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Abstract
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We discuss extensions to the case of incomplete information on both sides.
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1 Introduction

In a seminal work, Aumann and Maschler (1968, 1995) introduced infinitely repeated two player
zero-sum games with incomplete information on one side. Those are repeated games where the
payoff matrix is known by one player, say player 1, but is not known by the other player: all player
2 knows is that the payoff matrix was drawn according to some known probability distribution from
a finite set of possible matrices.

Aumann and Maschler proved that those games have a value.
The issue faced by player 1 is the optimal use of information. On the one hand, player 1 needs

to reveal his information (at least partially) in order to make use of it. On the other hand, any
piece of information that is revealed to player 2 can later be exploited against player 1.

In the strategies devised by Aumann and Maschler player 1 reveals part of his information at
the first stage, but no further information is revealed along the game.

When the underlying game is a stochastic game rather than a repeated game, the difficulties
the players face are more serious. Is it optimal for player 1 to reveal information only once in every
state, or will he reveal information several times in each state? Player 1 has no incentive to reveal
information little by little in repeated games since a reply of player 2 could always be to wait until
player 1 reveals all the information he will ever reveal, and interim payoffs are irrelevant in the
long-run. In stochastic games, on the contrary, the game can move meanwhile to a different state
that can be more or less favorable to the informed player. This is why player 1 might be willing
to reveal his information little by little in stochastic games: he will have more opportunities to get
different transitions according to his information while player 2 is still ignorant of it.

Player 2, on the other hand, has to play optimally whatever be the actual payoff matrix. In
Aumann and Maschler, he plays a Blackwell approachability strategy. The issue is here to define
the analogue for stochastic games.

Sorin (1984, 1985) and Sorin and Zamir (1991) studied classes of stochastic games with incom-
plete information on one side that have a single non-absorbing state, and proved that these games
have a min-max value, a max-min value, and that the values of the n-stage (resp. λ-discounted)
games converge as n goes to infinity (resp. as λ goes to 0) to the max-min value. Rosenberg and
Vieille (2000) studied recursive games with incomplete information on one side, and proved that the
max-min value exists, and is equal to the limit of the values of n-stage games (resp. λ-discounted
games) as n goes to infinity (resp. as λ goes to 0).

In the present paper we study stochastic games in which one player controls the transition; that
is, the evolution of the stochastic state depends on the actions of one player, but is independent of
the actions of his opponent.

We show that if player 1 (who is the informed player) controls the transition then the game
admits a value, while if player 2 controls the transition then the game admits a min-max value and
a max-min value, but the two may differ.

The techniques and the characterizations provided extend the ideas of Aumann and Maschler
for incomplete information games to our framework.

In the last section of the paper we extend the existence result for the max-min value and the
min-max value to the case of stochastic games with a single controller and incomplete information
on both sides; that is, when each of the players has some partial private information about the
payoff matrix of the game.
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2 The Model and the Main Results

2.1 The Model

A two-player zero-sum stochastic game G is described by: (i) a finite set Ω of states, and an initial
state ω ∈ Ω, (ii) finite action sets I and J for the two players, (iii) a transition rule q : Ω× I ×J →
∆(Ω), where ∆(Ω) is the simplex of probability distributions over Ω, and (iv) a reward function
g : Ω× I × J → R.

A two-player zero-sum stochastic game with incomplete information is described by a finite
collection (Gk)k∈K of stochastic games, together with a distribution p ∈ ∆(K) over K. We assume
that the games Gk differ only through their reward functions gk, but they all have the same sets
of states and actions, and the same transition rule. We denote the common transition rule by q.

The game is played in stages. An element k ∈ K is chosen according to p. Player 1 is informed of
k, while player 2 is not. At every stage n, the two players choose simultaneously actions in ∈ I and
jn ∈ J , and ωn+1 is drawn according to q(· | ωn, in, jn). Both players are informed of (in, jn, ωn+1).

We parametrize the game by the initial distribution p and by the initial state ω, and denote it
by Γ(p, ω). We write Γ for (Γ(p, ω))(p,ω)∈∆(K)×Ω.

Few remarks are in order. This model is an extension of the classical model of zero-sum
stochastic games. It is also an extension of Aumann and Maschler’s model of repeated games
with incomplete information, where a zero-sum matrix game is first drawn using p, then played
repeatedly over time. Here, Nature chooses a stochastic game, that is then played over time. Note
that the reward function gk(ωn, in, jn) is not told to player 2 (but is known to player 1).

We assume w.l.o.g. that 0 ≤ gk ≤ 1 for every k ∈ K, and we identify each k ∈ K with the
probability measure over K that gives weight 1 to k.

2.2 Strategies and values

Players may base their choices on the stochastic states the play has visited so far, as well as on
past choices of actions (of the two players). Player 1 can base his choices also on the state of the
world k.

The space of histories of length n is Hn = (Ω × I × J)n × Ω, the space of finite histories is
H = ∪n∈NHn, and the space of plays (infinite histories) is H∞ = (Ω × I × J)∞. Hn defines
naturally a finite algebra Hn over H∞. We equip H∞ with the σ-algebra ∨n∈NHn spanned by all
finite cylinders. A (behavioral) strategy of player 1 is a function σ : K ×H → ∆(I). A strategy for
player 2 is a function τ : H → ∆(J). A strategy σ = (σk)k∈K of player 1 is non revealing if σk is
independent of k ∈ K.1

A strategy σ is stationary if the mixed action played at every stage depends only on the current
state. We identify each vector x = (xω)ω∈Ω ∈ (∆(I))Ω with the stationary strategy that plays
the mixed action xω whenever the game visits ω. Stationary strategies of player 2 are defined
analogously.

Every distribution p, initial stochastic state ω, and pair of strategies (σ, τ) induce a proba-
bility Pp,ω,σ,τ over K × H∞ (equipped with the product σ-algebra). We denote by Ep,ω,σ,τ the
corresponding expectation operator.

1The strategy is non revealing in the sense that knowledge of the strategy σ and of past play does not enable
player 2 to gain information on k. This property relies on the fact that transitions are independent of k.
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We let k, ωn, in, jn denote respectively the actual game being played, the current state at stage
n and the actions played at stage n. These are random variables.

Define
γN (p, ω, σ, τ) = Ep,ω,σ,τ [gN ] ,

where gN = 1
N

∑N
n=1 gk(ωn, in, jn) is the average payoff over the first N periods. For fixed strategies

σ, τ , γN (p, ω, σ, τ) is linear in p, and 1-Lipshitz.

We recall the definitions of max-min value, the min-max value and the (uniform) value. The
notion of strong guaranteeing is non-standard.

Definition 1 Player 1 can guarantee w ∈ R in the game Γ(p, ω) if for every ε > 0 there exists a
strategy σ of player 1 and N ∈ N, such that

∀τ,∀n ≥ N, γn(p, ω, σ, τ) ≥ w − ε.

We say that such a strategy σ guarantees w − ε in Γ(p, ω).
Player 1 can guarantee a function w : ∆(K)× Ω → R if player 1 can guarantee w(p, ω) in the

game Γ(p, ω) for every (p, ω) ∈ ∆(K)× Ω.

Note that, due to the Lipshitz property on payoffs and the compactness of ∆(K), the integer
N in Definition 1 can be chosen to be independent of (p, ω). The definition of a function that is
guaranteed by player 2 is similar, with the roles of the two players exchanged.

Definition 2 Player 2 can defend w ∈ R in the game Γ(p, ω) if for every ε > 0 and every strategy
σ of player 1, there exists a strategy τ of player 2 and N ∈ N such that

∀n ≥ N , γn(p, ω, σ, τ) ≤ w + ε. (1)

We say that such a strategy τ defends w + ε against σ in Γ(p, ω).
Player 2 can defend a function w : ∆(K)× Ω → R if player 2 can defend w(p, ω) in the game

Γ(p, ω) for every (p, ω) ∈ ∆(K)× Ω.

The definition of a function that is defended by player 1 is similar, with the roles of the two
players exchanged. Note that player 1 can guarantee (resp. defend) max{w,w′} as soon as he
can guarantee (resp. defend) both w and w′. Similarly, player 2 can guarantee (resp. defend)
min{w,w′} as soon as he can guarantee (resp. defend) both w and w′.

Definition 3 A function w : ∆(K)× Ω → R is:

• the (uniform) value of Γ if both players can guarantee w.

• the max-min value of Γ if player 1 can guarantee w, and player 2 can defend w.

• the min-max value of Γ if player 1 can defend w, and player 2 can guarantee w.

Note that the value exists if, and only if, the max-min value and min-max value exist and
coincide.

The value (resp. max-min value, min-max value) is denoted by v (resp. v, v̄) when it exists.
Observe that v ≤ v̄ whenever the two exist. Note that each of the functions v and v̄ is 1-Lipshitz
in p, as soon as it exists.
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2.3 Related literature

Most of the literature deals with the polar cases where either Ω or K is a singleton. In the former
case, the game is a repeated game with incomplete information. Such games have a value, see
Aumann and Maschler (1995). Moreover, an explicit formula for the value exists. Letting u∗(p)
be the value of the matrix game with payoff function

∑
k pkg

k(·, ·), the value of the repeated game
with incomplete information is the concavification cav(u∗) of u∗ (see Section 3.1 for definitions).

When K is a singleton the game is a standard stochastic game. Such games have a value, see
Mertens and Neyman (1981).

For general stochastic games with incomplete information, little is known, but some classes
were studied in the literature. For “Big Match” games, Sorin (1984, 1985), Sorin and Zamir (1991)
proved the existence of the max-min value and min-max value. These values may differ.

For recursive games, Rosenberg and Vieille (2000) proved that the max-min value exists, and
provided an example where the value does not exist.

2.4 Statements of the results

In the present paper we consider games where a single player controls the transition.

Definition 4 Player 1 controls the transition if for every ω ∈ Ω and i ∈ I the transition q(· | ω, i, j)
does not depend on j. Player 2 controls the transition if the symmetric property holds. We then
simply write q(· | ω, i) or q(· | ω, j) depending on who controls transitions.

We prove the following two results.

Theorem 5 If player 1 controls the transition, the value exists.

Theorem 6 If player 2 controls the transition, both the min-max and max-min values exist.

We provide an example of a game where player 2 controls the transition, and v 6= v. We also
provide a characterization of v̄ and v as a unique solution of a functional equation.

We prove no result on the existence of the limit of the values of the finitely repeated games. In
the games analyzed so far (see Section 2.3), this limit is known to exist, and coincides with v. This
property is conjectured to hold in general by Mertens (1987).

3 Various tools

This section gathers a few results that we use in the sequel. The first three subsections introduce
few extensions of tools used in the analysis of games with incomplete information.

For three vectors a, b, c ∈ RK , c = a+b if and only if ck = ak+bk for every k ∈ K, c = max{a, b}
if and only if ck = max{ak, bk} for every k = 1, . . . ,K, and a ≥ b if and only if ak ≥ bk for every
k = 1, . . . ,K. For a scalar r ∈ R, c = a + r if and only if ck = ak + r for every k = 1, . . . ,K, and
c = ra if and only if ck = rak for every k = 1, . . . ,K. Finally, unless otherwise stated, the norm
we use is the uniform norm.
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3.1 Concavification

Given a continuous function u : ∆(K) → R, we denote by cav u its concavification, namely the
least concave function v defined over ∆(K), such that v ≥ u. It is the function whose hypograph
is the convex hull of the hypograph of u. Similarly, we denote by vex u its convexification, namely
the largest convex function v such that v ≤ u. Both cav u and vex u are well-defined. Thus, cav
and vex are functional operators that act on real-valued functions defined on ∆(K).

Lemma 7 (see, e.g., Laraki (2001)). The two operators cav and vex map continuous functions
into continuous functions, and C-Lipshitz functions into C-Lipshitz functions.

Lemma 8 The two operators cav and vex are non-expansive.

Proof. It is proven in De Meyer (1996, Lemma 2.1) that for any two real valued continuous
functions over ∆(K), u and v,

‖u∗∗ − v∗∗‖ ≤ ‖u∗ − v∗‖ ≤ ‖u− v‖,

where u∗(x) = inf{〈y, x〉 − u(y), y ∈ RK} is the dual of u. Since u∗∗ = cav(u), the result follows.
The argument for the operator vex is analogous.

The following lemma is classical (see, e.g., Mertens, Sorin and Zamir (1994, Corollary V.1.3),
or the discussion in Zamir (1992, p.118)).

Lemma 9 Assume that player 1 can guarantee u. Then player 1 can guarantee cav u.

The following result will be useful later.

Lemma 10 Let (Ai)i∈I be a finite collection of convex closed upwards comprehensive sets and let
A be the set

{
a ∈ RK | a = maxi∈I ai, ai ∈ Ai

}
. Then

fA(p) = (cav max
i∈I

fAi)(p),

where, for any convex upwards comprehensive set B, fB(p) = infa∈B 〈a, p〉 .

Proof. Since each Ai is upwards comprehensive, A coincides with ∩iAi. Therefore fA ≥ fAi

for each i. In particular fA ≥ maxi∈I fAi . Since fA is concave, fA ≥ cav maxi∈I fAi .
To prove the opposite inequality, we first observe that if B is convex, closed and upwards

comprehensive, one has

B =
{
a ∈ RK | 〈a, p〉 ≥ fB(p) for each p ∈ ∆(K)

}
. (2)

Set g = cav maxi∈I fAi , and

D =
{
a ∈ RK | 〈a, p〉 ≥ g(p) for each p ∈ ∆(K)

}
.

Since g ≥ fAi for each i ∈ I, and using (2) with B = Ai, one has D ⊆ Ai. Therefore, D ⊆ A which
readily implies g ≥ fA.
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3.2 Approachability

We present here the basic approachability result of Blackwell (1956), in the framework of stochastic
games. Let G be a stochastic game with payoffs in RK . The description of such a game is the
same as that of a zero-sum stochastic game given in Section 2.1, except that the reward function
now takes values in RK . The definition of strategies in this framework is similar to that given in
Section 2.2.

We denote ḡN = 1
N

∑N
n=1 g(ωn, in, jn) ∈ RK , the average vector payoff in the first N stages.

Definition 11 A vector a ∈ RK is approachable by player 2 at ω if for every ε > 0, there is a
strategy τ of player 2 and N ∈ N such that:2

∀σ, Eω,σ,τ

[
sup
n≥N

(ḡn − a)+
]
≤ ε.

We say that such a strategy τ approaches a + ε at ω.

In words, for every ε player 2 has a strategy such that, the average payoff vector will eventually
not exceed a + ε. Note that a is approachable if and only if a + ε is approachable for every ε > 0,
so that the set of approachable vectors is closed and upwards comprehensive.

Our definition slightly differs from that of Blackwell (1956), where the strategy τ is required to
be independent of ε (i.e., the original definition of Blackwell reads as: ∃τ,∀ε > 0, etc.). Any vector
a that is approachable in Blackwell’s sense is also approachable in our sense. The two definitions
are not equivalent. However, it is easily checked that, if a is approachable (in our sense) at each
state, it is also approachable in Blackwell’s sense.

Every stochastic game with incomplete information Γ(p, ω) induces a stochastic game with
vector payoffs ΓV (ω), in which the payoff coordinates are given by the payoff functions of the
component games (Gk) of Γ(p, ω).

The following two Lemmas relate approachable vectors in ΓV to quantities in Γ(p, ω). The first
one is immediate.

Lemma 12 If a ∈ RK is approachable at ω in the game ΓV , then player 2 can guarantee 〈a, p〉 in
Γ(p, ω) for each p ∈ ∆(K).

We now state Blackwell’s sufficient condition for approachability in this context. Denote by
u∞(p, ω) the uniform value of the zero-sum stochastic game with reward function

∑
k∈K pkg

k(ω, ·, ·).
The existence of u∞ follows by Mertens and Neyman (1981). We also denote by un(p, ω) the value
of the n-stage version of that game (thus, limn→∞ un = u∞ and the limit is uniform in p).

Proposition 13 If cav u∞(p, ω) ≤ 〈a, p〉 for every (p, ω) ∈ ∆(K) × Ω, then a is approachable in
ΓV by player 2 at ω, for each ω ∈ Ω.

In this statement (and in later ones), cav u∞ is the concavification of u∞ with respect to the
first variable, p: cav u∞(p, ω) = (cav u∞(·, ω))(p).

2For every real a ∈ R, a+ = max{a, 0}.
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Sketch of the proof: let ε > 0 and choose N such that ‖uN − u∞‖ ≤ ε. We then view
successive blocks of N stages as successive stages in the repetition of the N -stage game. We apply
directly Blackwell’s result (noting that Blackwell’s proof still holds when the stage game changes
from stage to stage, with payoffs remaining bounded).

A more general result was proved by Milman (2000, Theorem 2.1.1). For results with similar
flavor, see Shimkin and Shwartz (1993).

3.3 Information revelation

Let σ be a given strategy of player 1. For n ∈ N, we denote by pn the conditional distribution over
K given Hn: it is the belief held by player 2 about the true game being played.3 The difference
‖pn − pn+1‖1 may be interpreted as the amount of information that is revealed at stage n.

It is well-known (see, e.g., Sorin (2002, Lemma 3.4)) that, for each τ ,

Ep,ω,σ,τ

[ ∞∑
n=1

‖pn − pn+1‖2
1

]
≤ |K| . (3)

Given p ∈ ∆(K), we denote by σp the average non revealing strategy defined by σp(h) =
∑

k∈K p(k)σ(k, h),
for each finite history h. It is very convenient to relate the benefit derived by player 1 from using
his information at a given stage to the amount of information revealed at that stage. Let n ∈ N
be given. The expected payoff at stage n, conditional on past play is

Ep,ω,σ,τ [gn|Hn] =
∑
k∈K

pn(k)gk(ωn, σ(k, hn), τ(hn)),

where σ(k, hn) and τ(hn) are the mixed moves used by the two players at that stage.4 By Propo-
sition 3.2 and Lemma 3.13 in Sorin (2002),

|Ep,ω,σ,τ [gn|Hn]− 〈pn, g(ωn, σpn(hn), τ(hn)〉| ≤ E [‖pn − pn+1‖1 |Hn] . (4)

Definition 14 Let T̃ be a set of strategies of player 2. Let ε > 0 and σ be given. The strategy
τ̃ ∈ T̃ is ε-exhausting information given (p, ω) and σ if τ̃ maximises Ep,ω,σ,τ

[∑∞
n=1 ‖pn − pn+1‖2

1

]
up to ε over T̃ .

This notion is relative to the class T̃ . Which class of strategies is meant will always be clear.

Lemma 15 Let T̃ , ε, σ, (p, ω) as in Definition 14. Let τ̃ ∈ T̃ be an ε-exhausting strategy given
(p, ω) and σ, and let N ∈ N be such that Ep,ω,σ,τ̃

[∑∞
n=N ‖pn − pn+1‖2

1

]
≤ ε. Then for each

strategy τ ∈ T̃ that coincides with τ̃ until stage N one has

Ep,ω,σ,τ

[ ∞∑
n=N

‖pn − pn+1‖2
1

]
≤ 2ε, and Ep,ω,σ,τ [‖pl − pN‖1] ≤

√
2ε for each l ≥ N.

3The value of pn at a specific atom of Hn depends only on σ. Since the distribution on Hn depends on τ , the law
of pn depends on both σ and τ .

4There is a notational inconsistency here, since the right-hand side is the value of the left-hand side on a typical
atom of Hn.
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Proof. The first inequality needs no proof. Note that for each l ≥ N ,

(Ep,ω,σ,τ [‖pl − pN‖1])
2 ≤ Ep,ω,σ,τ

[
‖pl − pN‖2

1

]
= Ep,ω,σ,τ

[
l−1∑

n=N

‖pn − pn+1‖2
1

]
, (5)

where the equality follows since (pn) is a martingale. The second inequality follows.

The next lemma is specific to stochastic games with incomplete information.

Lemma 16 Let (σ, τ) be given. For every p ∈ ∆(K), every ω ∈ Ω, and every l ∈ N, one has

|Ep,ω,σ,τ [gl]−Ep,ω,σp,τ [gl]| ≤ 4Ep,ω,σ,τ

[
l∑

m=1

‖pm − pm+1‖1

]
.

Proof. For notational convenience, we abbreviate Ep,ω,σ,τ and Ep,ω,σp,τ to E and Ẽ respectively,
and to P and P̃ the corresponding probability distributions. Let n ≤ l be given. Since σp is non
revealing, and by the Lipshitz property,∣∣∣〈pn, g(ωn, σpn(hn), τ(hn)〉 − Ẽ [gn|Hn]

∣∣∣
= |〈pn, g(ωn, σpn(hn), τ(hn)〉 − 〈p, g(ωn, σp(hn), τ(hn)〉|
≤ 2 ‖pn − p‖1 . (6)

By (4), it follows that∣∣∣E [gn|Hn]− Ẽ [gn|Hn]
∣∣∣ ≤ 2 ‖pn − p‖1 + ‖pn − pn+1‖1 . (7)

On the other hand, it is easily checked that the probabilities Pn and P̃n induced by P and P̃ on
Hn satisfy ∥∥∥Pn − P̃n

∥∥∥
1
≤ E

[
n∑

m=1

‖pm − pm+1‖1

]
. (8)

By (7) and (8), ∣∣∣E [gn]− Ẽ [gn]
∣∣∣ ≤ 4E

[
n∑

m=1

‖pm − pm+1‖1

]
,

which implies the result.

3.4 A partition of states

In this section we define a partition of the set of states, that will be extensively used in the sequel.
It hinges on the fact that a single player controls the transitions, but it does not matter who is the
controller. The partition is similar to the one defined by Ross and Varadarajan (1991) for Markov
decision processes, who also provide an algorithm to calculate it.

We assume that player 1 controls the transition. The partition when player 2 controls the
transition is defined analogously. Since transitions are independent of player 2’s actions, we here
omit player 2’s strategy from the notations, whenever convenient.
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Given ω ∈ Ω, we denote by
rω = min {n ∈ N, ωn = ω}

the stage of the first visit to ω. By convention, the minimum over an empty set is +∞.

Definition 17 Let ω1, ω2 ∈ Ω. We say that ω1 leads to ω2 if ω1 = ω2, or if Pω1,σ(rω2 < +∞) = 1
for some strategy σ of player 1.

Note that the relation leads to is reflexive and transitive.
We define an equivalence relation over Ω by

ω ↔ ω′ if and only if ω leads to ω′ and ω′ leads to ω.

The equivalence classes of this relation are called communicating sets. Given ω ∈ Ω, we let Cω

denote the communicating set that contains ω, and we define

Iω = {i ∈ I | q(Cω | ω, i) = 1}.

The set Iω may (but does not have to) be empty only if |Cω| = 1. Actions in Iω are called stay
actions, and any state ω such that Iω = ∅ is a null state. The set of non-null states is Ωc. Note
that Cω ⊆ Ωc whenever ω ∈ Ωc.

Lemma 18 ω ∈ Ωc if and only if there is a stationary strategy xCω such that Cω is a recurrent set
for x.

Thus, Iω = ∅ if and only if ω is transient for every stationary strategy x.
Proof. We start with the direct implication. Let ω ∈ Ωc. For ω′ ∈ Cω, define xω′ ∈ ∆(A) by

xω′ [i] =
{

0 i 6∈ Iω′

1/|Iω′ | i ∈ Iω′ .

and let x be any stationary strategy that coincides with xω′ in each state ω′ ∈ Cω. It is easy to
show that Cω is recurrent under x.

The reverse implication is straightforward.

It is useful to distinguish the communicating sets that are recurrent sets for a fully mixed
stationary strategy x. The corresponding set of states is denoted Ω0. Thus, ω ∈ Ω0 if and only if
Iω′ = I for every ω′ ∈ Cω.

Lemma 19 Assume player 1 controls transitions. Let ω ∈ Ω and ω′ ∈ Cω. If one of the players
can guarantee w in Γ(p, ω), he can also guarantee w in Γ(p, ω′).

Proof. Assume first player 1 can guarantee w in Γ(p, ω). Let σ be a strategy that guarantees
w − ε in Γ(p, ω), and let σ∗ be the strategy that plays xCω until rω, then switches to σ. In the
game Γ(p, ω′), the strategy σ∗ guarantees w − ε′, for each ε′ > ε.

Assume now player 2 can guarantee w in Γ(p, ω), but assume to the contrary that he cannot
guarantee w in Γ(p, ω′), for some ω′ ∈ Cω. Then for every ε > 0, every strategy τ of player 2, and
every N ∈ N there is a strategy στ,N of player 1 and nτ,N ≥ N such that γnτ,N (p, ω′, στ,N , τ) > w+ε.
Let ε, τ and N be given. Let σ∗ be the strategy of player 1 defined as follows. Play xCω until stage
rω′ , and then switch to στrω′ ,M , where τrω′ is the strategy induced by τ after stage rω′ , and M ≥ N

is sufficiently large. One can verify that if M is sufficiently large then there is n′ ≥ N such that
γn′(p, ω, σ∗, τ) > w + ε/2.

10



3.5 Auxiliary games

As for the analysis of repeated zero-sum games with lack of information on one side, it is convenient
to introduce an average game in which no player is informed of the realization of k.

For notational ease, assume that player 1 is the controller. For every p ∈ ∆(K) and every non
null state ω ∈ Ω, we denote by Γ̃R(p, ω) the zero-sum stochastic game with: (i) initial state ω, (ii)
state space Cω, (iii) reward function

∑
k pkg

k, (iv) action sets Iω′ and J at each state ω′ ∈ Cω, and
(v) transition function induced by q.

In the case where player 2 is the controller, the game Γ̃R(p, ω) is defined by restricting player
2’s action set to Jω′ in each state ω′ ∈ Cω.

Thus, Γ̃R(p, ω) is the stochastic game in which player 1 is not informed of the realization of k (or
does not use his information), and the controller is restricted to stay actions. Since the controller
can use only stay actions, the game remains in Cω forever. The letter R is a reminder for restricted,
while the symbol ˜ stands for average.

Note that Γ̃R(p, ω) is a single controller game. Denote by ũ(p, ω) its value. Note that ũ(p, ω) =
u∞(p, ω) for each ω ∈ Ω0.5

By convention, if ω is a null state, we set ũ(p, ω) = −∞ if player 1 controls the transition and
ũ(p, ω) = +∞ if player 2 controls the transition. By Lemma 19, for every communicating set C,
ũ(p, ω) is independent of ω ∈ C.

Proposition 20 For every ω ∈ Ω0 and every p ∈ ∆(K) the value v(p, ω) of Γ(p, ω) exists and is
equal to cav ũ(p, ω)(= cav u∞(p, ω)).

Thus, restricted to Ω0, the game is similar to a standard repeated game with incomplete infor-
mation.

Proof. The proof of this lemma is similar to the proof for repeated games with incomplete
information on one side. Clearly player 1, by not using his information, can guarantee ũ(p, ω). By
Lemma 9, player 1 can guarantee cav ũ(p, ω).

The proof that player 2 can guarantee cav ũ is based on approachability results, and follows
closely classical lines. Let a ∈ RK be such that

〈a, p〉 = cav ũ(p, ω)
〈a, q〉 ≥ cav ũ(q, ω) for each q ∈ ∆(K).

If cav ũ(·, ω) is differentiable at p, then a is defined by the hyperplane tangent to cav ũ(·, ω) at p.
By Proposition 13, a is approachable. By Lemma 12, player 2 can guarantee cav ũ.

Let ΓR(p, ω) be a game similar to Γ̃R(p, ω), but in which player 1 is informed of k. Thus,
ΓR(p, ω) differs from Γ(p, ω) only in that actions of the controller are restricted.

A similar argument as the one used in the proof of Proposition 20 proves the following:

Lemma 21 Let ω be a non null state. Then ΓR(p, ω) has a value, which is cav ũ(p, ω).

We denote by ΓV
R the stochastic game with vector payoffs in which the controller is restricted

to stay actions.
5By Filar (1981), both players have optimal stationary strategies. We will not use this fact.
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3.6 Functional equations

Let B denote the set of functions w : ∆(K)× Ω → [0, 1] that are 1-Lipshitz with respect to p. We
here define three operators on B that will be used to characterize the solutions of the game.

When transitions are controlled by player 1, we define T1 by

T1w(p, ω) = cav max
{

cav ũ, max
ω′∈Cω ,i/∈Iω′

E
[
w | ω′, i

]}
(p, ω). (9)

By convention, a maximum over an empty set is −∞. In this expression, E [w | ω′, i] stands for the
expectation of w under q(· | ω′, i).

When transitions are controlled by player 2, we define T2 and T3 by

T2w(p, ω) = cav min
{

ũ, min
ω′∈Cω ,j 6∈Jω′

E
[
w | ω′, j

]}
(p, ω)

T3w(p, ω) = min
{

cav ũ, min
ω′∈Cω ,j 6∈Jω′

E
[
w | ω′, j

]}
(p, ω).

Since the maximum (or minimum) of a finite number of elements of B belongs to B, and since
concavification preserves Lipshitz properties, all three operators T1, T2 and T3 map B into B. Note
that Ti is monotonic: w1 ≤ w2 implies that Tiw1 ≤ Tiw2.

We now assume that player 1 controls transitions, and prove few results on T1. When transitions
are controlled by player 2, identical results hold for both T2 and T3, proofs being analogous hence
omitted.

Proposition 22 1. T1 has a unique fixed point w.

2. The sequences (w0
n) and (w1

n) defined by wj
0 = j, wj

n+1 = T1w
j
n for j = 0, 1, are monotonic

and converge uniformly to w.

3. w coincides with cav ũ on Ω0.

4. If f ∈ B satisfies f ≤ T1f (resp. f ≥ T1f), then f ≤ w (resp. f ≥ w).

By induction on n, the sequences (wj
n)n associated with T3, are sequences of concave functions.

Thus, the fixed points of T2 and T3 are concave functions.
Proof. Plainly, 2 follows from 1, by monotonicity of T1. Since cav ũ(p, ω) is constant on

every communicating set, so is T1w(p, ω), for every w ∈ B. Since Iω = I for every ω ∈ Ω0,
T1w(p, ω) = cav ũ(p, ω) for every w ∈ B, every ω ∈ Ω0, and every p ∈ ∆(K). Thus, 3 will follow
from 1. We now prove 1. By Ascoli’s characterization, B is a compact metric space when endowed
with the uniform norm. Since T1 is non-expansive, it is continuous on B, hence it has a fixed point.

We prove uniqueness by contradiction. Let w1 and w2 be two distinct fixed points of T1, and
assume w.l.o.g. that δ := max(p,ω)∈∆(K)×Ω(w1(p, ω)− w2(p, ω)) > 0. Let

D = {ω ∈ Ω, w1(p, ω)− w2(p, ω) = δ for some p ∈ ∆(K)}

contain those states where the difference is maximal. Since both w1(p, ·) and w2(p, ·) are constant
on each communicating set, Cω ⊆ D for each ω ∈ D.

12



Since w1 = w2 on Ω0, D ⊆ Ω\Ω0. Let ω ∈ D be given, and let p0 ∈ ∆(K) be an extreme point of
the convex hull of the set {p ∈ ∆(K) : w1(p, ω)− w2(p, ω) = δ}. Thus, w1(p0, ω)−w2(p0, ω) = δ > 0.
Since w1(·, ω) is concave, it also follows that (p0, w1(p0, ω)) is an extreme point of the hypograph
of the concave function w1(·, ω). This implies

w1(p0, ω) = max
{

cav ũ, max
ω′∈Cω ,i/∈Iω

E
[
w1|ω′, i

]}
(p0, ω).

Since w1(p0, ω) > w2(p0, ω) ≥ cav ũ(p0, ω), one has w1(p0, ω) = E [w1(p0, ·) | ω′, i] for some ω′ ∈ Cω

and i /∈ Iω′ . Since T1w2 = w2, w2(p0, ω) ≥ E [w2(p0, ·) | ω′, i], and therefore

δ = w1(p0, ω)− w2(p0, ω) ≤ E
[
w1(p0, ·)− w2(p0, ·) | ω′, i

]
.

By the definition of D, this implies that q(D | ω′, i) = 1.
Thus, for every ω ∈ D there exists ω′ ∈ Cω and i 6∈ Iω′ that satisfy q(D | ω′, i) = 1. This implies

the existence of ω, ω̃ ∈ D such that Cω 6= Cω̃ and ω ↔ ω̃ – a contradiction. This proves 1.
To prove 4, we assume that δ = max(p,ω)∈∆(K)×Ω (f(p, ω)− w(p, ω)) > 0, and repeat the second

part of the proof of 1 to obtain a contradiction.

4 Lack of information on one side

4.1 Preliminaries

We here single out a useful lemma. The Lemma concerns a standard stochastic game G, and its
version GR in which player 1 is restricted to stay actions. Thus, K is a singleton.

Lemma 23 Let G be a zero-sum stochastic game, with transitions controlled by player 1, and let
ω ∈ Ω. If player 2 can guarantee α ∈ R in GR(ω), and he can guarantee w : Ω → R in G, then he
can also guarantee max

{
α, maxω′∈Cω ,i/∈Iω′ E [w|ω′, i]

}
in G(ω).

Proof. By Lemma 19 player 2 can guarantee α in GR(ω′) for every ω′ ∈ Cω. Let τ1 be a
strategy that guarantees α+ε in GR(ω′) for every ω′ ∈ Cω, and let τ2 be a strategy that guarantees
w + ε in G. Let N ∈ N be such that for every n ≥ N , every ω′ ∈ Cω and every σ in GR(ω),
γn(ω′, σ, τ1) ≤ α + ε, while for every σ in G, ω′ ∈ Ω, γn(ω′, σ, τ2) ≤ w(ω′) + ε.

Define ν = 1 + inf {n ≥ 1, in /∈ Iωn}. Define a strategy τ for player 2 as follows.

• At stage ν, τ forgets past play and start following τ2.

• Before stage ν, τ plays in blocks of size N (the last block may be shorter). In block l, where
lN < ν, τ forgets past play and follows τ1(ωlN ) for N stages.

Let σ be an arbitrary pure strategy. We will compute an upper bound on Eω,σ,τ [gn], for n
sufficiently large. Set L∗ = d ln ε

ln(1−ε)e, and take n ≥ N1 := dL∗N/ε2e. Denote by gm1→m2
the

average payoff from stage m1 to stage m2. With θ∗ := dν−1
N e, and since payoffs are non negative,

one has the inequality

gn ≤
Nθ∗

n
gNθ∗ +

n + 1− ν

n
gν→n. (10)
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On the event ν ≤ n−N , one has

Eω,σ,τ [gν→n|Hν ] = Eων ,σν ,τ2

[
gn−ν+1

]
≤ w(ων) + ε, (11)

where σν is the strategy induced by σ after ν. Since σ is pure, ν − 1 is a stopping time and, using
(11),

Eω,σ,τ [gν→n|Hν−1] ≤ E [w|ων−1, iν−1] + ε. (12)

On the other hand, on the event ν > n−N , n+1−ν
n ≤ ε. Therefore, using (12),

Eω,σ,τ

[
n + 1− ν

n
gν→n

]
≤ βEω,σ,τ

[
n + 1− ν

n

]
+ ε. (13)

We now proceed to the first term in the decomposition (10) of gn. For each l, we let πl =
Pω,σ,τ [ν ≤ (l + 1)N | HlN+1]. By the choice of N ,

Eω,σ,τ

[
glN+1→(l+1)N |HlN+1

]
≤ α + 2ε on the event πl < ε

and Eω,σ,τ

[
glN+1→(l+1)N |HlN+1

]
≤ 1 otherwise.

By taking expectations, this yields

Eω,σ,τ

[
glN+1→(l+1)N

]
≤ (α + 2ε)Pω,σ,τ (θ∗ > l) + Pω,σ,τ (πl ≥ ε, θ∗ > l).

By summation over l, one has

Eω,σ,τ

[
θ∗−1∑
l=0

glN+1→(l+1)N

]
≤ (α + 2ε)Eω,σ,τ [θ∗] + Eω,σ,τ

[
Ñθ∗

]
, (14)

where Ñm = |{l < m : πl ≥ ε}|. Plainly, Eω,σ,τ

[
Ñθ∗

]
≤ 1

ε . Thus, (14) rewrites

Eω,σ,τ

[
ν∗

n
gν∗

]
≤ (α + 2ε)Eω,σ,τ

[
ν∗

n

]
+

N

nε
. (15)

The result follows by (10), (12), (13) and (15).

We shall need a variant of the previous result, whose proof is identical to the previous proof.
Consider the stochastic game with incomplete information Γ(p, ω), where ω is a non-null state and
assume that transitions are controlled by player 2. Assume that player 1 can guarantee a function
w. Then player 1 can also guarantee min

{
ũ,minω′∈Cω ,j /∈Jω′ E [w|ω′, j]

}
(p, ω) in Γ(p, ω).

4.2 Transitions Controlled by Player 1

In this section we assume that transitions are controlled by player 1.

Proposition 24 The unique fixed point of T1 is the value of Γ.
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Proof. Let w be the unique fixed point of T1, and fix ε > 0 once and for all.

Step 1: Player 1 can guarantee w in Γ
By Lemma 21 player 1 can guarantee cav ũ. Assume that player 1 can guarantee w0

n for some
n ∈ N. Let p ∈ ∆(K) and ω ∈ Ω be given. Plainly, for every ω′ ∈ Cω and every i /∈ Iω player 1
can guarantee E

[
w0

n | ω′, i
]
(p, ω) in Γ(p, ω′); first he plays the action i at ω′, and then a strategy

that guarantees w0
n(p, ·) (up to ε). By Lemma 19, he can guarantee E

[
w0

n | ω′, i
]

(p, ω) in Γ(p, ω).
Therefore, he can guarantee T1w

0
n = w0

n+1 in Γ. Since player 1 can guarantee w0
0 = 0, the result

follows by Lemma 9.

We now prove that player 2 can guarantee w.
Step 2: Definition of approachable sets.
For ω ∈ Ω, let Bω be the set of vectors approachable in ΓV by player 2 at ω. We also define

Aω =
{
a ∈ RK , 〈a, p〉 ≥ cav ũ(p, ω) for every p

}
.

By Proposition 13 and Lemma 21, Aω is the set of vectors approachable by player 2 at ω in the
stochastic game with vector payoffs ΓV

R . Both sets Aω and Bω are non-empty, closed, convex and
(upwards) comprehensive.

For every ω ∈ Ω define

Cω =
{

c = max
{

a, max
ω′∈Cω ,i/∈Iω′

E
[
b(·) | ω′, i

]}
, where a ∈ Aω, b(ω′′) ∈ Bω′′ for every ω′′ ∈ Ω

}
.

Step 3: Cω ⊆ Bω.
Fix c ∈ Cω. Let τ1 be a strategy that approaches a+ε at ω, and let τ2 be a strategy that approaches
b(ω′′) + ε at each state ω′′. For each k the strategy τ1 guarantees ak + ε in the Γ(k, ω), and τ2 has
similar properties. By Lemma 23, applied independently to each Gk, the strategy obtained by
concatenation of τ1 and τ2 guarantees max

{
ak,maxω′∈Cω ,i/∈Iω′ E

[
bk(·) | ω′, i

]}
+ 3ε = ck + 3ε in

Gk.

Step 4: Player 2 can guarantee w.
Let f(p, ω) = infa∈Bω 〈a, p〉 and h(p, ω) = infa∈Cω 〈a, p〉, so that by Step 3 f ≤ h. By Lemma 12
player 2 can guarantee 〈a, p〉 in Γ(p, ω) for every a ∈ Bω. Therefore he can guarantee f(p, ω) as
well. By Lemma 10, the definition of Cω may be rephrased as

h = cav max
{

cav ũ, max
ω′∈Cω ,i6∈Iω′

E
[
f | ω′, i

]}
= T1f.

Thus, f ≤ T1f . By Proposition 22(4), f ≤ w. Therefore, player 2 can guarantee w.

4.3 Transitions Controlled by Player 2

In this section we assume that transitions are controlled by player 2.
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4.3.1 The max-min Value

Lemma 25 The unique fixed point of T2 is the max-min value of Γ .

Proof. Let w be the fixed point of T2, and fix ε > 0.
Step 1: Player 1 can guarantee w.

Assume player 1 can guarantee w0
m for some m ∈ N. By the remark following Lemma 23,

player 1 can guarantee min
{
ũ, minω′∈Cω ,j 6∈Jω′ E

[
w0

m | ω′, j
]}

. Hence player 1 can also guarantee
cav min

{
ũ, minω′∈Cω ,j 6∈Jω′ E

[
w0

m | ω′, j
]}

= w0
m+1. Since player 1 can guarantee w0

0 = 0, the result
follows.

We now prove that player 2 can defend w. Assume that player 2 can defend w1
m for some

m ∈ N, and let σ be an arbitrary strategy of player 1.

Step 2: Definition of a reply
Given (p, ω), we let τ1(p, ω) be a strategy that guarantees ũ(p, ω) + ε in Γ̃R(p, ω). Choose

N1 ∈ N such that γn(p, ω, σ̃, τ1(p, ω)) ≤ ũ(p, ω) + ε for every n ≥ N1 and every non revealing
strategy σ̃ of player 1.

By the remark that follows Definition 1, N1 can be chosen independently of (p, ω). Let T̃ be
the set of strategies of player 2 in Γ̃R(p, ω), and let τ̃ ∈ T̃ be an ε2/32N2

1 -exhausting information
strategy given σ and (p, ω). Choose N ∈ N such that

Ep,ω,σ,τ̃

[
+∞∑
n=N

‖pn − pn+1‖2
1

]
≤ ε2

32N2
1

.

We define τ by

• Play τ̃ up to stage N .

• At stage N compute βN := min
{
ũ, minω′∈Cω ,j 6∈Jω′ E

[
w1

m | ω′, j
]}

(pN , ωN ).

– If βN = ũ(pN , ωN ), play by successive blocks of length N1: in the b + 1th block play the
strategy τ1(pN+bN1 , ωN+bN1).

– Otherwise, switch to a strategy that defends the quantity
minω′∈Cω ,j 6∈Jω′ E

[
w1

m | ω′, j
]
(pN , ωN ) + ε against σN , where σN is the strategy induced

by σ after stage N .

Step 3: The computation
We here prove that τ defends w1

m+1(p, ω) + 6ε in Γ(p, ω). We abbreviate Ep,ω,σ,τ to E. First,
we provide an upper bound on the average payoff E

[
gN→N+n|HN

]
between stages N and N + n

on the event
A := {βN = ũ(pN , ωN )} . (16)

Take first n = N1. By definition,

E
[
gN→N+N1−1|HN

]
= EpN ,ωN ,σN ,τ1(pN ,ωN )

[
gN1

]
.
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By the choice of N1,
EpN ,ωN ,σ

pN
N ,τ1(pN ,ωN )

[
gN1

]
≤ ũ(pN , ωN ) + ε. (17)

On the other hand, by Lemma 16,∣∣∣EpN ,ωN ,σ
pN
N ,τ1(pN ,ωN )

[
gN1

]
−EpN ,ωN ,σN ,τ1(pN ,ωN )

[
gN1

]∣∣∣
≤ 4EpN ,ωN ,σN ,τ1(pN ,ωN )

[
N1∑

m=1

‖pm − pm+1‖1

]
.

Thus, using (17),

E
[
gN→N+N1−1|HN

]
≤ ũ(pN , ωN ) + ε + 4E

[
N+N1−1∑

m=N

‖pm − pm+1‖1 |HN

]
.

The same computation applies to any block of N1 stages. Specifically, for each b ≥ 0,

E
[
gN+bN1→N+(b+1)N1−1|HN+bN1

]
≤ ũ(pN+bN1 , ωN+bN1) + ε

+ 4E

N+(b+1)N1−1∑
m=N+bN1

‖pm − pm+1‖1 |HN+bN1

 .

Since ũ(p, ·) is constant on every communicating set, and since ũ(·, ω) is Lipshitz, ũ(pN+bN1 , ωN+bN1) ≤
ũ(pN , ωN ) + ‖pN+bN1 − pN‖1. By taking expectations on the event A (defined by (16)), one gets,
by Lemma 15,

E
[
1AgN+bN1→N+(b+1)N1−1

]
≤ E [1Aũ(pN , ωN )] + ε + E

[
‖pN+bN1 − pN‖1

]
+ 4E

N+(b+1)N1−1∑
m=N+bN1

‖pm − pm+1‖1


≤ E [1Aũ(pN , ωN )] + 3ε.

By averaging over blocks, one obtains for every n ≥ 2
ε (N + N1),

E [1Agn] ≤ E [1Aũ(pN , ωN )] + 4ε. (18)

On the other hand, there is N2 ∈ N such that for every n ≥ N2,

E [gn|HN ] ≤ min
ω′∈Cω ,j 6∈Jω′

E
[
w1

m | ω′, j
]
(pN , ωN ) + 2ε on the event A. (19)

By taking expectations, (18) and (19) yield

E [gn] ≤ E
[
min

{
ũ, min

ω′∈Cω ,j 6∈Jω′
E

[
w1

m | ω′, j
]}

(pN , ωN )
]

+ 6ε

≤ cav min
{

ũ, min
ω′∈Cω ,j 6∈Jω′

E
[
w1

m | ω′, j
]}

(p, ω) + 6ε.

for every n ≥ max{N2,
2
ε (N + N1)}.
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4.4 The min-max Value

Lemma 26 The unique fixed point of T3 is the min-max value of Γ.

Proof. Let w be the unique fixed point of T3, and fix ε > 0.
We first prove that player 2 can guarantee w. Assume that player 2 can guarantee w1

m for
some m ∈ N, and let (p, ω) be given. Plainly, for each ω′ ∈ Cω, j /∈ Jω′ , player 2 can guarantee
E

[
w1

m | ω′, j
]

in Γ(p, ω′) by first playing j at ω′, and then a strategy that guarantees w1
m (up to

ε). By Lemma 19, he can guarantee E
[
w1

m | ω′, j
]

in Γ(p, ω) as well. By Lemma 21, player 2 can
guarantee cav ũ. Thus, he can guarantee T3w

1
m = w1

m+1. Since he can guarantee w1
0, the result

follows.

We now prove that player 1 can defend w0
m for each m ∈ N. Clearly, player 1 can defend

w0
0 = 0. Assume that player 1 can defend w0

m for some m ∈ N. Let a strategy τ of player 2 and
(p, ω) ∈ ∆(K)× Ω be given. Set ν = 1 + inf {n ≥ 1, jn /∈ Jωn}. The supremum of Pp,ω,σ,τ (ν < ∞)
over all strategies σ coincides with the supremum over all non revealing strategies σ.6 Denote by σ∗

a non revealing strategy that achieves the supremum up to ε. We choose N such that Pp,ω,σ∗,τ (ν >
N) ≤ ε. The strategy σ∗ thus exhausts the probability of leaving the initial communicating set.
Denote by τmin{ν,N} the strategy induced by τ after stage min{ν, N}.

On the event ν > N , there is a strategy τ̃ in ΓR(p, ω) such that
∥∥Pp,ωN ,σ,τ̃ −Pp,ωN ,σ,τN

∥∥ ≤
Pp,ωN ,σ,τN (ν < +∞) for every non revealing strategy σ in ΓR(p, ω). This strategy depends on the
history up to stage N .

We now define the reply σ of player 1 to τ as follows: play σ∗ up to stage min{ν, N}.

• If ν > N , switch to a strategy that defends cav ũ(p, ω) + ε in ΓR(p, ωN ) against τ̃ ;

• If ν ≤ N , switch to a strategy that defends w(p, ων) + ε against τν .

Since there are finitely many histories of length N , the set of strategies (τmin{ν,N}) is finite. It
is straightforward to check that σ defends

min
{

cav ũ, min
ω′∈Cω ,j 6∈Jω′

E
[
w1

m | ω′, i
]}

(p, ω) + 2ε = w1
m+1(p, ω) + 2ε

against τ .

4.5 An example

Since min{cav f, g} may be strictly bigger than cav (min{f, g}), the max-min value and the min-
max value may differ.

Consider the following game, where player 2 controls the transitions, and |ω| = |K| = 2, |I| = 2
and |J | = 5.

6This is true since, given σ that approximates the supremum up to ε, the non revealing strategy σ′ that is defined
by σ′

k = σl for every k, where l maximizes (pj)j , approximates the supremum up to |K|ε.
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Figure 1

The initial state is ω1 (bottom two matrices). If in ω1 player 2 chooses j5, the game moves to
ω2, which is absorbing. If player 2 chooses another action in ω1, the game remains in ω1. Payoffs
are as appears in Figure 1 (the definition of gk(ω1, ·, j5) is irrelevant).

Note that Iω1 = {j1, j2, j3, j4}, Ω0 = {ω2}, and Cω1 = {ω1}.
The game ΓR(p, ω1) is similar to Example 3.3 in Aumann and Maschler (1995). As calculated

in Aumann and Maschler,

f(p) = ũ(p, ω1) =


3p1 0 ≤ p1 ≤ 2−

√
3

1− p1(1− p1) 2−
√

3 ≤ p1 ≤
√

3− 1
3(1− p1)

√
3− 1 ≤ p1 ≤ 1

.

Note that cav f 6= f .
The game ΓR(p, ω2) is similar the game presented in Aumann and Maschler (1995, I.2), with

all payoffs multiplied by 4.7 As calculated in Aumann and Maschler,

g(p) = ũ(p, ω2) = 4p1(1− p1).

As proved above, the max-min value when the initial state is ω1 is (cav min{f, g})(p), while
the min-max value is min{cav f, g}(p).

The function f is linear on both intervals
[
0, 2−

√
3
]
and

[√
3− 1, 1

]
, and convex on

[
2−

√
3,
√

3− 1
]
.

Since f(2 −
√

3) = f(
√

3 − 1) = 3(2 −
√

3), cav f is piecewise linear and equal to 3(2 −
√

3) on[
2−

√
3,
√

3− 1
]
. Thus, cav f(1/2) = 3(2 −

√
3), and g(1/2) = 1, therefore min (cav f, g) (1/2) =

3(2−
√

3).
On the other hand, a straightforward computation yields

min (f, g) (p) =



f(p) = 3p1 if p ≤ 1/4
g(p) = 4p1(1− p1) if 1/4 ≤ p ≤ 5−

√
5

10

f(p) = 1− p1(1− p1) if 5−
√

5
10 ≤ p ≤ 5+

√
5

10

g(p) = 4p1(1− p1) if 5+
√

5
10 ≤ p ≤ 3/4

f(p) = 3p1(1− p1) if 3/4 ≤ p

7We added the actions j3, j4, j5, which do not change the calculation of the value. For our purposes, we could
have multiplied all payoffs by any α, 3 < α < 3/(

√
3− 1).
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Therefore cav min (f, g) (p) = min (f, g) (p) if p ≤ 5−
√

5
10 or 5+

√
5

10 ≤ p and is linear between 5−
√

5
10

and 5+
√

5
10 . In particular cav min (f, g) (1/2) = 4/5.

So in this example min (cav f, g) (1/2) 6=cav min (f, g) (1/2).

5 Incomplete Information on Both Sides

5.1 The model

We now extend our model to the case of incomplete information on both sides; that is, each player
has some private information on the game that is to be played. Formally the model is extended as
follows. For more details we refer to Mertens, Sorin and Zamir (1994) or Sorin (2002).

A two-player zero-sum stochastic game with incomplete information on both sides is described
by a finite collection (Gk,l)k∈K,l∈L of stochastic games, together with a distribution p ∈ ∆(K) and
a distribution s ∈ ∆(L). We assume that the games Gk,l differ only through their reward functions
gk,l, but they all have the same sets of states Ω and actions I and J , and the same transition rule
q.

The game is played in stages. A pair (k, l) ∈ K × L is chosen according to p ⊗ s. Player 1 is
informed of k, and player 2 of l. At every stage n, the two players choose simultaneously actions
in ∈ I and jn ∈ J , and ωn+1 is drawn according to q(· | ωn, in, jn). Both players are informed of
(in, jn, ωn+1).

We will assume throughout this section that transitions are controlled by player 1.
Since the ideas are similar to the case of incomplete information on one side, we only sketch

the proofs.

5.2 Related literature

The main results in this framework are related to the case with no transition (repeated games with
incomplete information) and are due to Aumann, Maschler and Stearns (1968, see also Aumann and
Maschler (1995)), and Mertens and Zamir (1971, 1980). As in the case of incomplete information
on one side we denote by u(p, s) the value of the matrix game with action sets I and J and matrix
payoff

(∑
k∈K,l∈L pkslgk,l(i, j)

)
i,j

. Given f : ∆(K)×∆(L) → R, we let cavpf denote the smallest

function that is above f and concave in p, and vexsf denotes the largest function that is below f
and convex in s.

The min-max value of a repeated game with incomplete information exists, and is equal to
vexscavpu(p, s). The max-min value exists and is equal to cavpvexsu(p, s).

5.3 Partitioning the states and the average restricted game

Since player 1 controls transitions, the partition defined in Section 4 extends to this case, as well
as the definition of the average restricted game Γ̃R(p, s, ω) in which none of the players has any
information. Denote by ũ(p, s, ω) the value of Γ̃R(p, s, ω). In addition, we define the average
restricted game Γ̃1

R(p, s, ω) (resp. Γ̃2
R(p, s, ω) ) in which player 1 (resp. player 2 ) is informed of k

(resp. l) while his opponent gets no information. Our first goal is to extend Proposition 20.

Proposition 27 For every (ω, p, s) ∈ Ω0×∆(K)×∆(L), the min-max value of Γ(p, s, ω) exists and
is equal to vexscavpũ(p, s, ω). Similarly the max-min value exists and is equal to cavpvexsũ(p, s, ω).
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Proof. The proof follows the proof for repeated games with incomplete information, using the
tools developed in the previous sections. We shall only sketch the arguments, and refer for details
to Zamir (1992).

First, we explain how player 2 can guarantee vexscavpũ(p, s, ω). When player 2 ignores his
information, he faces a game with incomplete information on one side with parameter set K and
payoffs

∑
l∈L slgk,l. By Proposition 20, player 2 can guarantee cavpũ(p, s, ω) in this game. Therefore

by Lemma 9 (with the roles of the two players exchanged), he can also guarantee vexscavpũ(p, s, ω).
To prove that player 1 can defend vexscavpũ(p, s, ω), we adapt Zamir (1992, Theorem 4.1). Let

τ be a given strategy of player 2. As in Step 2 of the proof of Lemma 25, we let player 1 play
first an ε-exhausting strategy σ̃ given τ . This strategy may be chosen to be non revealing (see,
e.g., Sorin (2002), ch. IV, Lemma 4.1). Player 1 switches at some stage N to a strategy that
defends cavpũ(p, sN , ωN ) (up to ε) in Γ(p, sN , ωN ) against the continuation strategy τN (see Step
3 of Lemma 25). Since ũ(·, ·, ω) = ũ(·, ·, ωN ), cavpũ(p, sN , ωN ) = cavpũ(p, sN , ω). Therefore player
1 defends Ep,s,ω,σ̃,τ [cavpũ(p, sN , ω)] ≥ vexscavpũ(p, s, ω).

5.4 The max-min value and the min-max value

Let B denote the set of all functions w : ∆(K)×∆(L)×Ω → [0, 1] that are 1-Lipshitz with respect
to p and s. Denote by T4 and T5 the operators on B defined by

T4w(p, s, ω) = cavp max
{

cavpvexsũ, max
ω′∈Cω ,i/∈Iω′

E[w | ω′, i]
}

(p, s, ω), (20)

and

T5w(p, s, ω) = vexscavp max
{

cavpũ, max
ω′∈Cω ,i/∈Iω′

E[w | ω′, i]
}

(p, s, ω). (21)

Our main result is the following.

Theorem 28 1. The mappings T4 and T5 have unique fixed points, denoted respectively by v
and v.

2. The function v is the max-min value of the game.

3. The function v is the min-max value of the game.

Note that if player 2 has no information, there is no vex operator in (20) and (21) and both T4

and T5 reduce to T1. If player 1 has no information, there is no cav operator in (20) and (21), T4

and T5 reduce respectively to T3 and T2 with the roles of the players reversed.

Proof. The first assertion follows the same lines as the proof of Proposition 22.
We now prove the second assertion. For j = 0, 1, we define the sequence (wj

n)n≥0 by wj
0 = j and

wj
n+1 = T4w

j
n. We follow the inductive proof of Proposition 24 Step 1, or the first part of Lemma

26.
The sequence (w0

n) is increasing and converges uniformly to v. It is clear that player 1 can guar-
antee w0

0. Assuming player 1 can guarantee w0
n, we prove that he can guarantee w0

n+1. By Lemma 9
it is sufficient to show that he can guarantee both cavpvexsũ(p, s, ω) and maxω′∈Cω ,i/∈Iω′ E[w0

n | ω′, i],
which is true by Proposition 27 and by Step 1 of Proposition 24.
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To prove that player 2 can defend v, we combine several ideas from the preceding sections. Let
σ be given, and let T̃ be the set of non revealing strategies of player 2. We let τσ be a non revealing
strategy that ε-exhausts the information contained in σ, and choose N as previously. Denote by
ν = 1 + min{n ≥ 1, in /∈ Iωn}. Player 2 plays according to τσ up to stage min{ν, N}.

• If ν ≤ N , from stage ν on he defends w1
n(pν , s, ων).

• If ν > N , we first use the idea of Lemma 26, with the roles of the two players exchanged.
Specifically, we define a non revealing strategy τσ

N that exhausts the probability of leaving
the initial communicating set, given the strategy σN induced by σ after stage N . Choose N ′

such that PpN ,s,ωN ,σN ,τσ
N

(ν > N ′) ≤ ε. Player 2 plays τσ
N up to stage min{ν, N + N ′}.

– If ν ≤ N + N ′ player 2 switches to a strategy that defends wn(pν , s, ων) + ε.

– If ν > N + N ′, following Steps 2 and 3 of Lemma 25, player 2 starts to play in blocks
of length N1. In the bth block he forgets past play and follows a strategy that defends
vexsũ(pN+N ′+bN1 , s, ωN+N ′+bN1) in the restricted game Γ̃2

R(pN+N ′+bN1 , s, ωN+N ′+bN1)
against the average continuation strategy σ

pN+N′+bN1
N+N ′+bN1

of player 1.

We now turn to the third assertion. We first prove that player 2 can guarantee v. By fol-
lowing Steps 2, 3 and 4 of Lemma 24, one proves that player 2 guarantees cavp max{cavpũ,
maxω′∈Cω ,i/∈Iω′ E[v | ω′, i]}(p, s, ω). Hence, by Lemma 9 (with the roles of the two players ex-
changed), he can guarantee vexscavp max

{
cavpũ, maxω′∈Cω ,i/∈Iω′ E[v | ω′, i]

}
= v.

We now prove that player 1 can defend v. We first follow Step 2 of Lemma 25. Given τ , we
let στ be a strategy in Γ̃2

R(p, s, ω) that exhausts the information contained in τ , and we choose

N such that Ep,s,ω,στ ,τ̃

[∑∞
n=N ‖pn − pn+1‖2

1

]
≤ ε. Player 1 plays στ up to stage N . He then

switches to a strategy that guarantees cavp max
{
cavpũ(·, sN , ω),maxω′∈Cω ,i/∈Iω′ E[v | ω′, i]

}
(p, sN )

in Γ̃1
R(p, sN , ωN ), as in the proof of Proposition 24. The result follows.
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