setting,
the optimal mechanism is static. The reason for this is that Sher (2010) considered message structures
that are not normal, for which the optimal mechanism must generally be dynamic even when the listener
(corresponding to our seller) can commit. In the special case of normal message structures (such as those
satisfying (64) and hence such as the ones studied here), it is possible to prove that one can restrict attention
to static mechanisms in the persuasion problems.
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capacity. A minimum cut in this graph corresponds to an optimal mechanism.26 All types
on the source side of the cut are served and receive price vL. All types t on the sink side of
the cut are either not served if t ∈ A or served at the high price vH if t ∈ R. The buyer’s
reporting strategy corresponds to a maximum flow in this graph. In the equilibrium of the
bargaining protocol implementing the optimal mechanism, each type in A tells the truth
(or drops out if not served), whereas the types t in R on the source side of the cut claim
to be type s ∈ A with probability proportional to the flow on (s, t), and types t ∈ R on
the sink side of the cut truthfully reveal their type. In this way, the equilibrium supporting
the optimal mechanism will generally involve randomization. For further details on this
construction, see Sher (2010).

9 Conclusion

This paper examined the seller’s optimal mechanism for maximizing revenue when different
types of the buyer have a differential ability to communicate. The main result showed
that the optimal mechanism could be implemented as a sequential equilibrium of a natural
bargaining protocol yielding a natural procedure whereby the seller could optimally price
discriminate on the basis of the buyer’s evidence.

Our problem shares with the problem of multi-dimensional mechanism design the quality
that the binding incentive constraints are not known a priori. Hence, a succinct description
of the optimal mechanism in these cases is not possible. However, the techniques we de-
velop here suggest that it may still be possible to provide an interpretation of the optimal
mechanism in terms of a dynamic bargaining protocol.

10 Appendix: Proofs

Notation

Here we collect some useful notation. P[s−t] is the set of all s − t paths (i.e., paths from s

to t). So recalling that Pt was defined to be the set of 0− t paths, we have Pt = P[0−t], and
similarly P =

⋃
t∈T Pt. Finally, we define Pt→ :=

⋃
s 6=t P[t−s].

For P = (t0, . . . , tn) ∈ P and 0 ≤ k ≤ n, we write:

(t0, . . . , tk) ⊆ P (67)

Note that for (67), (t0, . . . , tk) must an initial subsequence of P . If P = (t0, . . . , tn) if
i = 0, . . . , n, we write: ti ∈ P and (ti−1, ti) ∈ P .

26For a definition of network theoretic notions referred to here but not defined in the text, the reader is
referred to Ahuja, Magnanti & Orlin (1993).
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Results

Proof of Proposition 3.2

The proposition is established by means of two lemmas.

Lemma 10.1 All optimal solutions to the primal and dual satisfy (17).

Proof: Let (q, p) and λ be, respectively, optimal solutions to the primal (3-6) and the dual
(7-11). If λ(s, t) > 0, then complementary slackness implies:

pt = vt(qt − qs) + ps.

So if qs > qt, then ps > pt. But then redefining qt := qs and pt := ps yields another feasible
primal solution. In particular, t’s incentive constraints are still satisfied, as are those of all
types who can mimic t by transitivity of E and this leads to higher revenue, a contradiction.

To prove that we can find an optimal dual solution λ satisfying (16) it is convenient
to consider the path formulation of the dual (7-11). A cycle is a sequence of vertices
(t0, t1, . . . , tn) with (ti−1, ti) ∈ E for i = 1, . . . , n, t0 = tn, and all vertices t1, . . . , tn distinct.
Let C be the set of cycles. Note that P ∩ C = ∅. Define P∗ := P ∪ C. Then by a standard
result we can find (λP : P ∈ P∗) (known as a path decomposition) such that:27

λ(s, t) =
∑
P∈P∗

λP (68)

27For example, in our problem, starting with (λ(s, t) : (s, t) ∈ E), we can construct (λP : P ∈ P∗) as
follows.

1. Define λP := 0, ∀P ∈ P∗, π̂t := πt,∀t ∈ T \ 0.

2. Find P := (t0, . . . , tn) ∈ P∗ with λP = 0, λ(ti−1, ti) > 0,∀i = 1, . . . , n and such that if P ∈ P, then
π̂tn > 0. If no such P exists, (λP : P ∈ P∗) is the desired path flow. Otherwise, if such a P exists, go
to step 3.

3. If P ∈ P, let γ := min({π̂tn}∪ {λ(ti−1, ti) : i = 1, . . . , n}), and let λP := γ, λ(ti−1, ti) := λ(ti−1, ti)−
γ, π̂tn := π̂tn − γ. If P ∈ C, let γ := min{λ(ti−1, ti) : i = 1, . . . , n}, and let λP := γ, λ(ti−1, ti) :=
λ(ti−1, ti)− γ. Go to step 2.

The validity of the algorithm is established by arguing inductively that as the algorithm progresses, (i) the
value of the sum λ(s, t) +

∑
P∈P∗:(s,t)∈P λP remains constant, (ii) (λ(s, t) : (s, t) ∈ E) satisfies (8) with π̂t

playing the role of πt, and (λP : P ∈ P∗) satisfies (70) with πt− π̂t playing the role of πt, and (iii) as long as
(λ(s, t) : (s, t) ∈ E) is not uniformly zero, we can find an appropriate P to continue the algorithm in step 2.
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Let P∗s,t be the set of paths (or cycles) in P∗ such that (s, t) ∈ P . Given this translation,
we can rewrite the dual (7-11) as follows:

minimize
∑
t∈T

µt (69)

subject to

∀t ∈ T \ 0,
∑
P∈Pt

λP = πt (70)

∀t ∈ T, vtπt −
∑

s:(t,s)∈E

∑
P∈P∗t,s

λP (vs − vt) ≤ µt (71)

∀P ∈ P∗, λP ≥ 0, (72)

∀t ∈ T, µt ≥ 0 (73)

Observe that constraint (70) involves only a summation of variables indexed by simple paths
leading to t and no cycles. (69-73) differs from (23-27) in that in (71) of P∗s,t plays the role
of Ps,t in (25), and in (72) we quantify over P∗ whereas in (26) we quantify over P.

Lemma 10.2 There is an optimal solution to the dual (7-11) with no bad edges.

Proof: Suppose not. Amongst all optimal dual solutions choose one with the smallest
discrepancy, where we measure the discrepancy by:∑

(s,t)∈E:vs≥vt

∑
P∈P∗s,t

λP [1 + (vs − vt)] .

Define:

P+ := {(t0, . . . , tn) : t0 = 0, (ti−1, ti) ∈ E and λ(ti−1, ti) > 0 for i = 1, . . . , n}

There must be some P ∈ P+ with a bad edge. In particular, if (s, t) is the bad edge with
λ(s, t) > 0, then by (70), there must be P ′ ∈ Ps with λP > 0. To arrive at P , simply append
the edge (s, t) to P ′. We may choose P = (t′0, . . . , t

′
n) ∈ P+ of minimal length containing

a bad edge (where “length” refers to the number of vertices in P ). We must have n ≥ 2.
Moreover because P is of minimal length, (t′n−2, t

′
n−1) is a good edge and (t′n−1, t

′
n) is a bad

edge. If P 6∈ P, then there exists integer k with 0 < k < n such that (t′k, . . . , t
′
n) ∈ C (so

that t′k = t′n). Define:

Q :=

{
(t′0, . . . , t

′
n), if P ∈ P;

(t′k, . . . , t
′
n), if P 6∈ P.

It is possible to choose the path decomposition (λ(s, t) : (s, t) ∈ E) with λQ > 0.28 Observe
that the discrepancy does not depend on the choice of path decomposition.

28In particular, in using the algorithm in footnote 27, the first time that we arrive at step 2, choose P = Q.
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Case 1 µt′n−1
> 0 or vt′n−1

= vt′n .

If t′n−2 6= t′n, let Q′ be obtained from Q by replacing (t′n−2, t
′
n−1) and (t′n−1, t

′
n) with

(t′n−2, t
′
n).29 Construct a new solution to the dual by decreasing λQ by ε and increasing

λQ′ by ε. All constraints (70) are still satisfied. The same is true for constraint (71) for any
vertex in T \ {t′n−2, t

′
n−1} because for any edge (s, t) not equal to (t′n−2, t

′
n−1) or (t′n−1, t

′
n),∑

P∈P∗s,t
λP remains unchanged.

For vertex t′n−1, the LHS of constraint (71) changes by ε(vt′n − vt′n−1
) ≤ 0 so that the

constraint is still satisfied when we add ε(vt′n−vt′n−1
) to µt′n−1

(for ε sufficiently small, µt′n−1

remains nonnegative by the assumptions of Case 1).
For vertex t′n−2, the LHS of (71) changes by ε(vt′n−1

− vt′n−2
)− ε(vt′n − vt′n−2

) = −ε(vt′n −
vt′n−1

) ≥ 0. So (71) remains feasible when we add −ε(vt′n − vt′n−1
) to µt′n−2

.
The total change in the dual objective function value is zero. Because (vt′n−2

− vt′n) <
(vt′n−1

− vt′n), we have a new optimal dual solution with smaller discrepancy.
If t′n−2 = t′n, then Q = (t′n−2, t

′
n−1, t

′
n), and arguments similar to the above show that

reducing λQ by ε, and modifying µt′n−1
and µt′n−2

accordingly will lead to another feasible
solution with the same objective function value and smaller discrepancy.
Case 2 µt′n−1

= 0 and vt′n−1
> vt′n .

In this case, vt′n−1
πt′n−1

> 0 and (71) imply there exists vertex u with vu > vt′n−1
and

(t′n−1, u) ∈ E and moreover λ(t′n−1, u) > 0. Defining K = (t′0, . . . , t
′
n−1, u), we must have

that K ∈ P because by the way that K was constructed, every edge of K is good. Moreover,
it is possible to choose the path decomposition so that λK > 0 (in addition to λQ > 0).30

We assume that t′n−2 6= t′n and explain how to modify the proof if t′n−2 = t′n in footnote 31.
Let Q′ be obtained from Q by replacing (t′n−2, t

′
n−1) and (t′n−1, t

′
n) with (t′n−2, t

′
n). Let K ′

be obtained from K by replacing (t′n−2, t
′
n−1) and (t′n−1, u) with (t′n−2, u). Choose positive

ε and δ satisfying:

δ(vu − vt′n−1
) = ε(vt′n−1

− vt′n). (74)

Decrease the flow on Q by ε, decrease the flow on K by δ, increase the flow on Q′ by ε,
increase the flow on K ′ by δ.

Observe that (70) still holds for all vertices. (71) still holds for all vertices as well; we
explain why for vertices t′n−1 and t′n−2. For t′n−1, the LHS of (71) changes by ε(vt′n − vt′n−1

)
due to the decrease in λQ and changes by δ(vu − vt′n−1

) due to the decrease in λK . (74)
implies that these changes cancel out. For t′n−2, the LHS of (71) changes by +ε(vt′n−1

−vt′n−2
)

29This is possible because of transitivity of E. Similar comments apply to the construction in Case 2.
30In particular, in the algorithm in footnote 27, the first time that we arrive at step 2, choose P = Q.

However in step 3, if γ = λ(s, t) for some (s, t) ∈ K \ {(tn−1, u)}, set λQ = γ − ε for some small ε > 0.
This will allow us to choose P = K, the second time that we arrive as step 2, and then proceed with the
algorithm in the ordinary way.
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due to the decrease in λQ, changes by −ε(vt′n − vt′n−2
) due to the increase in λQ′ , changes

by +δ(vt′n−1
− vt′n−2

) due to the decrease in λK , and changes by −δ(vu − vt′n−2
) due to the

increase in λK′ . Again, (74) implies that these changes cancel out.
The dual objective value does not change. The change in the discrepancy is −ε(1 +

(vt′n−1
− vt′n)) < 0 if vt′n > vt′n−2

and −ε(1 + (vt′n−1
− vt′n)) + ε(1 + (vt′n−2

− vt′n)) = −ε(vt′n−1
−

vt′n−2
) < 0 if vt′n ≤ vt′n−2

. Thus, in both cases the discrepancy declines, a contradiction.31

Proof of Proposition 3.3

As explained in the proof of Proposition 3.2, (69-73) is equivalent to (7-11). (69-73) differs
from (23-27) only insofar as the former contains variables λP for P ∈ C. Note however that
(16) of Proposition 3.2 and (68) that there exists an optimal solution of (69-73) satisfying:

λP = 0, ∀P ∈ C (75)

But (23-27) is equivalent to (69-73) with the additional constraint (75). Note also that (68)
reduces to (28) under (75). This establishes the part of the proposition pertaining to the
dual.

With regard to the primal, (19-22) is the dual of (23-27) which implies via the first
part of the theorem that (19-22) and (3-6) have the same value, and because (19-22) is a
relaxation of (3-6), every optimal solution of (3-6) is an optimal solution of (19-22).

Proof of Lemma 3.4

Start with an optimal dual solution, λ′ that avoids bad edges. Throughout write Φ(P )
(resp. φ(s, t)) for Φ(P |λ′) (resp. φ(s, t|λ′)). We show that λP := Φ(P )πτ(P ) is the desired
dual solution. Note that λ also avoids bad edges.

Define P`t be the set of all paths P ending in t such that (i) P contains at most `
edges, and (ii) if P has fewer than ` edges, then P begins in 0. For vertex h, define

31Here we explain how to modify the proof if t′n−2 = t′n. In this case, decrease λQ by ε, decrease λK by
δ, and increase λK′ by δ; we do not introduce Q′ because it would correspond to a self-loop at t′n−2 and
we have excluded such edges. All constraints of the form (70) are still satisfied because Q is a cycle. The
argument that (71) still holds for t′n−1 is the same as the one given above. For t′n−2, the LHS of (71) changes
by ε(vt′n−1

− vt′n−2
) + δ(vt′n−1

− vt′n−2
)− δ(vu − vt′n−2

) = ε(vt′n−1
− vt′n)− δ(vt′n−1

− vu) + ε(vt′n − vt′n−2
) =

ε(vt′n − vt′n−2
) = 0, where the second to last equality follows from (74). The discrepancy changes by

−ε(1 + (vt′n−1
− vt′n)) < 0.
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P`[h−t] := P` ∩ P[h−t]. We argue that:

∑
P∈P`t

Φ(P ) = 1 (76)

The base case ` = 1 is immediate. Next observe that:∑
P∈P`t

Φ(P ) =
∑

P∈P`−1
[0−t]

Φ(P ) +
∑
h∈T\0

∑
(j,h)∈E

φ(j, h)
∑

{
P∈P`−1

[h−t]

} Φ(P )

=
∑

P∈P`−1
[0−t]

Φ(P ) +
∑
h∈T\0

∑
{
P∈P`−1

[h−t]

} Φ(P ) =
∑

P∈P`−1
t

Φ(P ) = 1

The first equality relies on the fact that if (t0, . . . , tk) is a cycle,
∏k
i=1 φ(ti−1, ti) = 0 (because

λ′ has no bad edges). The last equality follows from the inductive hypothesis. Noting that
for sufficiently large `, P`t = Pt, (76) implies that λ satisfies (24).

Let Pt→ :=
⋃
s 6=t P[t−s] and |P | denote the number of edges in the path P . Then,

πt +
∑

P∈Pt→

Φ(P )πτ(P ) = πt +
∑

s:(t,s)∈E

φ(t, s)

[
πs +

∑
P∈Ps→

Φ(P )πτ(P )

]

= πt +
∑

s:(t,s)∈E

φ(t, s)

[ ∑
P :s∈P

λ′P

]
=
∑
P∈Pt

λ′P +
∑
s∈T\t

∑
P∈Pt,s

λ′P =
∑
P :t∈P

λ′P

where the second equality follows inductively, assuming the derivation for s with max{|P | :
Φ(P ) > 0, P ∈ Ps→} < max{|P | : Φ(P ) > 0, P ∈ Pt→}.

It now follows (using 76) that:

∑
P∈Pt,j

λP =

[∑
P∈Pt

Φ(P )

]
×

φ(t, j)

πj +
∑

P ′∈Pj→

Φ(P ′)πτ(P ′)


= φ(t, j)

πj +
∑

P ′∈Pj→

Φ(P ′)πτ(P ′)

 = φ(t, j)

 ∑
P :j∈P

λ′P

 =
∑

P∈Pt,j

λ′P (77)

This implies that λ satisfies (25) and has the same objective function value as λ′. Using
(76), it is routine to verify that λ satisfies (32). Finally (77) and the definition of λ imply
that λ satisfies (31).
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Proof of Theorem 6.1

The first step is to modify the equilibrium strategies. Recall from section 5.1 that ζ∗ and
ξ∗ refer to the buyer and seller strategies respectively. ζ∗∗ and ξ∗∗ will denote respectively
the modified buyer and seller strategies which will form the required sequential equilibrium.
We now formally define these modified strategies.

Seller’s Modified Strategy

1. ξ∗∗ agrees with ξ∗ at any seller information set which occurs with positive probability
given (ζ∗, ξ∗), as well as any seller information set at which evidence has not yet been
presented.

2. At any seller information set which occurs with zero probability given (ζ∗, ξ∗) at
which the buyer previously presented evidence S, ζ∗∗ requires the seller to make a
take-it-or-leave-it offer at price:

max{vr : S ⊆ σ(r)}

Buyer’s Modified Strategy

1. ζ∗ agrees with ζ∗∗ at any buyer information set which occurs with positive probability
given (ζ∗, ξ∗), as well as any information set where the seller decides whether to accept
a take-it-or-leave-it-offer.

2. At any type t buyer information set I which occurs with zero probability given (ζ∗, ξ∗)
only because the type t seller has taken a sequence actions which would have been
taken with positive probability by some other buyer type according to ζ∗, (and the
seller has taken actions consistent with ξ∗), the buyer continues by following some
type t best reply to ξ∗∗ conditional on I.

3. At any other information set, the buyer drops out.

Lemma 10.3 1. (ζ∗∗, ξ∗∗) is a Bayes-Nash equilibrium of the dynamic communication
protocol.

2. (ζ∗∗, ξ∗∗) and (ζ∗, ξ∗) induce the same probability distribution over terminal histories.

Proof: Consider part 1. If ξ is a seller strategy profile such that (ζ∗, ξ) and (ζ∗∗, ξ) induce
the same probability distribution over terminal histories, then part 1 of the lemma and the
fact that (ζ∗, ξ∗) is a Bayes-Nash equilibrium implies that ξ is not a profitable seller deviation
at (ζ∗∗, ξ∗∗). So, consider an ξ such that (ζ∗, ξ) and (ζ∗∗, ξ) induce different probability
distributions over terminal histories. The definition of ζ∗∗ means (ζ∗, ξ) differs from (ζ∗∗, ξ)
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only insofar as sometimes the buyer drops out in the latter when he would not have done so
in the former. This implies that the seller’s payoff under (ζ∗, ξ) is weakly higher than the
seller’s payoff under (ζ∗∗, ξ), which, in turn, implies that ξ is not a profitable seller deviation
at (ζ∗∗, ξ∗∗). Using the same argument as for the seller, if the buyer has a profitable deviation
ζ at (ζ∗∗, ξ∗∗), then (ζ, ξ∗) and (ζ, ξ∗∗) must induce a different probability distribution over
terminal histories. But this means that (ζ, ξ∗) and (ζ, ξ∗∗) differ only in that in the latter,
following certain histories the seller makes the offer max{vr : S ⊆ σ(r)}, where S is the
evidence that has been presented by the buyer, whereas in the former, the seller would have
made a different offer. Notice that if the buyer has presented S, she must have been of a
type t such that S ⊆ σ(t). But this implies that vt ≤ max{vr : S ⊆ σ(r)}, which in turn
implies that buyer’s payoff is weakly higher under (ζ, ξ∗) than under (ζ, ξ∗∗), so that ζ is
not a profitable buyer deviation at (ζ∗∗, ξ∗∗). This establishes part 2 of the lemma.

To complete the proof, we show that the players’ strategies are sequentially rational
off the equilibrium path, where the seller’s off equilibrium beliefs are consistent with the
structure of the game as required by sequential equilibrium.32 For each ε > 0, we construct
a totally mixed buyer strategy ζε such that ζε → ζ∗∗ as ε → 0. Enumerate the types
t′1, . . . , t

′
n in T so that i < j ⇒ vt′i ≥ vt′j . ζ

ε is the buyer strategy in which with probability
1 − εi, the type ti buyer plays (her part of) ζ∗∗ and with probability εi, she randomizes
uniformly over all type t pure strategies. So a type with a higher index (and hence a lower
value) trembles with a probability that approaches zero faster than a type with a lower
index. Off the equilibrium path, the seller’s beliefs about the buyer’s type are the limiting
beliefs derived via Bayes’ rule using ζε (and any totally mixed seller strategy33). It follows
that in any off equilibrium path history, if the seller can infer that the buyer has deviated
from ζ∗∗, the seller will infer that that the buyer is the highest value type that could have
performed the actions consistent with that history; so if no evidence has been presented, the
seller will infer that the buyer is of a highest value type, and if evidence has been presented,
the seller will infer that the buyer has the highest value among those types who could have
presented the evidence.

First we establish that given any seller information set I which occurs with zero prob-
ability under (ζ∗∗, ξ∗∗), ξ∗∗ is a seller’s best reply to ζ∗∗ given the seller’s off equilibrium
beliefs derived above. Part 1 of Lemma 10.3 imply that I also occurs with zero probability
under (ζ∗, ξ∗). First suppose that at I, the buyer has not yet presented evidence. Then no
matter what the seller does, the buyer will drop out at the next opportunity, so the seller
is best replying. Next consider I at which the buyer has presented evidence S. Because I
has zero probability under (ζ∗, ξ∗), according to ζ∗∗, either the buyer should have dropped
out prior to presenting evidence or the buyer should have presented evidence different from

32There is no corresponding issue for the buyer’s beliefs because the seller has no private information.
33The resulting beliefs do not depend on which totally mixed seller strategy is used.
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S. In either event, the seller will use the off equilibrium beliefs derived above and infer
that the buyer is of the t such that vt = max{vr : S ⊆ σ(t)}, and so it will be optimal to
offer the maximal price that the type t buyer will accept, namely, max{vr : S ⊆ σ(t)}, as
required by ξ∗∗.

Finally, we establish that given any buyer information set I that occurs with zero prob-
ability in equilibrium, ζ∗∗ is a buyer best reply to ξ∗∗. Again, I has zero probability under
(ζ∗, ξ∗). If at I, the seller has made a take-it-or-leave-it-offer, or if I falls under part 2 of
the definition of the buyer’s modified strategy ζ∗∗, then the result is immediate from the
definitions of ζ∗ and ζ∗∗. In any other case, the buyer cannot possibly attain a positive
utility, and by dropping out as required by ζ∗∗, she attains a utility of zero.

Proofs of Claims from Section 7

In this section, we prove various claims made in the course of the discussion of the example
in Section 7. First we provide a simple proof that for any profile of valuations satisfying
(41), there are many probability distributions (πt : t ∈ T ) such that (45-47) are satisfied. In
particular, it is straightforward to verify that there will always exists a number K sufficiently
large (where sufficiently large depends on the profile of valuations) such that any probability
distribution satisfying:

πy0 > Kπy1 > K2πy2 > · · · > Knπyn > Kn+1πx1 > Kn+2πx2 > · · · > K2nπxn

will satisfy (45-47).

Claim 10.4 The mechanism defined by (50-55) satisfies (56).

Proof: (41) implies that 0 < qx1 < 1. Let 2 ≤ i ≤ n. We argue inductively that

qxi−1 < qxi < 1.

(52-55) implies that:

vyi−1 − vy0 = vyi−1qxi−1 − pxi−1 (78)

vyi − vy0 = (vyi − vxi)(qxi − qxi−1) + vyiqxi−1 − pxi−1 (79)

By the inductive hypothesis, qxi−1 < 1. (78) and (41) then imply that:

vyi − vy0 > vyiqxi−1 − pxi−1 ,

which together with (79) and (41) implies that:

qxi−1 < qxi
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(78), (41) and qxi−1 < 1 imply that:

vxi − vy0 < vxiqxi−1 − pxi−1 (80)

On the other hand, if qxi ≥ 1, the numerator is weakly larger than the denominator in (54),
which implies that:

vxi − vy0 ≥ vxiqxi−1 − pxi−1 ,

which contradicts (80). We have now established (56).

Claim 10.5 The mechanism defined by (50-55) is feasible in the primal (3-6). Moreover
the incentive constraints corresponding to pairs of the form (xi, xi+1), (xi, yi), (0, x1), (0, y0)
and (yj , yk) with j < k hold with equality whereas all other incentive constraints hold with
strict inequality.

Proof: For i < j, we have:

vxj (qxj − qxi) =
j∑

k=i+1

vxj (qxk − qxk−1
)

≥
j∑

k=i+1

vxk(qxk − qxk−1
) =

j∑
k=i+1

(pxk − pxk−1
) = pxj − pxi ,

where we have used Claim 10.4 and (54). Moreover, the inequality is strict exactly when
i < j − 1. This establishes the (xi, xj)-incentive constraints when i < j. Next choose yj
and i ≤ j. To establish the (xi, yj) incentive constraint, we observe:

vyj (qyj − qxi) = vyj (qyj − qxj ) +
j∑

k=i+1

vyj (qxk − qxk−1
)

≥ vyj (qyj − qxj ) +
j∑

k=i+1

vxk(qxk − qxk−1
) = pyj − pxj +

j∑
k=i+1

(pxk − pxk−1
) = pyj − pxi

where, among other things, we have used qyj = 1 and (52-55). The inequality is strict
exactly when i < j. The (0, xi)-incentive constraints follow from a simple induction, which
can also be used to show that all inequalities other than the (0, x1) inequality are strict. The
(yi, yj)-constraints for i < j follow from the fact that all y-types receive the same allocation,
and the (0, yi)-incentive constraints follow from (41).
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We now define a solution to the dual.

λ(xi, xi+1) =
n∑

j=i+1

πxj + δi ∀i = 1, . . . , n− 1

λ(0, x1) =
n∑
i=1

πxi + δ0

λ(xi, yi) = δi−1 − δi ∀i = 1, . . . , n (81)

λ(yi, yi+1) =
n∑

j=i+1

πyj − δi ∀i = 0, 1, . . . , n− 1

λ(0, y0) =
n∑
i=0

πyi − δ0

λ(s, t) = 0 if not otherwise specified above.

Claim 10.6 (81) together with (12-13) define an optimal dual solution.

Proof: First we argue that the flow conservation constraints (8) are satisfied. First pick
xi ∈ X \ {x1, xn}. We have:∑

s:(s,xi)∈E

λ(s, xi)−
∑

s:(xi,s)∈E

λ(xi, s) = λ(xi−1, xi)− λ(xi, xi+1)− λ(xi, yi)

=
n∑
j=i

πxj + δi−1 −

 n∑
j=i+1

πxj + δi

− (δi−1 − δi) = πxi

The cases of x1 and xn are similar, the latter of which uses δn = 0 (see (43)). Next consider
yi ∈ Y \ {y0, yn}∑

s:(s,yi)∈E

λ(s, yi)−
∑

s:(yi,s)∈E

λ(yi, s) = λ(xi, yi) + λ(yi−1, yi)− λ(yi, yi+1)

= (δi−1 − δi) +

 n∑
j=i

πyj − δi−1

−
 n∑
j=i+1

πyj − δi

 = πyi

The cases of y0 and yn are similar. (9) and (11) are automatically satisfied by (12-13). An
easy induction using (46) establishes that λ(xi, yi) > 0 for i = 1, . . . , n. Next observe that

δn−1 =
vxnπxn
vyn − vxn

< πyn =
n∑

j=(n−1)+1

πyj ,
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where the first equality follows from (44) for i = n− 1 and the inequality follows from (47)
for i = n. We proceed inductively, assuming that δi <

∑n
j=i+1 πyj . We have:

δi−1 =
vxiπxi − (vxi+1 − vxi)

∑n
j=i+1 πxj + (vyi − vxi+1)δi

vyi − vxi

<
vxiπxi − (vxi+1 − vxi)

∑n
j=i+1 πxj + (vyi − vxi+1)

∑n
j=i+1 πyj

vyi − vxi

=
n∑

j=i+1

πyj +
vxiπxi − (vxi+1 − vxi)

[∑n
j=i+1 πxj +

∑n
j=i+1 πyj

]
vyi − vxi

<
n∑
j=i

πyj ,

where the first equality follows from (44), the first inequality follows from (41) and the induc-
tive hypothesis, and the second inequality follows from (47). It follows that λ(yi, yi+1) > 0
for i = 0, . . . , n − 1, which in turn implies that λ(0, y0) > 0. That λ(xi, xi+1) > 0 for
i = 1, . . . , n− 1 and λ(0, x1) > 0 follows from (48). For all other edges (s, t) not mentioned
above, we have λ(s, t) = 0. We have now established that the potential solution defined
by (81) and (12-13) satisfies (10), and moreover that this solution is dual feasible. We now
argue for optimality.

Using Claim 10.5, it is straightforward to verify that for all (s, t) ∈ E, if λ(s, t) > 0, the
(s, t)-incentive constraint holds with equality. For all xi ∈ X \ {xn}:

ψxi =vxi − (vxi+1 − vxi)
λ(xi, xi+1)

πxi
− (vyi − vxi)

λ(xi, yi)
πxi

=vxi − (vxi+1 − vxi)

[∑n
j=i+1 πxj + δi

πxi

]
− (vyi − vxi)

[
δi−1 − δi
πxi

]

=vxi − (vxi+1 − vxi)

[∑n
j=i+1 πxj + δi

πxi

]

− (vyi − vxi)

 δi
πxi

+
vxiπxi − (vxi+1 − vxi)

[
δi +

∑n
j=i+1 πxj

]
(vyi − vxi)πxi

− δi
πxi


=0,

where the second to last inequality uses (44). A similar argument shows that ψxn = 0. For
all yi ∈ Y \ {yn}:

ψyi = vyi − (vyi+1 − vyi)
λ(yi, yi+1)

πyi
= vyi − (vyi+1 − vyi)

[∑n
j=i+1 πyj − δi

πyi

]
> 0,
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where the inequality follows from (45) and (48). We also have ψyn = vyn > 0. It now
follows from (50) that for all types t, if µt > 0 (which is equivalent to ψt > 0 by (13)), then
qt = 1. That any type with ψt < 0 receives an allocation of qt = 0 holds vacuously because
there are no (nonzero) types with ψt < 0. We have now established that the complementary
slackness conditions hold, and hence we obtain the desired result.

Claim 10.7 The optimal solution defined by (50-55) is the unique optimal solution in the
primal. Moreover, every optimal dual solution satisfies (57-60).

Proof: First suppose that for some h < i, λ(xh, xi+1) > 0 at an optimal dual solution.
The fact that by Claim 10.5, the primal optimal solution defined by (50-55) is such that the
(xh, xi+1) incentive constraint holds with strict inequality would then contradict comple-
mentary slackness. Similarly we must have λ(0, xi+1) = 0 for all i ≥ 0. Next suppose that
λ(xi, xi+1) = 0. Then by the structure of the incentive graph and the flow conservation
constraint (8), we must have λ(xh, xi+1) > 0 for some h < i or λ(0, xi+1) > 0, which we
have just seen is impossible. The part of the claim about the dual solution follows.

As established in the proof of Claim 10.6, in the optimal dual solution given by (81) and
(12-13), µyi > 0 for all yi ∈ Y . It follows from complementary slackness that qyi = 1, or in
other words, that (50) holds. Moreover, at any optimal solution we must have p0 = q0 = 0.
The rest of the mechanism (50-55) is then determined by solving the equations:

vtqt − pt = vtqs − ps ∀(s, t) ∈ E with λ(s, t) > 0,

where λ is given by (81).

Proof of Proposition 8.2

Tree structure implies:

(t, r) ∈ E+ ⇔ [t = ϕ(r) or ∃s, (t = ϕ(s) and (s, r) ∈ E+)] (82)

⇔ [t = ϕ(r) or {t 6= ϕ(r) and ∃!s, (t = ϕ(s) and (s, r) ∈ E+)}] (83)

Define:

λ(s, t) =

{
πt +

∑
r:(t,r)∈E+ πr, if s = ϕ(t);

0, otherwise.
(84)
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We have:

∑
s:(s,t)∈E

λ(s, t) = λ(ϕ(t), t) = πt +
∑

r:(t,r)∈E+

λ(t, r) = πt +
∑

s:t=ϕ(s)

πs +
∑

r:(s,r)∈E+

πr


= πt +

∑
s:t=ϕ(s)

λ(t, s) = πt +
∑

s:(t,s)∈E

λ(t, s),

where we used (82-83). It follows that λ satisfies the flow conservation constraints (8).
Defining µt via (12-13), the optimal solution satisfies the virtual valuation constraints,

and we have a feasible solution to the dual, for which by construction we have ψt = ψ̂t.
Next I establish that (63) is feasible in the primal, or in other words, incentive compat-

ible. Assume for contradiction that for some (s, t) ∈ E,

vtqt − pt < vtqs − ps, (85)

Then because vtqt − pt ≥ 0, we must have ψ̂s ≥ 0 and ps < vt. However (1) and (63) imply
that for some r with (r, t) ∈ E with ψ̂r ≥ 0, ps = vr. But then single crossing quasi-virtual
valuations imply that ψ̂t ≥ 0, and in turn, (63) implies that pt ≤ ps. Since qs = qt = 1, this
contradicts (85). So (63) is primal feasible.

Next suppose that λ(s, t) > 0. Then (s, t) ∈ E+, and moreover s = ϕ(t). If ψ̂s < 0,
then by single-crossing virtual valuations, the fact that s = ϕ(t), and the transitivity of
E+, for all (r, t) ∈ E+, ψ̂r < 0. So either qt = pt = 0 or qt = 1 and pt = vt. In either case,
vtqt − pt = 0 = vt × 0 − 0 = vtqs − ps. If ψ̂s ≥ 0, then single-crossing virtual valuations
imply that ψ̂t ≥ 0. It then follows using an argument similar to the one in the previous
paragraph that ps = pt and qs = qt = 1, so that again vtqt − pt = vtqs − ps. To summarize,
we have shown that:

λ(s, t) > 0⇒ vtqt − pt = vtqs − ps, ∀(s, t) ∈ E (86)

Next suppose that µt > 0. Then ψt = ψ̂t > 0, which implies that qt = 1, so that:

µt > 0⇒ qt = 1 ∀(s, t) ∈ E (87)

Next suppose that ψt < 0. Then ψ̂t = ψt < 0, so that qt = 0. If follows that:

ψt < 0⇒ qt = 0 ∀t ∈ T (88)

(86-88) are the complementary slackness optimality conditions for the primal and dual. It
follows that (63) is an optimal mechanism.

The part of the proposition concerning the equilibrium of the bargaining protocol now
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follows from Proposition 8.1 and the way the players’ strategies are constructed from the
primal and dual solutions (using the modification of the strategies from section 5.1 given
in section 8.1). In particular, notice that in the path decomposition of λ, P t is the unique
path P in Pt with λP > 0.
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