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Abstract

We study the steady state of a market with incoming cohorts of buyers and sellers
who are matched pairwise and bargain under private information. We �rst consider
generalized random-proposer take-it-or-leave-it o�er games (GRP TIOLI games). This
class of games includes a simple random-proposer TIOLI game, but also many other
interesting bargaining games. A friction parameter is � , the length of the time period
until the next meeting. We �nd that as � ! 0, all market equilibria converge to the
Walrasian limit, at the fastest possible rate O(�) among all bargaining mechanisms.
Some important bargaining games not in this class may have non-convergent market
equilibria. This is the case for the k-double auction: we �nd that there are equilibria
that converge at a linear rate, those that converge at a slower rate or even not converge
at all.

Keywords: Matching and Bargaining, Search, Double Auctions, Foundations for
Perfect Competition, Rate of Convergence

JEL Classi�cation Numbers: C73, C78, D83.

1 Introduction

A number of papers in the literature on dynamic matching and bargaining have shown that,
as frictions vanish, equilibria converge to perfect competition.1 But it is also important to

�We thank Mike Peters, Mark Satterthwaite, and seminar participants at Northwestern, SFU and UWO
for helpful comments. We thank SSHRC for �nancial support made available through grants 12R27261 and
12R27788. This version of the paper was completed when the �rst author was visiting the Center for Math-
ematical Studies in Economics and Management Science at Kellogg School of Management, Northwestern
University. Its warm hospitality is gratefully acknowledged.

1Papers that address convergence include Rubinstein and Wolinsky (1985), Gale (1986), Gale (1987),
Rubinstein and Wolinsky (1990), Mortensen and Wright (2002), and, with private information, Butters
(1979), Wolinsky (1988), De Fraja and Sakovics (2001), Serrano (2002), Moreno and Wooders (2002),
Lauermann (2006a), Satterthwaite and Shneyerov (2007), Atakan (2008).
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know how rapidly the equilibria converge. To our knowledge, this question has not been
addressed in the literature.

In contrast, the rate of convergence to e�ciency has been the focus of the literature
on static double auctions. It is important to know how large n needs to be so that we
can call a double auction with n buyers and sellers approximately competitive. Rustichini,
Satterthwaite, and Williams (1994) show robust convergence of double-auction equilibria
in the symmetric class at the fast rate O (1=n) for the bid/o�er strategies and the super-
fast rate O

�
1=n2

�
for the ex-ante traders' welfare, where n is the number of traders in

the market.2 Moreover, the double auction converges at the rate that is fastest among
all incentive-compatible and individually rational mechanisms (Satterthwaite and Williams
(2002); Tatur (2005)). Cripps and Swinkels (2005) substantially enrich the model by allow-
ing correlation among bidders' valuations, and show convergence at the rate O

�
1=n2�"

�
,

where " > 0 is arbitrarily small.3

For a dynamic matching and bargaining market, the question of how small frictions need
to be for equilibria to be approximately competitive is equally important. In this paper,
we �ll this gap by proving a rate of convergence result for a decentralized model of trade.
We study the steady state of a market with incoming cohorts of buyers and sellers who are
randomly matched pairwise and bargain without knowing each other's reservation value.
The model is in discrete time and shares several features with the model in Satterthwaite
and Shneyerov (2007). Exactly as in that paper, a friction parameter is � , the length of
the time period until the next meeting. There are per-period participation costs, ��B for
buyers and ��S for sellers. There is also time discounting at the instantaneous rate r.

4

Our model is di�erent from Satterthwaite and Shneyerov (2007) in that we consider
pairwise matching and general bargaining games. (Satterthwaite and Shneyerov (2007)
restrict attention to auctions.) Speci�cally, our baseline bargaining protocol is a gener-
alization of a simple random-proposer take-it-or-leave-it (TIOLI) protocol in which each
trader is chosen as a proposer with certain probability.5 We consider bargaining games
that generalize the following two basic intuitive properties of this simple game. First, each
trader has some bargaining power in the sense that he or she can o�er the terms of trade
with some probability. Second, trade is voluntary in the sense that ex-post, the parties
may walk away from the deal if the price is not satisfactory. Third, money changes hands
only if the good does. Speci�cally, for the �rst property we require that each trader has a
strategy guaranteeing that he or she is winds up being a proposer in a TIOLI node of the
extensive form of the game with some probability, regardless of the strategy used by the
other trader. For the second property, we require that the outcome of the game is ex-post
individually rational.

2See also Gresik and Satterthwaite (1989), Satterthwaite and Williams (1989), Satterthwaite (1989),
Williams (1991).

3Reny and Perry (2006) allow interdependent values and show that it is almost e�cient and almost fully
aggregates information as n!1, but do not address the rate of convergence issue.

4Satterthwaite and Shneyerov (2007) also discuss the rate of convergence to perfect competition, and the
relevance of making � small. However, there is no general rate of convergence result, only within a class of
full-trade equilibria. They also discuss an interpretation of the inverse of � as a measure of local market
size. We do not repeat these discussions here.

5The existence and properties of equilibria with this protocol are studied in Shneyerov and Wong (2007),
but in a continuous time setting as in Mortensen and Wright (2002).

2



We call this class of games generalized random-proposer TIOLI games, or, in an ab-
breviated form, GRP TIOLI games. The simple random-proposer TIOLI game described
above is obviously in this class. Many other interesting bargaining games are also GRP
TIOLI:6

� Finitely repeated simple random-proposer TIOLI game that may be exogenously ter-
minated with probability � 2 (0; 1) after each rejected o�er.

� Repeated-o�er bargaining games in which the seller is chosen as a proposer with
probability � 2 (0; 1), and the buyer is chosen with the complementary probability.
The proposer then makes a number of sequential o�ers to the responder. After each
rejected o�er, the game may be exogenously terminated with probability � 2 (0; 1).

� Alternate-o�er bargaining games in which the �rst proposer is chosen to be the seller
with probability � 2 (0; 1) and the buyer with probability 1��. The traders alternate
making proposals for several rounds. The last proposer is di�erent from the proposer
chosen in the �rst round. Once again, the game may be terminated with probability
� 2 (0; 1) after each rejected o�er.

The above games are GRP TIOLI because each trader, by rejecting all o�ers and making
unacceptable o�ers until the �nal round, guarantees that he is a TIOLI proposer with certain
probability.

We derive explicit bounds on the ine�ciency of any nontrivial market equilibrium for
GRP TIOLI bargaining mechanisms.7 These bounds imply that ine�ciency vanishes at a
linear rate in � . Thus all (nontrivial) equilibria converge rapidly to the Walrasian bench-
mark. Using the notion of worst-case asymptotic optimality similar to Satterthwaite and
Williams (2002), we show that the GRP TIOLI mechanisms are worst-case asymptotically
optimal: in terms of the welfare, the rate of convergence cannot be faster under any other
bargaining mechanism.8

With the exception of Lauermann (2006b) and Atakan (2008), all papers in the match-
ing and bargaining literature that we are aware of consider speci�c bargaining protocols.
Lauermann (2006b) considers a general class of bargaining games. He shows that equilib-
ria converge to perfect competition provided that the sequence of outcomes of the game
satis�es certain conditions. Our conditions are di�erent in that they are conditions on the
primitives of the game. Atakan (2008) provides an important extension of the results of
Satterthwaite and Shneyerov (2007) to multiple units. Atakan (2008) allows the players to
propose general bargaining mechanisms, and shows that they can do no better than use
simple TIOLI o�er strategies. With this justi�cation, he con�nes the actual analysis to the
simple random-proposer TIOLI games.

6These examples are discussed for example in Ausubel, Cramton, and Deneckere (2002).
7A trivial, uninteresting equilibrium in which none of the traders enter always exists.
8The notion of the \worst case" here is actually weaker because we only look at the most unfavorable

equilibrium; all our results are for �xed distributions of traders' types. The de�nition of the worst case in
Satterthwaite and Williams (2002) involves also searching for the most unfavorable distributions of traders'
types.
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Ruled out by the GRP TIOLI assumption are bargaining games in which only one side
is given all the bargaining power, i.e. only one of the traders can be a proposer.9 Also ruled
out are games without TIOLI nodes, as would be the case for k-double auctions. We study
convergence properties of market equilibria with k-double auctions and �nd that equilibria
can be either convergent at a linear rate, convergent at a slower-than-linear rate or even
divergent. This result can be compared to the �ndings in Serrano (2002). In a dynamic
setting, Serrano (2002) studies a mechanism that in some respects resembles a double
auction (the set of bids is restricted to be a �nite grid) and �nds that \as discounting is
removed, equilibria with Walrasian and non-Walrasian features persist".10 Serrano points
out, however, that \after removing the �nite sets of traders' types and of allowed prices, the
present model con�rms Gale's one-price result and has a strong Walrasian 
avor". We, on
the other hand, �nd that in our model, non-convergent equilibria exist even if the bargaining
protocol is the \unrestricted" double auction.

2 The Baseline Model

The agents are potential buyers and sellers of a homogeneous, indivisible good. Each buyer
has a unit demand, while each seller has a unit supply. All traders are risk neutral. Potential
buyers are heterogeneous in their valuations (or types) v of the good. Potential sellers are
also heterogeneous in their costs (or types) c of providing the good. The buyers draw
their types i.i.d. from some distribution F and the sellers draw their types i.i.d. from
some distribution G. For simplicity, we assume that the supports of these distributions
are [0; 1]. Each trader's type remains the same over time. We index time periods by
t = � � � ;�1; 0; 1; � � � ; each time period has length � > 0. The instantaneous discount rate
is r � 0, and the corresponding discount factor is R� = e�r� . Each period consists of the
following stages.

� The mass b of potential buyers and the mass s of potential sellers are born. The
new-born buyers draw their types i.i.d. from the distribution F and the new-born
sellers draw their types i.i.d. from the distribution G.

� Entry (or participation, or being active): The new-born potential buyers and sellers
decide whether to enter the market. Those who enter together with the current pools
of traders in the market compose the set of active traders.

� The active buyers and sellers incur participation costs ��B and ��S respectively.

� The active buyers and sellers are randomly matched in pairs. The mass of the matches
is given by a matching function M(B;S), where B and S are the masses of ac-
tive buyers and active sellers currently in the market. The probability `B that a
buyer is matched is equal to M (B;S) =B, and he is equally likely to meet any active

9Lauermann (2008) shows convergence to perfect competition in a model where one side is given all
bargaining power. As in Satterthwaite and Shneyerov (2008), he assumes that there is no participation cost,
but there is an exogenous exit rate of traders.
10This simpli�ed bargaining mechanism was introduced in Wolinsky (1990) and also used in Blouin and

Serrano (2001).
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seller. Symmetrically, the seller's matching probability is `S = M (B;S) =B and she
is equally likely to meet any active buyer.11 The matching is anonymous.

� The matched buyers and sellers bargain. We assume that bargaining is instantaneous,
and consider general bargaining protocols. If a type v buyer and a type c seller trade
at a price p, then they leave the market with utilities v�p and p�c. If the bargaining
breaks down, both traders remain in the market.

Assumption 1 (matching function) The matching function M is continuous on R2+,
nondecreasing in each argument, exhibits constant returns to scale (i.e. is homogeneous of
degree one), and satis�es M (0; S) =M (B; 0) = 0.

Let � � B=S be the steady-state ratio of the mass of buyers to the mass of sellers (or
market tightness), and de�ne m(�) � M(�; 1). Since the matching technology is constant
returns to scale, the matching probabilities for buyers and sellers are

`B (�) �
m (�)

�
; `S (�) � m (�) :

Note that `B and `S are continuous on R++, and respectively nonincreasing and nonde-
creasing functions of �.

De�ne
K (�) =

�B
`B (�)

+
�S
`S (�)

:

The functionK (�) can be interpreted as the participation costs incurred by a pair of traders
over the time period of length � = 1, in
ated by their probabilities of matching `B (�) and
`S (�).

Our equilibrium notion parallels that of Satterthwaite and Shneyerov (2007), so we
skip many details elucidated there and focus on the di�erences due to the fact that we are
considering general bargaining mechanisms. We assume that the market is in a steady state
and denote the distribution of active buyer and seller types as � and �. We denote the
supports of these distributions as AB and AS . We only consider equilibria with entry, i.e.
those in which the steady-state masses B and S of active buyers and sellers are positive.
Denote as WB (v) and WS (c) the beginning-of-period market utilities of type v buyer and

11We conjecture that such a matching process can arise in the limit of �nite economies. Let GnB ;nSL be
the set of all bilateral matching graphs with nB buyer nodes, nS seller nodes and L edges. All the edges are
assumed to be nonadjacent. Let PnB ;nSL be the probability measure on GnB ;nSL that assigns equal probability
to each graph in GnB ;nSL . In this stochastic matching model, (i) the probability of matching is L=nB for the
buyers and L=nS for the seller, and (ii) conditional on matching, each buyer is equally likely to be matched
with any seller. Our matching technology can be understood in this framework, as arising in the limit as
n ! 1 of the measures PnB ;nSM(nB ;nS)

with nB approximately equal to n � B and nS approximately equal to
n � S. If the matching function exhibits constant returns to scale, it is easy to see that a buyer's probability
of matching `B = M (nB ; nS) =nB � M (B;S) =B, and similarly `S � M (B;S) =B. Moreover, each buyer
continues to be equally likely matched with any seller.
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type c seller. Our twin assumptions of the continua of traders and anonymous matching
imply that the reservation prices in the bargaining game do not depend on the strategies
used in the game and are given by

~v (v) = v �R�WB (v) ; ~c (c) = c+R�WS (c) : (1)

Following Satterthwaite and Shneyerov (2007), we will call these the dynamic types of
buyers and sellers. The market distributions of ~v (v) and ~c (c) are denoted as ~� and ~�.

In each meeting, for given types c and v, a (direct) bargaining mechanism determines
the trading probability q (v; c) and the expected payment t (v; c) made by the buyer to the
seller. Given that the opponent types are drawn from the market distributions � and �,
the associated interim probabilities and payments are

qB (v) =

Z
q (v; c) d� (c) ; qS (c) =

Z
q (v; c) d� (v) ;

tB (v) =

Z
t (v; c) d� (c) ; tS (c) =

Z
t (v; c) d� (v) :

We assume that the mechanism is incentive compatible: the expected payo�s to the traders,
over and above their discounted market utilities R�WB (v) and R�WS (c), are maximal
under truthful reporting:

~v (v) qB (v)� tB (v) = max
v02[0;1]

~v (v) qB
�
v0
�
� tB

�
v0
�
; (2)

tS (c)� ~c (c) qS (c) = max
c02[0;1]

tS
�
c0
�
� ~c (c) qS

�
c0
�
: (3)

We assume that money changes hands only through trade. We also assume that whenever
trade occurs, the price must be acceptable to both traders. In other words, whenever
q (v; c) > 0 so that the expected trading price p (v; c) is de�ned, it must satisfy the ex-post
individual rationality condition

p (v; c) 2 [~c (c) ; ~v (v)] : (4)

Given that participation is voluntary, the market utilities WB (v) and WS (c) must
satisfy the recursive equations

WB (v) = maxf`B [vqB (v)� tB (v)] + (1� `BqB (v))R�WB (v)� ��B; 0g; (5)

WS (c) = maxf`S [cqS (c)� tS (c)] + (1� `SqS (c))R�WS (c)� ��S ; 0g: (6)

The sets of active buyers' and sellers' types, AB and AS , are the closures of the sets
fv 2 [0; 1] :WB (v) > 0g and fc 2 [0; 1] :WS (c) > 0g, i.e. we include the marginal traders
who are indi�erent between entering or not. The steady-state assumption implies the
following mass balance conditions for v 2 AB; c 2 AS :

b � dF (v) = B`B(�)qB(v) � d�(v); s � dG (c) = S`S (�) qS (c) � d� (c) : (7)

These equations complete the description of the market equilibrium constellation E =
(qB; qS ; tB; tS ;WB;WS ; B; S;�;�) :
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3 Basic Properties of Equilibria

Our �rst result shows that, for any bargaining protocol, the sets AB and AS must be
intervals, and derives the properties of the dynamic type functions ~v, ~c and equilibrium
trading probabilities qB, qS .

Lemma 1 For any bargaining protocol, the sets of active trader types are intervals: AB =
[v; 1] and AS = [0; �c]. The trading probability qB(v) is strictly positive and nondecreasing
in v on AB, while qS(c) is strictly positive and nonincreasing in c on AS. Moreover,

WB(v) =

Z v

v

`BqB (x)

1�R� +R� `BqB (x)
dx for all v 2 [v; 1] ; (8)

WS(c) =

Z �c

c

`SqS (x)

1�R� +R� `SqS (x)
dx for all c 2 [0; �c] : (9)

The responding strategies ~v and ~c are absolutely continuous and nondecreasing. Their slopes
are

~v0(v) =
1�R�

1�R� +R� `BqB (v)
(a.e. v 2 AB) ; (10)

~c0(c) =
1�R�

1�R� +R� `SqS (c)
(a.e. c 2 AS) : (11)

Proof. We prove the results for buyers only; the argument for the sellers is parallel. We
begin by noting that the incentive compatibility condition (2) and the recursive equation
(5) together imply that for a participating type v 2 AB

WB (v) = max
v02[0;1]

�
`B
�
vqB

�
v0
�
� tB

�
v0
��
+
�
1� `BqB

�
v0
��
R�WB (v)� ��B

	
: (12)

Condition (12) implies for v 2 AB:

WB (v) = max
v02[0;1]

`B [vqB (v
0)� tB (v0)]� ��B

1�R� +R� `BqB (v0)
:

For the type that have chosen not to become active, the r.h.s. of the above inequality is
less than or equal to 0 and WB (v) = 0. We therefore can write for any v 2 [0; 1]:

WB (v) = max
�2f0;1g;v02[0;1]

� �
�
`B [vqB (v

0)� tB (v0)]� ��B
1�R� +R� `BqB (v0)

�
:

As a maximum of the set of nondecreasing and a�ne functions, WB is continuous, convex
and therefore absolutely continuous and di�erentiable almost everywhere on [0; 1]. The
Envelope Theorem (Theorem 2 in Milgrom and Segal (2002)) then implies

W 0
B (v) =

`BqB (v)

1�R� +R� `BqB (v)
a.e. on AB,

and (10) must also hold. Since qB (v) > 0 for v 2 AB, and WB is absolutely continuous,
it must be increasing on AB. Moreover, AB must be an interval [v; 1], and (8) follows.
Finally, the convexity of WB implies that qB is nondecreasing. Q.E.D.
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Our interest is in small frictions, i.e. small � > 0: how far are the equilibrium market
utilities WB (v) and WS (c) from their Walrasian counterparts? We de�ne the competitive,
or Walrasian, price p� as the price that clears the 
ows of the arriving cohorts:

b[1� F (p�)] = sG (p�) ;

and de�ne traders' Walrasian utilities in the usual manner, as

W �
B (v) = maxfv � p�; 0g; W �

S (c) = maxfp� � c; 0g:

The total Walrasian surplus is then

W 0� = b

Z 1

p�
(v � p�) dF (v) + s

Z p�

0
(p� � c) dG (c) :

Since the sets of active trader types are intervals, we call v and �c the marginal partici-
pating types. The buyers (sellers) of type v (�c), who are indi�erent between entering or not,
are called the marginal entrants. Since WB(v) = WS(�c) = 0, the marginal participating
types are equal to the corresponding dynamic types: �c = ~c (�c), v = ~v (v). Next, since the
dynamic types are monotone increasing, we de�ne the sellers' minimum acceptable price
c = ~c (0) and the buyers' maximum acceptable price �v = ~v (1); taken together they de�ne
what we call the acceptance interval [c; �v]. From the steady-state mass balance condition
b [1� F (v)] = sG (�c), the marginal participating types v and �c must be on di�erent sides
of the Walrasian price p�, i.e. either �c � p� � v or v � p� � �c. Therefore p� must always
fall within the acceptance interval, i.e. p� 2 (c; �v) :

4 The rate of convergence for GRP TIOLI bargaining games

In this section, we consider bargaining mechanisms whose extensive-form games satisfy two
additional assumptions. Call a node a take-it-or-leave-it (TIOLI) node if one of the traders
is a TIOLI proposer in that node. Speci�cally, the proposer o�ers price p, the responder
says yes or no, and the bargaining game terminates. The following two assumptions require
that both the buyer and the seller can guarantee that they are TIOLI proposers with certain
probability.

Assumption 2 (Buyer TIOLI property) The buyer has a strategy aB with the property
that regardless of the strategy used by his opponent, the play of the game passes through a
node where he is a TIOLI proposer with probability at least �B > 0.

Assumption 3 (Seller TIOLI property) The seller has a strategy aS with the property
that regardless of the strategy used by his opponent, the play of the game passes through a
node where she is a TIOLI proposer with probability at least �S > 0.
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The bargaining mechanisms that satisfy these two additional assumptions will be called
generalized random-proposer TIOLI mechanisms, or more succinctly, GRP TIOLI mecha-
nisms.

Our main result in this section is the following theorem and its corollary. We will use the
notation WB� , WS� , ~v� , ~c� , �v� , c� , v� , �c� to emphasize the dependence of these equilibrium
objects on � . The theorem provides a lower and upper bounds on the acceptance gap
�v� � c� , and the corollary provides an upper bound on the deviations of the equilibrium
utilities WB� (v) and WS� (c) from the Walrasian utilities W �

B (v) and W
�
S (c). The proof of

the theorem is rather long and is given in Subsection 4.1.

Theorem 1 For any GRP TIOLI mechanism,

� � � � �v� � c� � � �
K (�0)

�B + �S

�
1 +

2r

�

�3
: (13)

where � � minf�B; �Sg and
�0 �

�B
�S

�S
�B
:

As � ! 0, �v� � c� ! 0 at a linear rate in � .

Note that the bounds do not depend on any properties of the distributions F and G.

Corollary 1 For any GRP TIOLI mechanism,

max

(
sup
v2[0;1]

jW �
B (v)�WB� (v) j; sup

c2[0;1]
jW �

S (c)�WS� (c) j
)
� � � K (�0)

�B + �S

�
1 +

2r

�

�3
:

(14)
As � ! 0, the rate of convergence is O (�).

Proof of Corollary. We only prove the result for the buyers; the proof for the sellers
is parallel. Observe that if v � v then WB� (v) = v � ~v� (v); and if v < v then WB� (v) = 0.
Consequently,

W �
B(v)�WB� (v) = maxfv � p�; 0g �WB� (v) =

8>><>>:
~v� (v)� p� if v � v� and v � p�
~v� (v)� v if v � v� and v < p�
v � p� if v < v� and v � p�
0 if v < v� and v < p

�

:

In any of the four cases,

jW �
B(v)�WB� (v)j � sup

v2AB
j~v� (v)� p�j � �

K (�0)

�B + �S

�
1 +

2r

�

�3
;

where the last inequality follows from j~v� (v)� p�j � �v� � c� . Q.E.D.

Remark 1 Since W �
B(v)�WB� (v) and W

�
S(c)�WS� (c) are not guaranteed to be positive,

the absolute values are needed. Indeed, if v� < p
�, then buyers with type v 2 (v� ; p�] would

have strictly positive utilities in equilibrium but have 0 Walrasian utilities. We also do not
have a positive lower bound for jW �

B(v)�WB� (v)j and jW �
S(c)�WS� (c)j. Indeed, for some

types v, c 2 [0; 1] we could have W �
B(v) =WB� (v) = 0, W

�
S(c) =WS� (c) = 0.
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Remark 2 Our explicit bound (14) in Corollary 1 can be tight when frictions are small,
even when � does not go to 0. For example, suppose that � = 1 and consider the case of
small frictions �B, �S and r. For simplicity, suppose that frictions are proportionally small
in the following sense: (�B; �S ; r) = � (1; 1; r0), where � > 0 is small. Then r=� = r0 and

K (�0) = � �
�

1

`B (�0)
+

1

`S (�0)

�
;

where �0 = �B=�S. Clearly, the r.h.s. of (14) becomes small with �.

4.1 Proof of Theorem 1

Since WB� (v� ) =WS� (�c� ) = 0, recursive equations (5) and (6) imply

`B (�) qB (v� ) (v� � pB (v� )) = ��B; (15)

`S (�) qS (�c� ) (pS (�c� )� �c� ) = ��S ; (16)

where pB (v� ) (respectively, pS (�c� )) is the expected price of the v� -type buyer (�c� -type
seller) conditional on trading. We begin by showing that these conditions imply that the
entry gap v� � �c� , if any, is bounded by K (�0) =(�B + �S):

Lemma 2 (Bound for entry gap) For any GRP TIOLI bargaining mechanism, we have

max fv� � �c� ; 0g � � �min
�

�B
�B`B (�)

;
�S

�S`S (�)

�
� � � K (�0)

�B + �S
: (17)

Proof. Recall the buyer TIOLI property, and consider a strategy aB according to
which the buyer with type v� o�ers �c� in his TIOLI node. This o�er is �nal and is accepted
by any seller with c < �c� . By the buyer TIOLI property, this aB strategy guarantees
him the expected payo� �B`B (�) (v� � �c� ). The equilibrium condition (15) then implies
�B� � �B`B (�) (v� � �c� ). Similarly, we can show that �S� � �S`S (�) (v� � �c� ), and
therefore

v� � �c� � � �min
�

�B
�B`B (�)

;
�S

�S`S (�)

�
:

Now since `B is nonincreasing and `S is nondecreasing, the above minimum is maximized
at � = �0 because

�B
�B`B (�0)

=
�S

�S`S (�0)
;

and the resulting value of the minimum is K (�0) =(�B + �S). Q.E.D.

Lemma 2 implies that, if there is a positive entry gap v� � �c� , its length is O (�). For
the length of the acceptance interval [c� ; �v� ] we can write:

�v� � c� � [�c� � c� ] + [v� � �c� ] + [�v� � v� ]

=

Z �c�

0
~c0� (c)dc+ [v� � �c� ] + +

Z 1

v�

~v0� (v)dv

10



The idea of the proof of Theorem 1 is to bound the slopes of dynamic types ~v0� (v) and
~c0� (c). Recall Lemma 1; it implies for a.e. active buyers and sellers

~v0� (v) =
�r

`BqB (v)
+ o (�) ; ~c0� (c) =

�r

`SqS (c)
+ o (�) :

For a given �, if the probabilities of trading qB (v) and qS (c) could be bounded from below
uniformly for all active types, then it is clear that the slopes ~v0� (v) and ~c

0
� (c) would converge

to 0 at a linear rate in � . Unfortunately, we have not found an argument to show this.
However, steps 1 and 2 of our proof amount to showing that (i) if v� � �c� , the slopes can be
bounded for the dynamic types ~c� (c) 2 [c� ; (c� + �c� ) =2], ~v� (v) 2 [v� ; (v� + �v� ) =2], and (ii)
if v� < �c� , the slopes are bounded for ~c� (c) 2 [c� ; (c� + �v� ) =2] and ~v� (v) 2 [v� ; (v� + �c� ) =2].

But, since the lengths of these intervals are respectively (�c� � c� ) =2 and (�v� � v� ) =2,
this is all that is needed, assuming that � is exogenously given. Step 3 is essentially a
tidying-up operation. Step 4 deals with the additional complication that � is endogenous.
It is shown that the worst-case value of � is �0. The lower bound is established in Step 5.
The intuition for the lower bound is that, for a given �, ex-post individual rationality implies
that the expected pro�t of type �v� buyer in a given meeting is no more than `B (�0) (�v� � c� )
and therefore �v� � c� � ��B=`B (�) � ��B. Similarly, �v� � c� � ��S .

We now proceed to the steps of the proof.

Step 1: We claim that

(a):
v� � c�
�v� � c�

� �B
r + �B

(b):
�v� � �c�
�v� � c�

� �S
r + �S

:

We provide the proof for part (a) only. The proof for part (b) is the 
ip of that for part
(a). First note that the ex-post individual rationality condition (4) implies pB (v� ) � c� .
Since qB is nondecreasing, (15) then implies `BqB(v)(v� � c� ) � �B� whenever v 2 [v� ; 1].
Then for almost all v 2 [v� ; 1],

`BqB(v) �
�B�

v� � c�
;

and therefore

~v0� (v) =
1�R�

1�R� +R� `BqB(v)
� r�

`BqB(v)
� r

�B=(v� � c� )
:

where the second last inequality follows by the concavity of the function 1� e�x. Hence

�v� � v� =
Z 1

v�

~v0� (v)dv �
r

�B=(v� � c� )
;

�v� � v�
v� � c�

� r

�B
;

v� � c�
�v� � c�

=
1

1 + (�v� � v� )=(v� � c� )
� 1

1 + r
�B

=
�B

r + �B
:

11



Step 2: We claim that

(a): minfv� ; �c�g � c� �
�4r (r + �B)

`S�S�B

(b): �v� �maxfv� ; �c�g �
�4r(r + �S)

`B�B�S
:

Again by symmetry, we only provide a proof for (a). Let y � minfv� ; �c�g � c� . Con-
sider a type c seller with ~c� (c) � c� + y=2. By the seller TIOLI property, she can guarantee
the expected payo� of �S [v� � ~c� (c)] by pursuing an aB strategy and o�ering v� in her
TIOLI node, the o�er that is accepted in equilibrium by any buyer with v > v� . There-
fore the equilibrium expected payo� in the bargaining game is bounded from below by
�S [v� � ~c� (c)]:

qS (c) [pS(c)� ~c� (c)] � �S [v� � ~c� (c)] ,
where pS(c) is the expected price conditional on trading. Since v� �~c� (c) � v� �(c� + y=2),
and our de�nition of y implies that y � v� � c� , it follows that v� � ~c� (c) � (v� � c� ) =2
and therefore

qS (c) [pS(c)� ~c� (c)] � �S
v� � c�
2

:

Since no o�er above �v� can be accepted in equilibrium by a buyer, pS(c) � �v� . Since ~c� (c)
is nondecreasing by Lemma 1, we must also have ~c� (c) � c� , and therefore

qS (c) �
�S
2

v� � c�
�v� � c�

;

qS (c) �
�S�B

2 (r + �B)
;

where the last inequality follows from applying the bound from step 1(a),
Then from (11) in Lemma 1,

~c0� (c) =
1�R�

1�R� +R� `SqS (c)
� r�

`SqS (c)
� r�

`S�S�B=2 (r + �B)
=
�2r (r + �B)

`S�S�B
:

Now we can see that

y

2
=

Z
~c� (c)2[c� ;c�+

y
2
]
~c0� (c) dc �

�2r (r + �B)

`S�S�B
;

which is the same as (a).
Step 3: Let � = minf�B; �Sg. We claim that

�v� � c� � � min
�
�B
�B`B

;
�S
�S`S

�
�
�
1 +

r

�

��
1 +

2r

�

�2
:

To prove it, �rst notice that from step 2(a) and (17), we have

v� � c� = minfv� ; �c�g � c� +max fv� � �c� ; 0g �
�4r (r + �B)

`S�S�B
+
��S
`S�S

:

12



Then from step 1(a),

�v� � c� �
r + �B
�B

(v� � c� ) � �
r + �B
`S�S�B

�
4r(r + �B)

�B
+ �S

�
= �

�S
`S�S

�
1 +

r

�B

��
1 +

4r

�S

�
1 +

r

�B

��
� � �S

`S�S

�
1 +

r

�

��
1 +

4r

�

�
1 +

r

�

��
= �

�S
`S�S

�
1 +

r

�

��
1 +

2r

�

�2
:

Similarly, from step 2(b) and step 1(b),

�v� � c� � �
�B
`B�B

�
1 +

r

�

��
1 +

2r

�

�2
:

Step 4: We get our claim by combining the last two upper bounds for �v� � c� from the
last step:

�v� � c� � � min
�

�B
`B (�)�B

;
�S

`S (�)�S

��
1 +

2r

�

�3
:

Notice that �S= (`S (�)�S) is nonincreasing and �B= (`B (�)�B) is nondecreasing in �,
and that they are equal if and only if � = �0. If � = �0, both of them are equal to
K (�0) = (�B + �S). Thus we obtain the upper bound in the Theorem.

Step 5: Finally, we show that �v� � c� � ��. Consider once again equations (15) and
(16). Since `BqB and `SqS are at most 1, and pB (v� ) � c� , pS (�c� ) � �v� by the ex-post
individual rationality condition (4), we have

�v� � c� � ��B; �v� � c� � ��S :

Consequently,
�v� � c� � � max f�B; �Sg � ��:

Q.E.D.

5 Rate of convergence results for general bargaining mech-

anisms

De�ne

W 0
� = b

Z
AB

WB� (v) dF (v) + s

Z
AS

WS� (c) dG (c)

as the total welfare of a cohort of buyers and sellers. We show next that, in terms of the
total welfare, no bargaining mechanism can attain a faster-than-linear rate of convergence.

Theorem 2 For any bargaining protocol,

W 0� �W 0
� � � � b [1� F (v� )]min

�>0
K (�) (18)

As � ! 0, the rate of convergence of W 0� �W 0
� to 0 cannot be faster than linear.
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Proof. One can eliminateWB� (v) for v 2 AB andWS� (c) for c 2 AS from the recursive
equations (5) and (6):

WB� (v) =
`B [qB (v) v � tB (v)]� ��B
1�R� +R� `BqB (v)

; WS� (c) =
`S [tS (c)� qS (c) c]� ��S
1�R� +R� `SqS (c)

: (19)

Since the traders in equilibrium enter voluntarily, the numerators in the above fractions are
non-negative for v 2 AB and c 2 AS . Consequently, for active types WB� (v) and WS� (c)
can be bounded from above as

WB� (v) �
`B [qB (v) v � tB (v)]� ��B

`BqB (v)
� v � tB (v)

qB (v)
� ��B
`B

;

WS� (c) �
tS (c)

qS (c)
� c� ��S

`S
:

Now the total welfare of the entering cohort is bounded from above by

b

Z
AB

vdF (v)� s
Z
AS

cdG (c)

�
�
b

Z
AB

tB (v)

qB (v)
dF (v)� s

Z
AS

tS (c)

qS (c)
dG (c)

�
�
�
��B
`B

+
��S
`S

�
b

Z
AB

dF (v) :

Obviously, the �rst term does not exceed the Walrasian welfare rateW �
0 . The second term is

zero because in a steady state, bdF (v) =qB (v) = B`Bd� (v), sdG (c) =qS (c) = S`Sd� (c) and
the transfers are balanced, B`B

R
v2AB tB (v) d� (v) = S`S

R
c2AS tS (c) d� (c). Consequently,

W 0
� �W 0� �

�
��B
`B (�)

+
��S
`S (�)

�
b

Z
AB

dF (v) :

The proof is completed by noting that ��B=`B (�) +��S=`S (�) � � �min�>0K (�). Q.E.D.

Corollary 2 Any GRP TIOLI mechanism is worst-case asymptotically optimal, in the
sense that W 0

� !W 0� at a linear rate.

Of course, the intuition for Theorem 2 is that with matching frictions, the loss of welfare
due to costly delay is unavoidable regardless of the bargaining protocol. An interesting
further question is how to isolate the welfare loss due to strategic behavior. One way of
doing so is to compensate the traders for the costs of participation and time discounting
that they incur in equilibrium. This will eliminate time discounting and participation costs
from the value functions in (19), and we can de�ne the welfare loss due to strategic e�ects
as

�w� =W
0�
� � b

Z
AB

�
v � tB (v)

qB (v)

�
dF (v)� s

Z
AS

�
tS (c)

qS (c)
� c
�
dG (c) :

14



Since bdF (v) =qB (v) = B`Bd� (v), sdG (c) =qS (c) = S`Sd� (c), and the transfers are
balanced,

B`B

Z
v2AB

tB (v) d� (v) = S`S

Z
c2AS

tS (c) d� (c) ;

we have

�w� =W
0� � b

Z
AB

vdF (v) + s

Z
AS

cdG (c) :

By Lemma 1, the sets of participating types AB and AS are intervals, AB = [v� ; 1] and
AS = [0; �c� ]. The welfare loss �w� is then equal to the area of the familiar "deadweight
loss" triangle,

�w� = b

Z v�

p�
(v � p�) dF (v) + s

Z p�

�c�

(p� � c) dG (c) :

The ine�ciency loss �w� is due only to ine�cient entry, because the marginal participating
types v� , �c� may be di�erent from p�. As is well known, the area of the "deadweight loss"

triangle is proportional to jv� � �c� j
2, and therefore �w� = O

�
jv� � �c� j

2
�
. Theorem 1

implies the following corollary.

Corollary 3 For any GRP TIOLI mechanism, the welfare loss due to strategic behavior
�w� = O

�
�2
�
, i.e. converges to 0 at a no-slower-than-quadratic rate.

6 Results for k-double auction

It is interesting to know if convergence, or more strongly convergence at a linear rate,
can be proved for bargaining games that do not satisfy the GRP TIOLI property. In this
section we show that another well-studied bargaining mechanism, the bilateral k-double
auction, does not have robust convergence properties. In other words, some equilibria do
not converge to perfect competition.

Recall the rules of the bilateral k-double auction: the buyer and the seller simultaneously
and independently submit a bid price pB and an ask price pS respectively, and then trade
occurs if and only if the buyer's bid is at least as high as the seller's ask, at the weighted
average price (1� k)pS + kpB, where k 2 (0; 1).

We distinguish two classes of double-auction equilibria: full-trade and non-full-trade. A
full-trade equilibrium is characterized by the property that every meeting results in trade.
We claim that the class of full-trade equilibria includes equilibria that are very ine�cient,
even with arbitrarily small frictions. (But it also includes equilibria that converge to perfect
competition.)

From Lemma 1, the sets AB, AS of active types are still intervals [v; 1] and [0; �c] for
some marginal types v and �c; and we also have ~v(v) < v and ~c(c) > c for all v > v and
all c < �c. Since all active traders' trading probabilities are strictly positive, they must
in equilibrium submit serious bids/asks, and therefore, we must have pB(v) � ~v(v) < v
and pS(c) � ~c(c) > c for all v > v and all c < �c. Now it is clear that for an equilibrium
to be full-trade, we must have �c � v, and all traders must submit a common bid/ask p.
Hence every matched pair trades at the price p. Furthermore, v-buyers and �c-sellers have
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to recover their participation costs, thus in any full-trade equilibrium we have �c < p < v
for some p 2 (0; 1).

Any full-trade equilibrium must satisfy indi�erence equations for the marginal types, as
well as the a mass balance equation:

`B (�) (v � p) = ��B; (20)

`S (�) (p� �c) = ��S ; (21)

b[1� F (v)] = sG (�c) : (22)

The converse is also true, i.e. any quadruple fp; �; v; �cg satisfying (20), (21), (22) and
K (�) < 1 must characterize a full-trade equilibrium. In particular, any trader's best-
response bid/ask strategy is p, given that all other active traders use this strategy.

From equations (20) and (21), it follows that the entry gap is

v � �c = �K (�) : (23)

The next proposition shows that v � �c can be arbitrary close to 1 for all � small enough
so that a non-trivial equilibrium exists. Therefore equilibrium outcomes can be arbitrarily
far from e�ciency even with small frictions. The set of equilibrium entry gaps converges
to (0; 1) as frictions disappear, so the set of full-trade equilibria ranges from perfectly
competitive to almost perfectly ine�cient. Moreover, the set of equilibrium prices also
converges to (0; 1). Thus indeterminacy grows rather than vanishes with competition,
contrary to the results in the static double auction literature.

Proposition 1 A full-trade equilibrium exists if and only if

� �min
�>0

K (�) < 1: (24)

The set of equilibrium values of v � �c is an interval [� � min�>0K (�) ; 1). As � ! 0, this
set and the set of equilibrium prices converge to (0; 1) In particular, there exists a sequence
of full-trade equilibria that converges to perfect competition, but also sequences that do not
converge.

Proof: The proof follows the graphical argument shown in Figure 1. Given � , the right
panel shows the marginal types v and �c in a steady-state equilibrium. The left panel shows
the supportable values of the market tightness � and �� that correspond to the given gap
v � �c < 1. (In general, there can be one, two or more such values.)

Our assumptionM (0; S) =M (B; 0) = 0 implies `B (1) = `S (0) = 0. It in turn implies

lim
�!0

K (�) = lim
�!1

K (�) =1; (25)

as depicted in the left panel.
Given that (25) holds, a solution � to the equation �K (�) = v � �c exists if and only

if v � �c 2 [� �min�>0K (�) ; 1). Since lim�!0 �K (�) = 0 for any � > 0, we also must have
� � min�>0K (�) ! 0 as � ! 0. It proves that the set of supportable entry gaps v � �c
converges to the interval (0; 1).
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Figure 1: Construction of a full-trade equilibrium of the k-double auction

Now �x any � such that � � min�>0K (�) < 1. Consider the longest interval [�0� ; �1� ]
such that �K (�0� ) = �K (�1� ) = 1 and �K (�) < 1 for � 2 (�0; �1). For any � 2 (�0� ; �1� ), v
and �c can be found uniquely from (23) and (22) (see Figure 1). Denote these mappings as
v� (�) and �c� (�). The equilibrium price p can also be found uniquely from equation (20)
or equation (21):

p� (�) � �c� (�) +
� � �S
`S (�)

(26)

( = v� (�)�
� � �B
`B (�)

): (27)

This formally de�nes a continuous mapping p� (�) of [�0� ; �1� ] into R+. Consequently, its
image is a closed interval that contains the points p (�0� ) and p (�1� ); and the set of sup-
portable equilibrium prices contains this interval. The de�nitions of �0� and �1� imply
that �0� ! 0 and �1� ! 1 as � ! 0. Now �c� (�1� ) = 0 for all � and `S (�1� ) ! 1 as
� ! 0, therefore (26) implies that lim�!0 p� (�1� ) = 0. Similarly, v� (�0� ) = 1 for all � and
`B (�0� )!1 as � ! 0, so that (27) implies that lim�!0 p� (�0� ) = 1. This proves that the
set of supportable equilibrium price converges to (0; 1). Q.E.D.

By looking at the equilibria with the smallest entry gap, v � �c = � �min�>0K (�), we
can see that the following corollary is true.

Corollary 4 There are full-trade equilibria that converge, in terms of the ex-ante utilities,
at a linear rate in � .

It is not hard to see that the condition � � min�>0K (�) < 1 is also necessary for any
nontrivial steady-state equilibrium to exist. We thus have the following corollary.
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Corollary 5 There exists a nontrivial steady-state equilibrium (either full-trade or non-
full-trade) if and only if � �min�>0K (�) < 1.

Proof: Given Proposition 1, it is su�cient to prove the necessity of the condition
� � �B=`B(�) + � � �S=`S(�) < 1. The incentive compatibility conditions (2) and (3) imply

`B(�)

Z
[q(v; c)v � t(v; c)]d�(c) � � � �B; `S(�)

Z
[t(v; c)� q(v; c)c]d�(v) � � � �S

and hence
� � �B
`B(�)

+
� � �S
`S(�)

�
Z Z

(v � c)d�(v)d�(c) < 1:

Q.E.D.

Remark 3 This necessary and su�cient condition is weaker than the one for the simple
random-proposer TIOLI bargaining, as shown in Shneyerov and Wong (2007).

Proposition 1 shows that, even in the full-trade class, the set of double-auction equilibria
is large. Of course, it has been known at least since Chatterjee and Samuelson (1983) and
Leininger, Linhart, and Radner (1989) that static double auctions have a huge multiplicity
of equilibria. The latter paper in fact looks at full-trade equilibria (which they call one-step
equilibria), and shows that such equilibria exist for any price p 2 (0; 1). (With positive
participation costs, only the prices su�ciently far from the endpoints 0 and 1 can be
supported.) Our result shows that this multiplicity of equilibria survives in our dynamic
model, even as we let the time between meetings go to 0.

Leininger, Linhart, and Radner (1989) also study n-step equilibria, where the strategies
are allowed to be n-step functions, and also �nd multiple equilibria in that class. In our
setting, these equilibria would be non-full-trade. In the theorem below, we show existence
of equilibria with two steps (see Figure 2).12 There are two seller cuto� types ĉ 2 (0; 1) and
�c 2 (0; 1) with ĉ < �c, and two buyer cuto� types v̂ 2 (0; 1) and v 2 (0; 1) with v̂ > v. The
sellers with c 2 [0; ĉ) enter and bid pS(c) = p, where p is some constant strictly below p�.
The sellers with c 2 [ĉ; �c] enter and bid pS(c) = �p, where �p > p�. The sellers with c 2 (�c; 1]
do not enter. Similarly, the buyers with v 2 (v̂; 1] enter and bid �p, the buyers with v 2 [v; v̂]
enter and submit p, and the buyers with v 2 [0; v) do not enter.

The following theorem contains our non-convergence result for the two-step class of
equilibria.

Theorem 3 For any a 2 (0; 1), there exist r0 > 0, �0 > 0 and �W < W 0� such that for all
r 2 [0; r0) and � 2 (0; �0), there exists a two-step equilibrium in which the price spread is
larger than a, i.e. �p�p > a, and the total ex-ante surplus is smaller than �W , i.e. W 0 < �W .

12We don't know if our construction could be generalized to n-step equilibria as Leininger, Linhart, and
Radner (1989). Generally, this would seem to be a hard problem, especially given that Leininger, Linhart,
and Radner (1989) are able to prove existence of an n-step equilibrium only for a special case of equal steps.
However, equilibria with two steps serve our purpose here, which is to show that there are non-convergent
equilibria in the non-full-trade class.
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Figure 2: A two-step equilibrium of the k-double auction

Proof: We derive a system of equations characterizing the set of two-step equilibria.
But before doing so, it is convenient to introduce additional notation. In a two-price
equilibrium, the buyers with v > v̂ who submit the high bid price �p, trade with any seller
they meet. Buyers with v 2 [v; v̂], who submit the low bid price p, trade only with sellers
having c < ĉ, who submit p; their probability of trading is equal to �(ĉ). Similarly sellers
with c < ĉ trade with any buyer they meet, and sellers with c 2 [ĉ; �c] trade only with those
buyers with v > v̂; their probability of trading is equal to 1� �(v̂).

In the equilibria to be constructed �(ĉ) and 1� �(v̂) will converge to 0 as � goes to 0,
so it is convenient to divide them by � :

�B �
1� �(v̂)

�
; �S �

�(ĉ)

�
:

Since v-buyers and �c-sellers are indi�erent between entering or not, we have

`B�S(v � p) = �B; (28)

`S�B(�p� �c) = �S : (29)

Since v̂-buyers are indi�erent between biding p or �p, and ĉ-sellers are indi�erent between
asking p or �p, we have

��S [~v(v̂)� p] = ��S
�
~v(v̂)� [(1� k)p+ k�p]

	
+ (1� ��S) [~v(v̂)� �p]; (30)

��B[�p� ~c(ĉ)] = ��B
�
[(1� k)p+ k�p]� ~c(ĉ)

	
+ (1� ��B) [p� ~c(ĉ)]: (31)

Since the utility equations (8), (9) still hold here, we have

ŴB = (v̂ � v)
m(�)�S

� (1�R� ) +R�m(�)�S
(32)
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ŴS = (�c� ĉ)
m(�)�B

1�R� +R�m(�)�B
: (33)

where we denoted ŴB �WB (v̂) and ŴS �WS (ĉ).
To complete the description of a two-step equilibrium, the indi�erence conditions are

supplemented with steady-state mass balance conditions for each interval of types. Here, it
su�ces to require that the total in
ows into the intervals [v; 1] and [0; �c] are balanced with
the out
ows,

b [1� F (v)] = Sm(�) [�S + �B (1� ��S)] ; (34)

sG(�c) = Sm(�) [�B + �S(1� ��B)] ; (35)

and that the in
ows into the intervals v 2 [v̂; 1] and [0; ĉ] are also balanced with the out
ows,

b[1� F (v̂)] = Sm(�)�B; (36)

sG(ĉ) = Sm(�)�S : (37)

We also de�ne the price spread,
a0 � �p� p:

Then equations (28) through (37) form a 10-equation system with 12 endogenous vari-
ables fp; a0; �; v; �c; v̂; ĉ; �B; �S ; S; ŴB; ŴSg. This system does characterize an equilibrium.
Indeed, one can easily see that the buyers with v 2 (v̂; 1] strictly prefer to bid �p, the buyers
with v 2 (v; v̂) strictly prefer to bid p, and the buyers with v 2 [0; v) strictly prefer not to
enter. Similar remark applies for sellers.

Since we have two degrees of freedom, we can �x some � > 0 and a0 2 (a; 1) and then let
equations (28) - (37) determine fp; v; �c; v̂; ĉ; �B; �S ; S; ŴB; ŴSg. We claim that a solution
exists for small enough � and r. To see this, one can check that when � = r = 0, we have a
(unique) solution with p implicitly determined by b[1 � F (p + a0)] = sG(p), and all other
variables given by

�c = p; v = �p = p+ a0; �B =
�S

m(�)a0
; �S =

�B�

m(�)a0
; S =

sG(p)a0

�B� + �S
;

1� F (v̂) = [1� F (�p)]�S
�B� + �S

; G(ĉ) =
G(p)�B�

�B� + �S
; ŴB = v̂ � �p; ŴS = p� ĉ:

One can also check that the Jacobian evaluated at � = r = 0 is not zero.13 Therefore
the Implicit Function Theorem applies. Because �p � p � a0 > a, there exists a two-step
equilibrium with �p � p > a when � and r are small enough. Moreover, since v ! �p and
�c ! p as (�; r) ! (0; 0), the spread v � �c is also bounded below by a. It follows that
the associated total ex-ante surplus W 0 is bounded away from the Walrasian total ex-ante
surplus W 0�. Q.E.D.

Unlike in Proposition 1, the construction in the proof of Theorem 3 treats buyers and
sellers symmetrically. In particular, � could be �xed at any value. Then why does the double

13The MathematicaR
 notebook that contains the evaluation of the Jacobian is available at
artyom239.googlepages.com.
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auction mechanism has non-Walrasian limit equilibria while the GRP TIOLI mechanisms
do not? One can verify that the dynamic types do collapse to singletons even in the two-
step non-convergent equilibria. For the sake of simplicity, suppose the discount rate r is
0 so that the dynamic types are constant and equal ~c = �c ! p and ~v = v ! �p. Also
suppose � is very small. Then all buyers have dynamic types approximately equal to p and
all sellers have dynamic types approximately �p. A seller submitting an ask lower than the
dynamic types of all buyers does not guarantee herself a successful trade. To guarantee a
trade, she has to ask lower than all buyers' bids. Consider a seller with c < ĉ. This seller's
equilibrium ask price is p. She realizes that the buyers' dynamic valuations ~v are always
�p approximately, and would like to demand that much if she could be sure that her o�er
would be accepted, as it would be in a TIOLI node of the GRP TIOLI bargaining game.
However, demanding that much now runs into the risk of being countered with the buyer's
bid of p, resulting in no trade. In our equilibrium with � small, most of the active buyers
bid p. Weighing these trade-o�s, the seller decides to submit p and not �p. Similar logic
applies to the buyers.

Now consider a seller with c = p+" where " > 0 is small. Although her type (or dynamic
type) is signi�cantly lower than the buyers' dynamic types, which are �p approximately, she
chooses not to enter even when the expected participation costs incurred until the next
meeting are very small as � becomes very small. This is again because most of the active
buyers bid p, making her prospect of trade meager. Similar logic applies to the buyers.

Finally, to complete our logic, we explain why the fraction of active buyers bidding p
is very high relative to the fraction bidding �p. It is because in our equilibrium, the buyers
who bid p can only trade with those sellers who ask p, which makes their out
ow rate tiny.
On the other hand, the buyers who bid �p trade in any meeting. Thus in the steady state,
the buyers who bid p accumulate and dominate the buyers' side of the market. Similar
logic applies to the sellers. Taken together, these arguments explain why extra-marginal
traders do not enter to quest a fraction of the unexploited surplus v� �c, keeping a positive
gap between v and �c.

The rules of the double auction do not provide a tight connection between the dynamic
types and actual acceptance levels as would be the case in the TIOLI nodes of GRP TIOLI
mechanisms. Here, a bid/ask is both an o�er and an acceptance level. On the other hand,
in the TIOLI nodes of GRP TIOLI mechanisms, the proposing and responding strategies
are separate decisions because traders are clear about who is a proposer and who is a
responder. Ex-post, the bargaining power is given to one party, and thus well-de�ned.
Therefore the responder is always held to her acceptance level, which by the buyer and
seller TIOLI properties, creates strong incentive to enter for both buyers and sellers. This
drives the marginal participating types close to each other and at the same time close to
the Walrasian price.

7 Concluding remarks

A limitation of our models is that we assume continua of traders. While this assumption
is standard in many matching and bargaining models, it would be nice to have a theorem
showing that the continuum economy is a limit, in an appropriate sense, of an economy with

21



a �nite number of agents.14 For example, one might assume that the number of newborn
buyers is approximately n �b and the number of newborn sellers is approximately n �s, where
n is a large integer. Therefore ideally, the setting in this paper would be better viewed as
the one of double limits, letting �rst the number n go to in�nity, and then letting � go to 0.
Although appealing, we conjecture that such a connection is unlikely to be established at the
level of generality of our model, and would need to be established on a case-by-case basis,
for more narrowly de�ned classes of bargaining mechanisms. One reason for this is that we
would need �rst establish the existence of a nontrivial market equilibrium. The issue here
is that a trivial equilibrium with no entry always exists. Clearly, when the participation
costs are large, this is the only equilibrium. Then how small do the participation costs need
to be so that there is a nontrivial equilibrium? For a general bargaining game, there may
not be a clear answer to this question.

For simple random-proposer TIOLI games, Shneyerov and Wong (2007) derive a simple
necessary and su�cient condition for the existence of a nontrivial market equilibrium.15

We conjecture that a formal link between �nite n and continuum models might be possible
to establish for this class of protocols. A number of hurdles would need to be overcome.
The main di�culty is that the type of a trader would include not only his valuation, but
also his market history, which leads to multidimensional type spaces. (For example, a
buyer who was unable to trade for quite a few periods would infer that the distribution of
seller types in the market is tilted towards higher costs, and would adjust his bargaining
strategy accordingly.) This di�culty could be overcome if the market type distributions
are observable. With this assumption, the market distributions can be viewed as a state
variable, and one can de�ne a Markov perfect equilibrium. One important di�erence from
our steady-state continuum model is that the time path of the economy is not in a steady
state. So one way to proceed would be to �x an equilibrium E of the continuum model,
and to assume that the initial distributions of types are samples of sizes approximately
n � B and n � S from � and �. In other words, the economy is jump-started essentially in
the steady-state of the continuum model. We conjecture that one can select a sequence of
�nite-n equilibria fEng whose equilibrium objects' time paths converge in probability, and
in an appropriate sense, to the steady-state time path of E.

Our GRP TIOLI mechanisms are restricted to bilateral bargaining. Generalizing our
results to multilateral bargaining in a market with many-to-many matches as e.g. in Dagan,
Serrano, and Volij (2000) would be important. A di�erent issue is that our non-convergent
examples for the k-double auction are all quite special since they require a great deal of
coordination among the traders. Additional assumptions, e.g. continuity of strategies, could
be imposed to restrict the set of equilibria with the purpose of proving their convergence at
a linear rate. In addition, allowing a multilateral matching technology might also restore

14One approach to this problem is taken in McAfee (1993), a paper that studies a dynamic matching
environment in which each seller runs an auction among the buyers she is matched with. McAfee (1993)
de�nes a competitive subform consistent equilibrium (CSCE). However, a CSCE does not involve an optimal
agent behavior in the �nite environment. The convergence result in Peters (2000) is the only theorem we
could �nd that shows a link between exact equilibria in �nite and continuum environments. However, his
model is essentially a static, directed search model, in which most of the dynamic complications of our
setting do not arise.
15Their model is set up in continuous time, but it is clear how their result would carry over to a discrete

time setting.
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convergence of all equilibria of the k-double auction mechanism. These extensions are left
for future research.
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