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Abstract

A multi-player Dynkin game is a sequential game in which at every
stage one of the players is chosen, and that player can decide whether
to continue the game or to stop it, in which case all players receive
some terminal payoff.

We study a variant of this model, where the order by which players
are chosen is deterministic, and the probability that the game termi-
nates once the chosen player decides to stop may be strictly less than
1.

We prove that a subgame-perfect ε-equilibrium in Markovian strate-
gies exists. If the game is not degenerate, this ε-equilibrium is actu-
ally in pure strategies, but in degenerate cases there need not exist a
subgame-perfect ε-equilibrium in pure strategies
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1 Introduction

Dynkin (1969) introduced the following zero-sum game of optimal stopping.
The game involves two players, and two stochastic processes: (in)n∈N is a
{1, 2}-valued process, which indicates which player is active at stage n, and
(rn)n∈N is a R2-valued process, which indicates the terminal payoff.

At every stage n, the two players are informed of past and current values
of the two processes. Player in, the active player at stage n, decides whether
he continues or stops. The game stops at the first stage θ in which the active
player chooses to stop. The payoff (paid by player 2 to player 1) is rθ if
θ < +∞ and zero otherwise. A pure strategy of player i is a stopping time
that is consistent with the rules of the game.

Dynkin proved that this game has a value if supn∈N |rn| ∈ L1, and con-
structed pure ε-optimal strategies for the two players. Dynkin’s ε-optimal
strategies are subgame-perfect in the sense that after every finite history, the
continuation strategy is ε-optimal in the subgame defined by that history.

An extensive literature developed from this seminal work. In a discrete
time framework, much attention was paid to the case where the players are
allowed to stop simultaneously. In the zero-sum case, several authors, in-
cluding Kiefer (1971) and Neveu (1975), provided sufficient conditions for
the existence of the value, when players are restricted to stopping times.
Rosenberg et al. (2001) proved (under a minimal boundedness condition)
that the value always exists, provided the players are allowed to use random-
ized stopping times. In the two-player non-zero-sum case, Shmaya and Solan
(2002) proved that an ε-equilibrium always exists in randomized stopping
times (again, under some boundedness condition).

In the present paper we consider a different generalization of Dynkin’s
model to a multi-player setup. Specifically, we analyze the following class
of I-player games. A deterministic sequence (in, pn, rn) ∈ I × [0, 1] ×RI is
given. At each stage n player in chooses whether to continue or to stop. If
he continues, the game continues to the next stage, while if he stops a lottery
is performed. With probability pn the game terminates, yielding the payoff
rn, while with probability 1− pn the game continues.

This model is more restrictive than the natural generalization of Dynkin’s
model, in that the order in which players alternate is deterministic. On the
other hand, it incorporates an additional degree of generality, since a player
may not be able to stop the process for sure at a given stage.

Our model can be used to analyze situations of shrinking markets (see,
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e.g., Ghemawat and Nalebuff (1985), Fine and Li (1989)), in which n firms
have to decide when to exit a shrinking market. Since once a firm exits, we
remain with a market with n− 1 firms, which can be solved inductively, we
are reduced to a Dynkin game.

A similar situation occurs in takeover games, where n firms strategically
decide to make a takeover attempt on opponent firms. Since a takeover at-
tempt is not always successful, the probability of termination upon stopping
(=making a takeover attempt) may be strictly smaller than 1.

In both of these models, the assumption that the order of players is
deterministic can be explained by having different days of the week for board
meetings of the various firms.

Another model which is close to the one we study is multi-player duels,
or n-uels (see, e.g., Kilgour (1975, 1977) or Kilgour and Brams (1997)).
In this model, n gunners alternately have the option to shoot one of their
opponents or abstain. Since once a gunner hits one of his opponents we are
left with a game with n−1 players, which can be solved inductively, the game
is essentially reduced to a deterministic Dynkin game where players have
several stop actions. As the accuracy of the gunners may not be perfect, the
probability of termination upon stopping (=shooting) may be strictly less
than 1.

Our main result states that if the sequence (rn) of payoffs is bounded, a
subgame-perfect ε-equilibrium in Markovian strategies exists. Moreover, un-
less the game is degenerate, this ε-equilibrium is in pure strategies. However,
in degenerate cases, a subgame-perfect 0-equilibrium need not exist. Since
the subgame-perfect ε-equilibrium we identify is in Markovian strategies, it
is robust to the information players receive along the game; all they need to
know is the stage of the game. Translated to the n-uel model, this means
that there is a subgame-perfect ε-equilibrium which is also a subgame-perfect
ε-equilibrium in the silent n-uel, in which players do not observe missed shots.

A multi-player Dynkin game is a game of perfect information. Hence,
for every ε > 0, by Mertens’ (1987) generalization of Martin’s (1975) result,
there is a Nash ε-equilibrium. However, this ε-equilibrium may involve non-
credible threats of punishment.

The paper is arranged as follows. In Section 2 we present the model and
the main result. Several examples appear in Section 3. The proof of the
main result appears in Section 4. The paper concludes in Section 5 with a
discussion and open problems.
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2 The Model and the Main Result

2.1 Multi-player deterministic Dynkin games

A deterministic multi-player Dynkin game Γ = (I, (in, pn, rn)n∈N) is given by

• A finite set I of players.

• For every n ∈ N, a triplet (in, pn, rn) ∈ I × [0, 1]×RI .

The triplet (in, pn, rn) specifies who is allowed to stop at stage n, the proba-
bility of success in that case, and the corresponding payoff respectively.

The game is played in stages. At each stage n ∈ N, provided the game has
not terminated yet, player in has to choose whether to continue or stop. If he
decides to continue, the game continues to stage n + 1. If he decides to stop,
a lottery takes place (all lotteries in the game, including random choices by
the players, are independent). With probability pn the game terminates, and
the terminal payoff for the players is given by the vector rn. With probability
1− pn the game continues to stage n + 1. If the game never terminates, the
payoff is zero for each player.

We denote by θ the termination stage of the game, i.e., the first stage in
which a player decides to stop, and the game terminates. Thus, the payoff
to player i ∈ I is ri

θ1θ<∞.

2.2 Strategies and results

A strategy of player i ∈ I maps the set of information sets of player i to the
set of mixed moves of player i. We let Ni = {n ∈ N | in = i} be the set of
stages in which player i is active.

We are going to restrict the players to Markovian strategies; namely,
strategies that depend only on the stage, and not on the history. We will
prove below that the game admits a subgame-perfect ε-equilibrium in Marko-
vian strategies. By a general observation (see, e.g., Fudenberg and Tirole
(1991, p.501)), this subgame-perfect ε-equilibrium remains a subgame-perfect
ε-equilibrium without the restriction to Markovian strategies.

In the present context, a (behavior Markovian) strategy of player i is a
function σi : Ni → [0, 1], where σi(n) is the probability assigned by player i
to stop at stage n, provided the game does not terminate before that stage.
We denote the set of strategies of player i by Σi.
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A strategy profile (or simply a profile) is a vector σ = (σi)i∈I of strategies,
one for each player.

Every strategy profile σ ∈ ×i∈IΣ
i induces a probability distribution Pσ

over the space of plays, or infinite histories. The corresponding expectation
operator is Eσ. Thus, the expected payoff to player i given a strategy profile
σ is

γi(σ) := Eσ[ri
θ1θ<∞].

Before we state our result, we first recall standard equilibrium notions.

Definition 1 Let ε ≥ 0. A strategy profile σ is an ε-equilibrium if for every
player i ∈ I and every strategy τ i ∈ Σi,

γi(σ) ≥ γi(σ−i, τ i)− ε.

We mention that, for any ε′ > ε, an ε-equilibrium is a uniform ε′-equilibrium;
that is, it is a ε′-equilibrium (a) in every discounted game, provided the
discount factor is sufficiently small, and (b) in every N -stage game, provided
N is sufficiently large. Indeed, the proof provided in Solan and Vieille (2001,
Proposition 2.13) does adapt to the present framework.

For n ∈ N, we denote by

γn(σ) = Eσ[rθ1θ<∞ | θ ≥ n]

the conditional expected payoff, given that termination does not occur prior
to stage n. Equivalently, γn(σ) is the payoff induced by the strategy profile
σ in the subgame starting at stage n.

A strategy profile is a subgame-perfect (ε-)equilibrium of a game if it
induces an (ε-)equilibrium in any subgame. In the present context, this
amounts to the following definition.

Definition 2 Let ε ≥ 0. A strategy profile σ is a subgame-perfect ε-equilibrium
if for every n ∈ N, every player i ∈ I, and every τ i ∈ Σi,

γi
n(σ) ≥ γi

n(σ−i, τ i)− ε.

Our main result is the following.

Theorem 3 Let Γ = (I, (in, pn, rn)n∈N) be a deterministic Dynkin game. If
the sequence (rn)n∈N is bounded, then for every ε > 0, the game Γ admits a
subgame-perfect ε-equilibrium in Markovian strategies.
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We conclude this section with two comments.
As will be clear from the proof, in most cases, there is a pure subgame-

perfect equilibrium. However, this is not always true (see Example 3 below).
This is in sharp contrast with finite extensive games of perfect information
and with two-player zero-sum Dynkin games.

Our proof is valid as long as γ(σ) is uniformly bounded, for every profile
σ (which is the case when the sequence (rn)n∈N is bounded.) If this does not
hold, the payoff function of the game is not well-defined.

3 Examples

In the present section we provide several examples, that illustrate the main
features of the model.

Example 1: Take I = {1, 2, 3} and

(in, pn, rn) =


(1, 1, (1, 0, 3)) n = 1 modulo 3,
(2, 1, (3, 1, 0)) n = 2 modulo 3,
(3, 1, (0, 3, 1)) n = 0 modulo 3.

In words, at the first stage, player 1 can stop the game, thereby yielding
the payoff vector (1, 0, 3). If player 1 chooses to continue, at the second
stage player 2 can stop the game, yielding the terminal payoff (3, 1, 0). If
player 2 chooses to continue as well, at the third stage player 3 can stop the
game, yielding the terminal payoff (0, 3, 1). The process then repeats itself
cyclically. This game is a variation upon a game studied by Flesch et al.
(1997).

We will characterize all pure subgame-perfect 0-equilibrium profiles of
that game, using backward induction.

Let σ be such a 0-equilibrium. Assume that at stage 3n, for some n ≥ 2,
player 3 stops with probability 1; that is, σ3(3n) = 1. In particular, γ3n(σ) =
(0, 3, 1).

Consider the subgame starting at stage 3n− 1. In that subgame, player
2 receives γ2

3n(σ) = 3 if he chooses to continue at stage 3n − 1, while he
receives only 1 if he chooses to stop. By the subgame-perfect equilibrium
condition, player 2 continues at stage 3n− 1, that is, σ2(3n− 1) = 0. Hence
γ3n−1(σ) = γ3n(σ) = (0, 3, 1).
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We repeat this argument with the subgame starting at stage 3n− 2. By
continuing at stage 3n − 2 player 1 receives 0, as the game will be termi-
nated at stage 3n, while by stopping he receives 1. By the subgame-perfect
equilibrium condition, σ1(3n− 2) = 1 and γ3n−2(σ) = (1, 0, 3).

Applying this backward induction argument repeatedly, we get that σ3(3n−
3) = 0, σ2(3n − 4) = 1, σ1(3n − 5) = 0 and σ3(3n − 6) = 1. The cycle of
length 6 then repeats itself.

On the other hand, if σ3(3n) = 0 for some n ≥ 2, then σ3(3n − 3) = 1
and the previous analysis holds.

Thus, there are two pure subgame-perfect 0-equilibria: (a) at odd stages
the active player stops, and at even stages the active player continues, and
(b) at even stages the active player stops, and at odd stages the active player
continues.

Remark 4 This game admits other subgame-perfect equilibria. In partic-
ular, the profile in which each player stops with probability 1/2 whenever
active, is a subgame-perfect equilibrium. In a sense, it corresponds to the
0-equilibria constructed by Flesch et al. (1997).

In the next example, we allow for probabilities of success below one.

Example 2: Consider the following modification of Example 1, where
I = {1, 2, 3}, and

(in, pn, rn) =


(1, 1, (1, 0, 3)) n = 1 modulo 3,
(2, 1/2, (3, 1, 0)) n = 2 modulo 3,
(3, 1/2, (0, 3, 1)) n = 0 modulo 3.

Thus, when player 1 stops the game terminates with probability 1, while
when either player 2 or player 3 stops the game terminates with probability
1/2.

As we did in Example 1, we characterize the set of subgame-perfect 0-
equilibrium in pure strategies. Let σ be such a strategy profile. Let n > 0
and i be the active player at stage n. By the subgame-perfect equilibrium
condition, σi(n) = 1 if γi

n+1(σ) < 1 and σi(n) = 0 if γi
n+1(σ) > 1.

Let n ≥ 3, and assume that σ1(3n + 1) = 1. Then γ3n+1(σ) = (1, 0, 3),
and therefore σ3(3n) = 0. This implies that γ3n(σ) = γ3n+1(σ) = (1, 0, 3),
and therefore σ2(3n− 1) = 1.
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It follows that

γ3n−1(σ) =
1

2
(3, 1, 0) +

1

2
(1, 0, 3) = (2,

1

2
,
3

2
),

and therefore σ1(3n− 2) = σ3(3n− 3) = 0 and σ2(3n− 4) = 1.
Then

γ3n−4(σ) =
1

2
(3, 1, 0) +

1

2
(2,

1

2
,
3

2
) = (

5

2
,
3

4
,
3

4
),

and therefore σ1(3n− 5) = 0 and σ3(3n− 6) = 1.
One therefore has

γ3n−6(σ) =
1

2
(0, 3, 1) +

1

2
(
5

2
,
3

4
,
3

4
) = (

5

4
,
15

8
,
7

8
),

and therefore σ2(3n− 7) = 0, σ1(3n− 8) = 0 and σ3(3n− 9) = 1.
Finally,

γ3n−9(σ) =
1

2
(0, 3, 1) +

1

2
(
5

4
,
15

8
,
7

8
) = (

5

8
,
39

16
,
15

16
),

and therefore σ2(3n− 10) = 0, and σ1(3n− 11) = 1.
Therefore, any pure subgame-perfect 0-equilibrium must repeat the se-

quence (starting with player 1) (1,0,1;0,0,1;0,1,0;0,1,0) of mixed moves. Along
this cycle, player 1 first stops, then player 3 stops twice in a row, then player 2
stops twice in a row. This difference with the subgame-perfect 0-equilibrium
of Example 1 arises since the probability of termination is here below one. By
decreasing further the probabilities pn (but keeping pn = 1 for n = 1 mod 3),
one can create examples in which all pure subgame-perfect equilibria have
cycles of arbitrary length.

We next introduce a two-player game that has no subgame-perfect 0-
equilibrium and no pure subgame-perfect ε-equilibrium.

Example 3: Take I = {1, 2}, and

(in, pn, rn) =

{
(1, 1, (−1, 2)) n is odd,
(2, 1, (−2, 1)) n is even.

Fix ε ∈ (0, 1), and let σ be the strategy profile defined by σ1(2n + 1) = 1
and σ2(2n + 2) = ε for every n ≥ 0. We claim that σ is a subgame-perfect
ε-equilibrium. One should verify that player 1 (resp. player 2) cannot profit
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by deviating in the subgames that start at odd (resp. even) stages. Consider
first the subgame that starts at stage 2n + 1, for some n ≥ 0. By stopping
at stage 2n + 1 player 1 receives −1, while, since player 2 eventually stops
with probability 1, player 1’s payoff is at most −1, whatever he plays. In
the subgame starting at stage 2n + 2, player 2’s expected payoff under σ is
ε + 2(1− ε) = 2− ε, whereas the maximal payoff to player 2 in the game is
2.

We next prove that the game has no subgame-perfect ε-equilibrium in
pure strategies. Assume to the contrary that there exists such a profile σ.

We first claim that there is an infinite set of even stages in which player
2 chooses to stop. Otherwise, let N be the maximal integer such that player
2 stops at stage 2N (set N = 0 if player 2 never stops). Consider now
the subgame that starts at stage 2N + 2. Since σ is a subgame-perfect ε-
equilibrium, this implies that under σ player 1 never stops in this subgame:
by never stopping he receives 0, while by stopping he receives −1. But this
implies that under σ player 2 stops in this subgame: by never stopping he
receives 0, while by stopping he receives 1. This, however, contradicts the
definition of N .

We next claim that there is at most one even stage in which player 2
chooses to stop. Together with the previous paragraph, this shows that there
cannot be a subgame-perfect ε-equilibrium. By the preceding paragraph,
there is an infinite sequence of even stages in which player 2 stops. Assume
that player 2 stops at stage 2N , with N > 1. Since σ induces an ε-equilibrium
in the subgame that starts at stage 2N − 1, and since player 2 stops at stage
2N , under σ player 1 stops at stage 2N − 1. However, since player 1 stops
at stage 2N − 1, under σ player 2 continues in all stages 2k for k < N : by
continuing in all these stages he receives 2, while his payoff upon stopping is
1.

This example shows that pure subgame-perfect ε-equilibria need not exist.
Such a case may arise when there is a player i who by stopping gives everyone
else high payoff, but he himself receives low payoff. It is then in the interest
of his opponents to threaten him that if he does not stop, one of them will
eventually stop and punish player i. The punisher, however, stops with low
probability, so that player i has a chance to correct his behavior and stop
the game in a later stage.

We finally prove that there is no subgame-perfect 0-equilibrium. We
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argue by contradiction, and we let σ be a subgame-perfect 0-equilibrium. For
i = 1, 2, we denote by ci the strategy that always continues, i.e., ci(n) = 0
for each n ∈ Ni. Note first that, for each n ∈ N, one has

Pσ(θ < +∞ | θ ≥ n) = 1. (1)

Indeed, the sequence (Pσ(θ < +∞ | θ ≥ n))n∈N would otherwise decrease
to zero, hence the sequence (γn(σ))n∈N would converge to zero, and player 2
would have a profitable deviation in the subgame starting at stage n, for n
large enough. By (1) the game terminates with probability 1, hence at least
one of the players eventually stops with probability 1:

Pσ1,c2(θ < +∞ | θ ≥ n) = 1 for each n ∈ N, or (2)

Pc1,σ2(θ < +∞ | θ ≥ n) = 1 for each n ∈ N. (3)

If (2) holds, then c2 is the best reply to σ1 in all subgames, hence σ2 = c2.
Since the unique best reply of player 1 to c2 is c1, one gets σ = (c1, c2) - a
contradiction to (1).

If (3) holds, there are infinitely many even integers n such that σ2(n) > 0.
By optimality of σ1, and since (3) holds, one has σ1(n− 1) = 1 for any such
n. Therefore, (2) holds - a contradiction.

4 The Proof of Theorem 3

In the present section we prove Theorem 3.

4.1 Preliminaries

In this subsection, we analyze few degenerate cases, and slightly rephrase the
problem. The core of the proof of Theorem 3 is in subsection 4.3.

Let Γ = (I, (in, pn, rn)n∈N) be a game. Since the sequence (rn)n∈N is
bounded, we can assume w.l.o.g. that payoffs are bounded by 1.

Let Γ̃ = (I, (in, pn, r̃n)n∈N) be another game with the same sequence
of active players and the same probabilities of success. Since the payoff
functions of the two games differ by at most supn∈N ‖rn− r̃n‖, any subgame-
perfect ε-equilibrium of Γ̃ is a subgame perfect ε′-equilibrium of Γ, where
ε′ = ε + supn∈N ‖rn − r̃n‖.
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Since we are looking for an ε-equilibrium, there is no loss of generality in
assuming that the range of the sequence (rn)n∈N is finite, and that if (i, r)
and (j, r̃) are two distinct elements in that range then rk 6= r̃k for every k ∈ I.

Notice now that Theorem 3 will follow if we prove that there is a subgame-
perfect ε-equilibrium in some subgame of Γ. Indeed, the conclusion for Γ
will then follow by applying backward induction to the first stages of the
game. Moreover, since finite extensive games with perfect information have
pure subgame-perfect equilibria, the resulting profile will be pure when the
subgame-perfect ε-equilibrium of the subgame is pure.

Let IR be the finite range of the sequence (in, rn)n∈N. For each (i, r) ∈ IR
define

π(i, r) =
∑
{pn | n ∈ N, (in, rn) = (i, r)}

and set IR0 = {(i, r) ∈ IR | π(i, r) = +∞}. If π(i, r) = +∞ then if player
i stops whenever (in, rn) = (i, r), and all players continue in all other stages,
the game will eventually terminate, and the terminal payoff will be r.

We now prove that we may assume w.l.o.g. that

π(i, r) = 0 for each (i, r) /∈ IR0. (4)

To see this, choose first N ∈ N large enough such that∑
n≥N :(in,rn)=(i,r)

pn < ε/|IR| for each (i, r) /∈ IR0 (5)

and denote by ΓN the subgame that starts at stage N . Let Γ̃ = (I, (in, p̃n, rn)n∈N)
be the game that coincides with ΓN except that p̃n = 0 whenever (̃in, r̃n) /∈
IR0.

By (5), the payoff functions of the two games ΓN and Γ̃ differ by at most
ε. Therefore, any subgame-perfect ε-equilibrium of Γ̃ is a subgame-perfect
2ε-equilibrium of ΓN , and, by backward induction, yields a subgame-perfect
2ε-equilibrium of Γ.

By construction, the game Γ̃ satisfies (4). Therefore our claims holds.
Thus, we are led to analyze games such that, for each (i, r) ∈ IR, either

π(i, r) = 0 or π(i, r) = +∞ holds. If π(i, r) = 0 for each (i, r) ∈ IR, the
payoff function of the game is identically zero and the conclusion of Theorem
3 follows trivially. Assume now that π(i, r) = +∞ for some (i, r) ∈ IR.
Consider the game obtained by dropping all stages n such that π(in, rn) = 0
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(and by relabeling stages). Since there are infinitely many stages n such that
π(in, rn) = +∞, the resulting game is again a multi-player deterministic
Dynkin game. Plainly, any subgame perfect ε-equilibrium of this new game
is also a subgame perfect ε-equilibrium of the initial game (with the proper
identification of stages, and with an arbitrary behavior in the stages that
have been dropped).

To conclude, we can therefore assume w.l.o.g. that π(i, r) = +∞ for each
(i, r) ∈ IR.

4.2 A simple case

Under the assumption that π(i, r) = +∞ for each (i, r) ∈ IR, the proof
proceeds by induction over the number of elements in IR. The conclusion is
easy if |IR| = 1, and is left to the reader.

We now analyze a somewhat degenerate case that generalizes Example 2.

This is the only place in the proof where we use the induction hypothesis.

Lemma 5 Assume that there exists (i, r) ∈ IR such that

rj ≥ r̃j for every (j, r̃) ∈ IR.

Then, for each ε > 0, there is a subgame-perfect ε-equilibrium.

The lemma states that if there is a terminal payoff r that is preferred by
each player i to all terminal payoffs i controls, then a subgame-perfect ε-
equilibrium exists.

Proof. We split the discussion into three cases.

Case 1: ri ≥ 0.
Let σ be the pure strategy profile in which player i stops whenever (in, rn) =
(i, r), and all players continue in all other stages, i.e.,

σin(n) = 1 if and only if (in, rn) = (i, r).

Fix n ∈ N. We prove that σ induces a 0-equilibrium in the subgame
that starts at stage n. Since π(i, r) = +∞, the game eventually terminates,
and therefore the expected payoff is r. Player i cannot gain by deviating,
since his payoff is at most ri if he terminates the game, and 0 ≤ ri if he
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always continues. Every player j 6= i cannot gain by deviating either, since
his payoff under σ is rj, while if he deviates his payoff is in the convex hull
of rj and {r̃j, (j, r̃) ∈ IR}, hence at most rj.

Case 2: ri < 0, and there is (j, r̃) ∈ IR such that i 6= j and r̃i < ri.
Let (nk)k∈N be an increasing sequence of integers such that (in, rn) = (i, r)

for n = nk, k ∈ N. For k ∈ N, set mk = inf{n ≥ nk : (in, rn) = (j, r̃)}.
(The sequence (mk)k∈N is non-decreasing but need not be increasing.) Since
π(i, r) = π(j, r̃) = +∞, these two sequences are infinite.

Let σ be the strategy profile in which player i stops at all stages nk, player
j stops with probability ε at all stages mk, and all players continue otherwise,
i.e.,

σin(n) =


1 if n = nk, k ∈ N,
ε if n = mk, k ∈ N,
0 otherwise.

The profile σ is a subgame-perfect 2ε-equilibrium. Indeed, consider the
subgame that starts at stage n. By the choice of the sequence (mk)k∈N, one
has ‖γn(σ) − r‖ ≤ 2ε: γn(σ) is equal to r if n > mk0 where k0 = inf{k :
nk ≥ n}, and is equal to εr̃ + (1 − ε)r otherwise. Notice that, under any
unilateral deviation, the game terminates with probability one. Therefore,
for each player l and each strategy τ l ∈ Σl, the payoff γl

n(τ l, σ−l) to player l by
deviating from σl to τ l is in the convex hull of the set {rl, r̃l}∪{r̂l, (l, r̂) ∈ IR},
hence is at most rl.

Case 3: ri < 0, and r̃i ≥ ri for every (j, r̃) ∈ IR with i 6= j.
Consider the modified game where one sets pn = 0 whenever (in, rn) =

(i, r), or, alternatively, one drops all stages in which (in, rn) = (i, r).
By the induction hypothesis, this game admits a subgame-perfect ε-

equilibrium σ′. Extend σ′ to a profile σ in the original game, by instructing
player i to continue at all stages n such that (in, rn) = (i, r).

It is easy to see that σ is a subgame-perfect ε-equilibrium. Indeed, for ev-
ery player j 6= i, any deviation in the original game yields the same expected
payoff the deviation yields in the modified game. Since σ′ is a subgame-
perfect ε-equilibrium, no player j 6= i can profit more than ε by deviating in
the original game.

Moreover, under σ′ the expected payoff to player i is at least min{0, min(j,r̃),j 6=i r̃
i} ≥

ri. Therefore, if player i deviates at stages n such that (in, rn) = (i, r) he
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cannot profit, while if he deviates in other stages, he cannot profit more than
ε, since σ′ is a subgame-perfect ε-equilibrium.

4.3 The general case

In view of Lemma 5, Theorem 3 will follow from Proposition 6 below.

Proposition 6 Let Γ be a deterministic multi-player Dynkin game. Assume
that for every (i, r) ∈ IR, (i) π(i, r) = +∞, and (ii) there is (j, r̃) ∈ IR such
that r̃j > rj. Then, for every ε > 0, the game Γ has a subgame-perfect
ε-equilibrium in pure Markovian strategies.

We do not know whether a subgame-perfect 0-equilibrium exists or not.
The rest of this section is devoted to the proof of the proposition.

As remarked at the beginning of Section 4.1, we can assume w.l.o.g. that
for every (i, r), (j, r̃) ∈ IR, either (i, r) = (j, r̃), or rk 6= r̃k for every k.

For every i ∈ I set

mi = max{ri | (i, r) ∈ IR}.

This is the maximal terminal payoff player i can receive when he alone stops.
Let ρi ∈ RI be the unique vector r such that (i, r) ∈ IR and ri = mi

(uniqueness is guaranteed by the preceding paragraph).
Finally, set

W = {w ∈ RN | wi ≤ mi for some i ∈ I}.

This is the set of all payoff vectors w such that at least one player is better
off by stopping at some stage rather than continuing forever and receiving
w.

An important property of the set W is that if the continuation payoff
at stage n is w ∈ W , and if player in prefers to stop rather than continue
(that is, win ≤ rin

n ), then the expected payoff if player in stops at stage n,
(1− pn)w + pnrn, is in W . Formally,

w ∈ W and win ≤ rin
n implies (1− pn)w + pnrn ∈ W, for every n ∈ N. (6)

Indeed, under the assumptions, (1 − pn)win + pnr
in
n ≤ rin

n ≤ min , and (6)
follows.
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Let ε > 0 be given. We will prove the existence of a subgame perfect
ε-equilibrium. We assume that ε < 1

2
min(i,r) 6=(j,r̃) |ri − r̃i|. We also assume

that ε is small enough so that, for every N ∈ N and every finite sequence
(X1, . . . , XN) of independent Bernouilli variables, with P(Xn = 1) = pn, one
has

P( sup
1≤n≤N

Xn = 1) < ε/2 ⇒
N∑

n=1

pn < ε (7)

(see Rosenberg et al. (2002, Lemma 18) for a stronger statement).

We partition the set N of stages into infinitely many finite blocks. Set
n0 = 1 and, for l ∈ N, define the initial stage nl of block l to be

nl = min{n > nl−1 |
∑

nl≤k<n,(ik,rk)=(i,r)

pk ≥ ε ∀(i, r) ∈ IR}.

Hence, in each block, all players have a probability at least ε to terminate the
game with any vector they choose. Since π(i, r) = +∞ for each (i, r) ∈ IR,
all nl, l ∈ N, are finite.

Let l > 0 be given. We will define a pure profile σ = σl up to stage nl.
Later we will let l vary. As for now, we omit the dependency of σl on l.
We will simultaneously construct a sequence (w(n))nl

n=1 of vectors in W . As
a first approximation, the vector w(n) may be interpreted as the expected
payoff under σ from stage n onwards.

We define both σ and w backwards. We let w(nl) be an arbitrary point
in W ∩ [−1, 1]I . We deal with each of the blocks inductively (starting with
the lth one). Let k ≤ l. Assuming w(nk) ∈ W is already defined, we define
now σ and w over the stages n = nk−1, . . . , nk − 1.

Given w(n+1) and σin(n), we set w(n) = σin(n)pnrn+(1−σin(n)pn)w(n+
1), so that we need only define σin(n). Thus, if w(n+1) is the expected payoff
from stage n + 1 onward, w(n) is the expected payoff from stage n onward.
Since w(nl) ∈ W and by (6), w(n) ∈ W for every n ≤ nl.

Case 1 wi(nk) ≤ mi − ε for some i ∈ I.
We define σ by backward induction, with an appropriate tie-breaking

rule. Set σin(n) = 1 if rin
n ≥ win(n + 1), and σin

l (n) = 0 otherwise.
Thus, at stage n, player in compares his continuation payoff win(n+1) to

the payoff rin
n he would get by stopping, and he continues or stops accordingly.
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Case 2 wi(nk) ≥ mi − ε for each i ∈ I.
Since w(nk) ∈ W , there is a player i∗ ∈ I such that wi∗

l (nk) ≤ mi∗ . At the
final stages of the block only player i∗ will possibly stop. In earlier stages, σ
will be defined using backward induction as in Case 1.

Formally, let nk−1 ≤ n < nk. Assume that σ has been defined for stages
q = n+1, . . . , nk−1. We define σ at stage n as follows. Denote by π(n+1, nk)
the probability under σ that, starting from stage n + 1, the game terminates
under σ before stage nk, i.e.,

π(nk, nk) = 0, and π(q, nk) = σiq(q)pq+(1−σiq(q))π(q+1, nk) for n+1 ≤ q < nk.

Then:

• if π(n + 1, nk) < ε, we set σin(n) = 1 if both in = i∗ and ri∗
n ≥ wi∗(n)

hold. We set σin(n) = 0 otherwise;

• if π(n + 1, nk) ≥ ε, we set σin(n) = 1 if rin
n ≥ win

l (n), and σin(n) = 0
otherwise.

We now prove that under σ, the probability of termination in any single
block is bounded away from zero.

Lemma 7 For each k such that 0 ≤ k < l, one has

Pσ(θ < nk+1 | θ ≥ nk) ≥ ε/3.

Proof. We consider Cases 1 and 2 in turn. In both cases, we will prove
that π(nk, nk+1) ≥ ε/3.

We first assume that Case 1 holds, and we let i∗ ∈ I be a player such
that wi(nk) ≤ mi − ε.

1. If σi∗(n) = 1 whenever (in, rn) = (i∗, ρi∗), one has π(nk, nk+1) ≥ ε/2,
using (7) and since

∑
n:nk≤n<nk+1,(in,rn)=(i∗,ρi∗ ) pn ≥ ε.

2. If σi∗(n) = 0 for some n such that (in, rn) = (i∗, ρi∗), then wi∗(n+1) >
mi∗ . Observe now that, since payoffs are bounded by one, one has

wi∗(n + 1) ≤ π(n + 1, nk+1) + (1− π(n + 1, nk+1))w
i∗(nk+1).

This yields

π(n + 1, nk+1) ≥
ε

1−mi∗ + ε
≥ ε/3.

Since π(nk, nk+1) ≥ π(n + 1, nk+1), the conclusion also follows in that
case.
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We next assume that Case 2 holds and we let i∗ ∈ I be the player distin-
guished in the definition of σ.

1. If σj(n) = 1 for some n and some player j 6= i∗, then as in item 2 above
π(n + 1, nk+1) ≥ ε/2, hence π(nk, nk+1) ≥ ε/2.

2. If σj(n) = 0 for each player j 6= i∗ and each stage n with in = j, then
wi∗(n) ≤ mi∗ for each n. Indeed, only player i∗ stops, and his payoff
is the average of wi∗(nk+1) ≤ mi∗ and ρi∗

i∗ ≤ mi∗ . Therefore σi∗(n) = 1
whenever (in, rn) = (i∗, ρi∗), and one gets π(nk, nk+1) ≥ ε/2, as in item
1 above.

We will now let l vary and we denote by σl and wl the objects that were
defined above. The pure strategy profile σl may be identified with a point
in {0, 1}N (the nth component being the behavior at stage n of the active
player in). Since the product space {0, 1}N is compact (and metrizable),
the sequence (σl)l≥0 has a subsequence that converges to some pure strategy
profile σ∗. For notational convenience, we still denote this subsequence by
(σl)l≥0. Note that, for each n ∈ N, the first n components of σ∗ coincide with
the first n components of σl, provided l is sufficiently large. For such l’s, the
behavior in the first n stages of the game under the two strategy profiles σ∗
and σl coincide.

Our goal is to prove that σ∗ is a subgame-perfect ε-equilibrium. We first
prove that the play terminates Pσ∗-a.s. in each subgame. We will then relate
the payoff γ(σ∗) to the sequence (wl)l∈N (Lemma 9) and prove that no player
has a profitable one-stage deviation (Lemma 10) under σ∗. The conclusion
follows (Proposition 12), after we prove that no single player is responsible
for the termination of the game (Lemma 11).

Corollary 8 For each k ∈ N, one has

Pσ∗(θ < nk+1 | θ ≥ nk) ≥ ε/3.

Proof. Let l ∈ N be large enough so that l > k and σ∗ coincides with σl

up to stage nk+1, and apply Lemma 7.

Lemma 9 For each n ∈ N, one has

γn(σ∗) = lim
l→∞

wl(n).
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Proof. We prove the result for n = 1. The proof is similar for the
subgame that starts at stage n ∈ N.

Let k ∈ N be given. For each l ∈ N, one has

γ(σ∗) = Eσ∗ [rθ1θ<nk
] + Pσ∗(θ ≥ nk)γnk

(σ∗), and

wl(1) = Eσl
[rθ1θ<nk

] + Pσl
(θ ≥ nk)wl(nk).

For l large enough, the two profiles σl and σ∗ coincide up to stage nk.
Hence, using Lemma 7 and Corollary 8, one gets, for l large enough,

‖γ(σ∗)− wl(1)‖ ≤ 2(1− ε

3
)k.

The result follows.

The next lemma says in substance that no player can increase his payoff
by more than 3ε by modifying his strategy in a single stage.

Lemma 10 Let n ∈ N be given. The following implications hold.

• If σin
∗ (n) = 0 then γin

n+1(σ∗) ≥ rin
n − 3ε.

• If σin
∗ (n) = 1 then γin

n+1(σ∗) ≤ rin
n .

Proof. Let n ∈ N be given. Let l ∈ N be sufficiently large so that nl > n.
We first prove a related statement for the strategy profile σl. Let k < l be
determined by nk ≤ n < nk+1.

By construction, σin
l (n) is defined using backward induction, except in

some case where σin
l (n) is required to be zero. In the former case, one has

σin
l (n) = 1 if rin

n ≥ win
l (n + 1) and σin

l (n) = 0 otherwise. In the latter
case, one has win

l (nk+1) ≥ min − ε and π(n + 1, nk+1) < ε. Therefore,
| win

l (nk+1)−win
l (n+1) |< 2ε, which yields win

l (n+1) ≥ min −3ε ≥ rin
n −3ε.

Hence, in both cases, one has

win
l (n + 1) ≤ rin

n if σin
l (n) = 1, and

win
l (n + 1) ≥ rin

n − 3ε if σin
l (n) = 0.

The conclusion follows by taking the limit l → +∞.

We now prove that the play terminates a.s., even if a single player chooses
to continue whenever active.
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Lemma 11 For every i ∈ I and every n ∈ N, one has

Pci,σ−i
∗

(θ < +∞ | θ ≥ n) = 1.

Proof. We argue by contradiction, and we assume that, for some player
i ∈ I, the sequence Pci,σ−i

∗
(θ < +∞ | θ ≥ n) converges to zero when n goes

to +∞. By Corollary 8 the game eventually terminates, so that Pσ∗(θ <
+∞ | θ ≥ n) = 1 for every n. Therefore, it must be the case that player
i terminates the game: Pσi

∗,c−i(θ < +∞ | θ ≥ n) = 1 for every n, and
limn→+∞ ‖γn(σ∗)− γn(σi

∗, c
−i)‖ = 0.

We first prove that limn→+∞ γn(σ∗) = ρi, and then deduce a contradiction
with the basic assumption made on Γ.

Step 1 : the sequence (γi
n(σ∗))n∈N is convergent.

Let n ∈ N be arbitrary. If n ∈ Ni then Lemma 10 implies that γi
n(σ∗) ≥

γi
n+1(σ∗). On the other hand, for n /∈ Ni, one has γi

n(σ∗) = γi
n+1(σ∗) if

σin
∗ (n) = 0, and

|γi
n(σ∗)− γi

n+1(σ∗)| = pn|ri
n − γi

n+1(σ∗)| ≤ 2pn

if σin
∗ (n) = 0.
Therefore, for every two positive integers n ≥ m, one has

γi
m(σ∗) ≥ γi

n(σ∗)− 2
∑

m≤q<n;q /∈Ni

pq1σ
iq
∗ (q)=1

. (8)

Let ε̃ > 0 be given. Assume that ε̃ is small enough so that (7) holds w.r.t.
ε̃, and choose Nε̃ ∈ N sufficiently large so that Pci,σ−i

∗
(θ < +∞ | θ ≥ Nε̃) <

ε̃/2. For such Nε̃,
∑

Nε̃≤q<+∞;q /∈Ni
pq1σ

iq
∗ (q)=1

≤ ε̃. Therefore, by (8),

γi
m(σ∗) ≥ γi

n(σ∗)− 2ε̃, for every n ≥ m ≥ Nε̃.

This implies the convergence of (γi
n(σ∗))n∈N, since it is a bounded sequence.

Step 2 : limn→+∞ γn(σ∗) = ρi.
Let λ := limn→+∞ γi

n(σ∗) be the limit of the payoffs to player i in the
successive subgames. We prove first that λ = mi. Let N ∈ N be such that
|γn(σ∗)− λ| < ε/2 for each n ≥ N . In particular, C1 or C2 below holds:

C1. γn(σ∗) > mi − ε for every n ≥ N ;
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C2. γn(σ∗) ≤ mi − ε/2 for every n ≥ N .

Assume first that C1 holds. By the choice of ε, one has ri
n < γi

n+1(σ∗)
whenever n ≥ N , in = i and rn 6= ρi. By Lemma 10, σi

∗(n) = 0 for each such
stage. In other words, from stage N , player i chooses to stop only in those
stages such that rn = ρi. Since Pσi

∗,c−i(θ < +∞ | θ ≥ n) = 1 for each n, one
therefore has γi

n(σi
∗, c

−i) = mi, for each n ≥ N , which implies λ = mi.
Assume next that C2 holds. We argue by contradiction and assume that

λ 6= mi. Since λ = limn→+∞ γi
n(σi

∗, c
−i), one has λ < mi.

By Lemma 10, one has σi
∗(n) = 1 for each n ≥ N such that (in, rn) =

(i, ρi). We now adapt the argument of the first step and note that

γi
n(σ∗)− γi

n+1(σ∗) = pn(mi − γi
n+1(σ∗))

for each such stage n ≥ N . Therefore, using (8),

γi
N(σ∗) ≥ γi

n(σ∗)−2
∑

N≤q<n:q /∈Ni

pq1σ
iq
∗ (q)=1

+
∑

N≤q<n:(iq ,rq)=(i,ρi)

pq(m
i−γi

q+1(σ∗)),

a contradiction, since the second summation converges to +∞ when n goes
to +∞ while all other terms are bounded.

Hence, limn→+∞ γi
n(σ∗) = mi. This yields limn→+∞ γi

n(σi
∗, c

−i) = mi,
hence limn→+∞ γn(σi

∗, c
−i) = ρi since ρi ∈ RI is the unique vector such that

(i, r) ∈ IR and ri = mi. Finally, this implies limn→+∞ γn(σ) = ρi.

Step 3 : The contradiction
By assumption, there exists (j, r̃) ∈ IR such that r̃j > ρj

i . Since Pci,σ−i
∗

(θ <
+∞ | θ ≥ m) < 1 for some m ∈ N, and since π(j, r̃) = +∞, there
are infinitely many stages n such that (in, rn) = (j, r̃) and σj

∗(n) = 0.
For each such n, by Lemma 10, one has r̃j = rj

n < γj
n+1(σ∗). Therefore,

lim supn→+∞ γj
n(σ∗) ≥ r̃j. Since r̃j > ρj

i = limn→+∞ γj
n(σ∗), we get a contra-

diction.

Proposition 12 σ∗ is a subgame-perfect 3ε-equilibrium.

Proof. Let i ∈ I be given. We prove that player i cannot gain more than
3ε by deviating from σ∗. The same proof will hold in any subgame, thereby
showing the subgame-perfectness property.

Define the sequence (Xn)ninN of random variables by Xn = ri
θ if θ < n

and Xn = γi
n(σ∗) if θ ≥ n. Let τ i be an arbitrary strategy of player i. By
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Lemma 11, the sequence (Xn)ninN converges Pτ i,σ−i
∗

-a.s. to X∞ := rθ1θ<+∞
hence

lim
n→+∞

Eτ i,σ−i
∗

[Xn] = Eτ i,σ−i
∗

[rθ1θ<+∞] = γi(τ i, σ−i
∗ ). (9)

On the other hand, by Lemma 10, one has Eτ i,σ−i
∗

[Xn+1|Hn] ≤ Xn +
3ε1θ=n, where Hn is the past play up to stage n. By taking expectations,
and by summation over n, one obtains limn→+∞Eτ i,σ−i

∗
[Xn] ≤ X0 +3ε which

yields, using (9),
γi(τ i, σ−i

∗ ) ≤ γi(σ∗) + 3ε.

5 Discussion

A natural extension of the model is to drop the assumption that the order
of the players is deterministic. That is, to assume that (in, pn, rn)n∈N is
a (non-deterministic) process. Whether or not there is a subgame-perfect
ε-equilibrium in this model is still unknown.

When |I| = 2, one can generalize the result of Shmaya and Solan (2002)
to show that an ε-equilibrium exists. However, it is not known whether pure
subgame-perfect ε-equilibrium profiles in Markovian strategies exist.

One can even restrict oneself to the following simple class of games. Let
I be a finite set of players, and, for each i ∈ I, fix ri ∈ RI . At every stage,
independent of past play, a player i ∈ I is chosen at random, each player is
chosen with probability 1/|I|. Player i then has to decide whether he stops
or continues. If he continues, the game continues to the next stage, while if
he stops, the game terminates with probability 1, and the terminal payoff is
given by ri.

Whether or not any such game admits a subgame-perfect ε-equilibrium
in Markovian strategies is an open problem, which seems to have significant
implications on the study of equilibrium payoff in stochastic games.
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