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ABSTRACT

Dealing with optimal policy of a risk averter, characterized
by a strictly concave monotonic utility function, Samuelson proved
that funds should be allocated equally among prospects having a
symmetric joint distribution. In this work we strengthen the
above result by weakening the symmetry assumption, as well as
including possible constraints on the set of possible portfolios.
We also demonstrate the valiidity of the above result to the case
where the one dimensional concave utility (of total wealth) is
replaced by a multi-dimensional utility that depends on the dis-

tribution of the wealth and satisfies a weaker concavity condition.



Symmetry and Diversification of Interdependent Prospects

By Arie Tamir

Introduction

In an early paper [6], P. A. Samuelson showed that given n
prospects with a symmetric n~dimensional joint distribution function
a risk averter's optimal strategy is to put an equal amount into
each prospect. A proof of the result was also given in a recent
paper by J. Hadar and W. R. Russell [ 3] who approached the problem
using the stochastic dominance concept.

In this paper we strengthen the above result by weakening the
symmetry assumption, as well as including possible constraints on
the set of feasible portfolios, by allowing sets containing no con-
tinuum.

We also demonstrate the validity of the above result to the
case where the one dimensional concave utility (of total wealth)
is replaced by a multi-dimensional utility that depends on the
distribution of the wealth and satisfies a weaker concavity con-
dition.

We start by developing general results on a class of cyclically
symmetric optimization problems and then apply it to the above port-

folio selection problem.

Permutation matrices and a related class of optimization problems

In this section we present results on permutation matrices, i.e.

0,1} - valued matrices having row and column sums equal to one.



Lemma 1:

Proof:

D

Let A C R"™ and let P be an nxn permutation matrix such
that x ¢ A implies Px ¢ A. Then A = PA, i.e., P maps A

onto itself.

By the lemma's assumptions it follows that

pXa < P¥1a <A for k=2 2,

where Pk is the kth power of P. The lemma follows if we

show that P is idempotent, i.e., that for some integer m,

P™ = 1. We recall that the permutation matrices of

order n form a finite group of order n:. with respect
to matrix multiplication. Hence for any permutation

matrix P there exists m=m(P) ¢« n! such that P = 1.

We apply the above result to obtain the following:l

Lemma 2:

Proof:

Let G:R" , R be a distribution function and V:BxA ¢
ROxR" 4 R, where A and B are subsets of R". Given

a permutation matrix P suppose that A is symmetric
with respect to P, i.e., X ¢ A = Px ¢ A, and B is
symmetric with respect to P'. If G(Px) = G(x) for
all x ¢ A, and V(P'),x) = V(3.Px) for all (),x) ¢ BxA,
then for any ) ¢ B such that §()) = f V(3 ,x)dG (x)

A
exists, 3 (P')) exists and §(P*y) = 3 ().

Let A be a Borel set. Recalling that P is a permu-
tation matrix and applying Lemma 1 yield that R & A
is a rectangle if and only if PR & A is a rectangle.
Hence Ai is a Borel subset of A if and only if PAi is
a Borel subset of A. Furthermore, G(x) = G(Px) for
all x ¢ A implies that for each Borel subset Ai < A

1

G*(Ai) = G*(PAi) = G*(P “Ai) where G* is the probabi-

lity measure induced by the distribution G.
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For each Borel subset Ai & A let 1,; be the corres-
ponding indicator function i.e. it takes on the

value 1 if x ¢ Ai and O otherwise.

Given the relation V(P';,x) = V(),Px) for all x ¢ A

and sequences of step functions
n

n
f ElcilAi}n {iilcilPAi}n

where Ai & A, we observe the following

n n
V(A,") = lim by C.l 1PAi => V(P'y,+) = 1lim = C;
n i=1 n i=1
Thus,
n n
[ vh.xdae(x) = 1im [ £ c1,,, = lim = C,G*(PAi)
A n A 1:1 n l=l
n n
= lm 2 & ge@i) = 1im [ = c,1.,
n 1i=1 . Al
n vi=1

i

J V(P'),x)dG (x) .
A

and the proof is complete.
The following well known result from convexity theory is

implied by the ¢ - additivity of the probability measure induced

by the distribution function G.
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' . . . . . n
Lemma 3: Let G: R© 5 R be a joint distribution function on R .

Do Rn » R, suppose that for

Given a mapping U(),x): R
any x ¢ rR™ U(-,x) is concave. Let A ¢ R" and assume

further that vy ()) U(\,x)dG(x) is well defined for

r
)
A
<

all ) € D¢ rRY. 0 t £ 1 and xl, Ay € D, then

A () = Exy + (1-t)x, € D implies v () (t)) = t \y(xl) + (1-t) ‘i’()\z)-

Remark: If the (complete)concavity of U(-,x) in x==(xl,...,xn) is re-
placed by a partial concavity (i.e. concavity in a subset of
the variables (xl,...,xn)) then the same property will be

induced on v (3).

To present the main result we introduce the following definitions.

Definition 1:

(1 "in) is the jth cyclic permutation of (1,2,...,n), if

lloo

1j+k==l+k, k=0,...,n-j and 1j_k::n+1_k, k=1,...,3-1. The {0,1}
- valued nxn matrix corresponding to the jth cyclic permuta-

tion is denoted by Pj' Note that Py is the identity of order n.

Definition 2:

(1) ac¢ R” is said to be symmetric if for any x ¢ A and any
permutation matrix P Px ¢ A.

(2) A ¢ rR" is cyclically symmetric if x ¢ A implies Pj X ¢ A,

h

j=1,...,n, where Pj is the jt cyclic permutation matrix.2

(3) 2 cyclically symmetric set A ¢ R is cyclically convex if
n
X ¢ A implies X = % Y P.x ¢ A, where Pj’ j=1,....,n, is
j=1
the jth cyclic permutation matrix.

(4) Let f: A C R" + R, where A is symmetric (cyclically symmetric).

Then f is symmetric (cyclically symmetric) if £(x) = £(P(x))

(f(x) = f(Pj(x)) for all permutation matrices P (for all

cyclic permutation matrices Pj’ j=1,...,n).
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We are now ready to introduce the main result of this section.

Theorem 4: Given U(),x) : R?x r" 5 R, a distribution function G(x):

Rn_;R and sets A C Rn, B C Rn, suppose the following

1. A is cyclically symmetric and B is cyclically convex.
2. G is cyclically symmetric on A. U(-,x) is concave for
all xcA.
3. U(P'jx,x)==U(x,ij) for all (»,x) e BxA and j=1,...,n,
where Pj is the jth cyclic permutation matrix.
4. For all » eB y(y)) = j U(),x)dG(x) is well defined
on the extended 1ineAi.e. vy () e[ ~=i0] -
Then vy ()) is cyclically symmetric and for each Ay’ Ay € B and t
0 < t<l, \(t) = tay + (l—t))\2 ¢ B implies v (5 (t)) » t Y(Xk)“+(1—t)¥(X£~
Moreover, v (3) » v()) for all ) ¢ B, where ) ¢ B is a symmetric point

n
2ll of whose components equal to % Z A
i=1

Proof: The concavity property of vy ()) is implied by Lemma 3.
Using the cyclic symmetry of G we apply Lemma 2 to have
y(PjX) = v (y) for all } ¢ B and j=1,...,n. To obtain

the cyclic symmetry of v we observe that Pij =1I, i.e.,



Pé is itself a cyclic permutation matrix. Specifically,

P] = P, and Py = Pljo-y TOr j 2 2. Thus, v (P5a) =¥ ())

for all , ¢ B, j=1,...,n, and ¥ is cyclically symmetric.
1 2 - -
Let )\ ¢ b, then 7 Z ij = ) ¢ B. All the components of )
n J=1
are equal to % z g We then apply the concavity and the
i=1

cyclic symmetry of yv to obtain:



Mo

1 n
y () = 3 2oy () =vH)

y (P.)) =
3 J

1

In the next section we apply the above theorem to strengthen a re-

sult of Samuelson [6].

Diversification of Interdependent Prospects

Dealing with optimal distribution of a risk averter, character-

ized by a strictly concave monotonic utility function, Samuelson [ 6]

and later Hadar and Russell[3], proved the following theorem showing

that funds should be allocated egually among n prospects having a

symmetric joint distribution.

Theorem 5:

Let G(xl,...,xn) be the joint probability distribution
of the random variables KyreeesX - Suppose that G is

symmetric and has finite means, variances and covariances.

then if U(t) : r' -+ r! is strictly concave and twice

continuously differentiable the maximum of the symmetric,

concave function.

v() = [ U('x)a6 (x)

subject to Ay T g toeee H A S 1, Ay = 0 is given by

2 n

Y(%,...,%). Thus, diversification always pays.3
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The results of the preceding section enable us to weaken the
symmetry assumption of the above theorem, as well as the smoothness
of the utility U. Furthermore, the convexity of the feasible set
for ) can be considerably relaxed to allow finite and countable
sets.

The following is our generalization:

Theorem 6: Let G(x) = G(xl,...,xn) be the joint probability dis-
tribution of the random variables Xpv e aX Suppose

that G is cyclically symmetric and has finite means.
Let U(t) be a concave function from Rl to Rl, and

let D ¢ R" be a cyclically symmetric, cyclically
convex set. If vyv()) = fn U() 'x)dG(x) exists for all

R
in D then there exists a symmetric point )} ¢ D, where

- 1 n ~ 4
V=% ZPa.,and ¥y(Q) = vQ).
21 J
J=1
Proof: The proof follows directly from Theorem 4, by verifying

that all the theorem assumptions are met.

We observe that Theorem 5 is implied by Theorem 6 as D corresponds
to a compact convex set. We also note that Theorem 6 yields that
the equal allocation of funds among the n (cyclically sgmmetric)
prospects is preserved as long as the set of feasible portfolios,
D, is cyclically symmetric and cyclically convex. Note that D may

be a finite or a countable set. (Further extensions of Theorem 6 are

given in the next section.)
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To demonstrate the strengthening provided by the last theorem
we will illustrate that cyclic symmetry and cyclic convexity are
weaker than symmetry and convexity respectively.

The function f(u,v,w) = (u-v) (v-w) (w-u) is cyclically symmetric
but not symmetric. We also point out that convexity of cyclically
symmetric functions does not imply the complete symmetry. This is

illustrated by the function

h(u,v,w) = (u-v) (v-w) (w=u) + u2 + V2 + w2

in some neighborhood of the origin. Finally the set D ¢ R3 defined
by the union of the convex hull of {(1,2,3)',(2,3,1)',(3,1,2)'} and
the convex hull of (-(1,2,3)',-(2,3,1)',-(3,1,2)"'} is cyclically
symmetric, cyclically convex, but neither symmetric nor even con-

nected.



-8—

Extensions and Concluding Remarks

As shown in the preceding section eqgual allocation of funds
assures optimality when a risk averter is concerned with maximizing
the expectation of the utility of his total wealth (i.e. a one dimen-
sional utility). This result can be generalized to the case of a
multi-dimensional utility that depends on the distribution of wealth
and satisfies the appropriate symmetry assumption.

In particular we assume that the utility is of the form v()\l Xqv
P Xn'xn)’J where v eeerXy denote the yields of the n prospects
and (xl,...,xn) is a distribution vector.

If v is concave and cyclically symmetric in its n arguments
then one can easily verify that the conditions of Theorem 4 with
Uy, x) = v(>\l Xl"'“'kn xn) are met and thus the extension of

Theorem 6 to the case of a multidimensional concave and cyclically

symmetric utility follows.

Theorem 7: Let G(x) = G(xl,...,xn) be the joint probability dis-
tribution of the random variables Xprewon X and suppose
that G is cyclically symmetric. Let v(tl,uw,,tﬂ)be a real

1

concave cyclically symmetric function from R" to R™ and

let D ¢ R" be a cyclically symmetric, cyclically con-

vex set. If x()) = J VN, Xqse--0) X ) dG(x)
171 nn

Rn

exlsts for all ¢ D, then there exists a symmetric point ) ¢ D
n ’

where x = z

=R

Pj>\: and X(X) > X()\)_

=1

We introduce now a relaxation in the concavity assumption of
the utility v to the case where the complete symmetry is satisfied

by both v and G. Our generalization is based on the following lemma
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discussing the global optimality of the symmetric point in the

hyperplane H

Lemma 8:

Proof:

= {x‘ Z Xj = 17%.
Let f(xl,...,xn) be a cyclically symmetric real func-
tion defined on the hyperplane H = {) | E Xj = 1}. Let
f be upper semicontinuous at t = (%,...,%), (i.e.
limsup f£(x) < f(t)), and suppose that for each ) ¢ H
X 5 t

My Apthg
£y rhgrhgrennady) £ (==, 5= hgreeohy) (1)

1

Then £()) < f(g,...,%) for all ) ¢ H.

Let ) € H and define the following seguence in H.

A T Ay i=1, ,n\
Xk—l Xk-l
k _ M 442 k _ k-1 _ _
For k > 1 r] = > PNy T A L7 i=2, ,n=-1 (2)
Xk_l 4 Xk—l
kK M 2k
and Ap = > = rp-
. k k-1
We first demonstrate that £() ) = £(y ) for k = 1,2,...,
using (1) and the cyclic symmetry of £.
Xk—l + Xk—l Xk—l + Xk—l
k-1 k-1 k-1 1 2, M 2 k-1 k-1
f(xl ’ X2 reseu Xn ) < f( > > ' X3l- 'Ap )
k-1 k-1 k-1 k-1
RS B k-1 k-1 21 +H2
2 R TR 2

k k
FOS )



~10-~

Using the upper semicontinuity of £, the result will follow
if it is first shown that {Xk} converges to the symmetric point

1 1 , . .

CH,...,; ) in H. From (2) it is clearly sufficient to prove that

k 1 . . .

Xl -+ - We observe that (2) yields the linear difference equation
k-1 k- (n-1)

k_M TN : k
Ay = ) which in turn implies the convergence of {Xl}'

n-1 _ l(xn—Z
2

only positive root, while the remaining roots have moduli less

(The characteristic polynomial, x + 1), has +1 as its

than 1). The inclusion of Xk in H and (2) yield that {x?}, i=1,

tend to i.
n

We note in passing that Lemma 8 extends a result due to
Keilson [ 4 ], who assumes the complete symmetry and continutity
of the function f£.

We are now ready to introduce our extension to the (completely)

symmetric case.

Theorem 9: Let G(x) = G(Xl""’xn) be the joint probability dis-
tribution of the random variables Ryre-erX and let
v(tl,...,tn) be a continuous real function. Suppose

that both G and v are symmetric and that v is concave

in its first two arguments t1 and t2.

n
i

t .
If 6(y) = Jv(xl Xyreeerhp xn) dG (x) exists for all
AreH={x] 2 Xj = 1} and is upper semicontinuous
on H, then the symmetric point maximizes ©()) over H,

i.e
o 1 1
e(}‘{i-‘-lz) ZG(X)I A EH-

31!
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Proof5: Using the remark following Lemma 3 it follows that
G(Xl,...,xn) is concave in (Xl,xz). The symmetry of
v and G induce the same property on 6, (Lemma 2).
Thus, ©()) satisfies the conditions of Lemma 8 and the

proof is complete.

Finally, a general comment is in order. The discussion in this
paper, foeusing on cyclic symmetry,can be applied to other economic
situations that present symmetric solutions. We mention two such
applications. The first is Samuelson's result [ 77. that shows
that equal distribution of income among identical Benthamites will
maximize the sum of social utility. A second application is the
well known Modigliani-Miller theorem [ 5 ]. One of the statements
of this theorem is that in the absence of default risk, the values
of all firms in the same risk classare equal. Baron [ 1 ], has re-
marked that the risk class assumption may be weakened to the case
of a symmetric joint distribution of return as considered in [ 6 ].
Thus our generalization to the cyclically symmetric case applies

also.
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Footnotes

It is assumed throughout this work that subsets of R" are
Borel sets and functions are Baire functions. The integrals

are Lebesgue-Stieltjes integrals. (See[2])-

Since Pn generates the subgroup of cyclic permutations this

definition is equivalent to x ¢ A = Pn X € A.

We note in passing that if U is not bounded from below, then

finiteness of means, variances and covariances does not imply

the boundedness from below of v (3), i.e., v () which is bounded

from above (finiteness of means), can take on the value - =,

This is illustrated by the following one dimensional example.

S
2%
Set U(x) = 1-e © and G(x) = 4 1l -1< x<1
2
L_l———]"‘g x > 1
2X

The cencavity implies that E(U+) < ®, provided the finite
means to G(x). Hence U is guasi~integrable w.r.t. G(x), i.e

v ()) exists on [ ==, 7 for all ) ¢ D.

The continuity property of ©()) is ensured if for example we

assume that 8()) is uniformally convergent.



-13~

D. P. Baron, "Default Risk, Firm Valuation and Inventor Pre-
ferences", Unpublished Report, Graduate School of Management,
Northwestern University, January 1975.

W. Feller, An Introduction to Probability Theory and Its Ap-
plication, Volume 2, Wiley, New York, 1972.

J. Hadar and W. R. Russell, "Diversification of Interdependent
Prospects", Journal of Economic Theory, Volume 7, (1974), pp-.
231-240 .

J. Keilson, "On Global Extrema for a Class of Symmetric Func-
tions", Journal of Math. Anal. and Appli., Volume 18, (1967),
pp. 218-228.

M. Modigliani and M. H. Miller "The Cost of Capital Corporation
Finance and the Theory of Investment", American Economic Review,
Volume 48, (1958), pp. 261-297.

P. A. Samuelson, "General Proof that Diversification Pays",
Journal of Financial Quantitative Analysis, Volume 2, (1967),
pp. 66-84.

P. A. Samuelson, "A Fallacy in the Interpretation of Paretos
Law of Alleged Constancy of Income Distribution", Essays in
Honor of Marco Fanno, Ed. Tullio Bagiotti, (Padra, Cedam-Casa
Editrice Dott, Antonio Milani, 1966), pp. 580-584.




