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Abstract

We consider an infinite-horizon exchange economy with incomplete markets and collat-
eral constraints. As in the two-period model of Geanakoplos and Zame (1998) households
can default on their liabilities at any time without any utility penalties or loss of reputa-
tion. Financial securities are therefore only traded if the promises associated with these
securities are backed by collateral. We examine an economy with a single perishable con-
sumption good where the only collateral available consists of productive assets. In this
model competitive equilibria always exist and we show that under the assumption that
all exogenous variables follow a Markov-chain there also exist stationary equilibria. These
equilibria can be characterized by a mapping from the exogenous shock and the current
distribution of financial wealth to prices and portfolio choices. We develop an algorithm to
approximate this mapping numerically and give details on how to implement the algorithm
in practice. Two computational examples demonstrate the performance of the algorithm

and show some quantitative features of equilibria in models with collateral and default.

*We thank seminar participants at the 2001 CEME General Equilibrium Conference and at Stanford Uni-
versity and in particular Ken Judd, Dirk Krueger, Mordecai Kurz and Steve Tadelis for helpful comments and

conversations.



1 Introduction

In a model with infinitely lived agents, investors’ possible trading strategies have to be re-
stricted to avoid Ponzi schemes. Levine and Zame (1996) propose a so-called ‘implicit debt
constraint’ which ensures that in equilibrium agents’ unconstrained Euler equations always
hold. Unfortunately, when there are stocks in the economy which pay dividends over more
than one period, when endowments and dividends are stationary, and when markets are incom-
plete, sequential equilibria do not always exist under this constraint'. Moreover, in calibrated
models, an implicit debt constraint implies unrealistically high levels of individual debt — along
the equilibrium path agents sometimes borrow more than 20 times their yearly income. These
problems have led applied researchers to impose much tighter exogenous debt constraints as
well as short-sale constraints on stocks. Without attempting to model default, however, these
constraints have no economic interpretation and there is little empirical evidence in their sup-
port. This deficiency motivates the inclusion of collateral and default in these models.

Dubey et al. (2000) and Geanakoplos and Zame (1998) incorporate default and collateral
into the standard GEI model. In Geanakoplos and Zame (1998), agents have to put up durable
goods as collateral when they want to take short positions in financial markets. Economic
agents are allowed to default on their promises but in the case of default the collateral associated
with the promise is seized and distributed among the creditors. Araujo et al. (2000) extend the
model to a dynamic framework with infinitely lived agents and prove equilibrium existence.

We consider a special version of the model with a single (perishable) consumption good.
We assume that all exogenous variables follow a first-order Markov chain. When there are
no financial securities, the only assets traded are shares in the existing firms and the model
is very similar to the Lucas asset-pricing model with heterogeneous agents as in Duffie et al.
(1994). The only difference is that we allow the Lucas trees’ output to depend on the current
owner of the tree to incorporate the possibility that the productivity of an asset depends on
its owner. With financial assets, agents who sell financial securities promise payoffs at some
future date. They will default on these promises if and only if the market value of the stocks
held as collateral is lower than the face value of the promise.

The treatment of default in this model (as well as in Geanakoplos and Zame (1998)) is
unconvincing since default ‘does not matter’: It does not affect households’ ability to borrow
in the future and it does not lead to any direct reduction in consumption at the time of default.
Nevertheless, since it is analytically tractable and provides a rationale for collateral constraints,
we use default to motivate collateral constraints in infinite horizon models.

The reason for assuming that all exogenous variables are stationary is that we want to

approximate equilibria numerically. It is standard in modern macroeconomics to study the

'"Magill and Quinzii (1996) show existence generically in infinite dividend sequences but their genericity
conditions do not translate directly to conditions on an economy with stationary dividends and endowments.



equilibrium dynamics indirectly by using recursive methods. According to Ljungqvist and
Sargent (2000) recursive methods characterize “a pair of functions: a transition function map-
ping the state of the model today into the state tomorrow” and a policy function “mapping
the state into the other endogenous variables of the model”.

Previous computational work on models with incomplete markets and heterogeneous agents
(e.g. Heaton and Lucas (1996), Judd et al. (2000)) focuses on equilibria that can be described
recursively using as a state the current shock together with last period’s portfolio holdings.
Unfortunately, for interesting specifications of the model, there are no known conditions which
guarantee the existence of such equilibria (independently of collateral constraints and default —
see Kubler and Schmedders (2001 a)). When the state is taken to include all current endogenous
variables, a recursive equilibrium does exist (see Duffie et al. (1994)) but the transition function
that maps state today into state tomorrow can be arbitrarily complicated and one often cannot
even determine the set over which it is defined.

In this paper we develop an alternative approach to generate time series of equilibrium
prices and allocations in models with incomplete markets and heterogeneous agents. We take
as the endogenous state the collection of all current endogenous variables. Our stationary
equilibrium is similar to a recursive equilibrium in that it also consists of a transition map and
a policy map. However, in our approach the policy map is a correspondence (which may not
be single valued) mapping beginning-of-period financial wealth (cash at hand) into possible
current period equilibrium prices and portfolios. The transition maps the current state into
next periods’ endogenous states under the restriction that these have to lie in the graph of the
policy map. Given the policy correspondence and a finite number of exogenous states with
known Markov transition, finding next period’s state from current period’s state amounts to
finding a solution to the system of agents’ Euler equations which lies in the graph of the policy
map. If the policy map is finite valued, this is generally a computationally easy task. The
main problem is then to construct a policy map.

Adapting an argument from Duffie et al. (1994) one can construct a non-empty policy
correspondence. This construction then implies the existence of a Markov-equilibrium. How-
ever, even when there are only two agents and the set of possible wealth distributions is one-
dimensional the construction is not computationally feasible since at each iteration it requires
to list all (real) solutions to a non-linear system of equations. Instead we try to approximate
the correspondence by a collection of functions. It is important to emphasize that the imple-
mentation of the algorithm is not guaranteed to converge. However, in a companion paper
(Kubler and Schmedders (2001 b)) we use the algorithm to investigate under which conditions
collateral constraints and default increase asset price volatility in realistically calibrated mod-
els and in all of the cases considered there the algorithm finds an approximate equilibrium

correspondence.



Since the dimension of the domain of the equilibrium map is independent of the number
of securities traded, this setup is a significant practical improvement over existing algorithms
which, due to a curse of dimensionality, cannot consider models with more than 2 assets (see
Judd et al. (2000) for an overview). In particular our algorithm can be used to compute
equilibria in a model where all assets are Lucas-trees and where there is no default (as in
Duffie et al. (1994)).

The paper is organized as follows. We introduce the model in Section 2. In Section 3 we
develop a theoretical algorithm. Section 4 describes how the algorithm is implemented and

gives examples.

2 The Economic Model

We examine a model of an exchange economy which extends over an infinite time horizon and

which is populated by infinitely-lived heterogeneous agents.

The Physical Economy

At each period ¢ > 0 one of Y possible exogenous shocks y € Y = {1,...,Y} occurs. We
represent the resolution of uncertainty by an event tree ¥. The root of the tree oy is given
by a fixed state yp € Y in which the economy starts at time 0. Each node of the tree is
characterized by a history of shocks o = (yo - - - y¢). Each node o has Y immediate successors,
(oy), y = 1,...,Y, and a unique predecessor o*. To simplify notation we sometimes refer
to the root node’s predecessor o = O_ and include it in the event tree ¥. We collect all
possible nodes which can occur at time ¢ in a set 3; C 3. The exogenous shocks follow a
time-homogeneous Markov process with transition matrix 7. To simplify the exposition, we
assume that all elements of 7 are strictly positive.

At each node o € ¥ there is a single perishable consumption good. There are H agents
which we collect in a set H. At node o € ¥ agent h's individual endowment in the consumption
good, e"(c), depends on the current shock alone, i.e. e”(0*y) = e/ (y) where e’ : Y — IR, | is
a time-invariant function.

In addition, the agent owns shares in physical assets (Lucas trees - these assets can be
interpreted as firms, machines, land or houses). There are A different such assets which we
collect in A. At period 0 each agent h owns a share §2(0_) > 0 of tree a, and we normalize
S hen 00(0-) = 1 for all a € A. We assume that all initial tree holdings are proportional?, i.e.
for all h € H there is a #"(0_) such that #7(0_) = #"(0_) for all a € A.

At a node o = (0*y) let 67(0) denote agent h’s (end-of-period) share in tree a. From
this holding he gets a dividend payment 6% (o) - d?(y) where for each agent A the dividend

2We need this non-standard assumption in Corollary 1 and for computational purposes in Section 4.



asset a produces when it is held by him, d? : Y — IR, depends solely on the current state
y e Y. If d'; is identical across all agents h we are in the standard Lucas-model. In order
to allow for possibility of fire sales as in Kiyotaki and Moore (1997) or Shleifer and Vishny
(1992) we allow the productivity of some collateralizable assets to depend of their current
owner. One interpretation is that the asset is a machine whose operation requires human
capital and that this human capital cannot be traded in the same way as physical capital.
With this construction aggregate consumption will depend on the distribution of assets and
will therefore be endogenous. We define an upper bound on aggregate consumption for each
shock y
é(y) = };{ )+ Z I}]Lrleay)fd

The agent maximizes a time-separable expected utility function

=FE {i 5tuh(0t)} :
t=0

We assume that uy(.) : IR, — IR is strictly monotone, C?, strictly concave, bounded above
and unbounded from below, i.e. up(z) — —oo as £ — 0. In order to rule out that agents are
almost satiated at aggregate endowments we assume that there exists a consumption level é

such that for all h € H,
1

1-p

We also assume that the discount factor 5 € (0,1) is the same for all agents, and that all

up(€) > up (max (y))-

agents agree on the transition matrix for the shock process.

Markets

We consider an economy with security trading in every time period. Agent h can buy 67(o)
shares of tree a at node o for a price g,(c). As long as 87 > 0 there is no possibility of default
since no promises are made when shares of the physical assets change hands.

In addition to the physical assets there are J financial assets which we collect in a set J.
These assets are one-period securities; asset j traded at node o promises a payoff b;(oy) =
b;i(y) > 0 at all successor nodes (oy), y = 1,...,Y. We assume that agents can only sell (short)
a financial security if they hold shares of trees as collateral. With each financial security j € J
we associate a vector kJ = (k{, e ,kil) > 0 of collateral requirements with &/ > 0 for some
a. If an agent sells 1 unit of security j she is required to hold &/ dollars worth of each asset
a=1,...,Aas collateral. If an asset a can be used as collateral for different financial securities,
the agent is required to invest &/ for each j = 1,...,.J. In the next period the agent can default
on her promise b, however, in this case the buyer of the financial security gets the collateral

associated with the promise.



We allow the ‘margin requirement’ &} to be a function of the price of the financial security

pj, i.e. we allow kJ to vary with the current price and write
ki (o) = K (p(0))

for some continuous function kJ. We therefore tie the amount of an asset which has to be held
as collateral for a short position of a financial security 7 € J at any node o to the current price
of the asset g,(0) as well as possibly to the price of the financial security p;(c). For the case
of risk-less borrowing (i.e. the financial security being a bond), for example, it might be useful
to assume that the borrower has to hold a fixed amount of collateral for each dollar borrowed
(and not for each unit of the financial security). In particular, when the interest rate is high, a
borrower has to hold more collateral per dollar promised next period than if the interest rate

is low. In order to rule out trivial equilibria we need to assume that for all j € 7,
igf(; kJ (p) > 0 for at least one a € A (1)
p>

To simplify notation we will suppress the dependence of k£ on the current price of the financial
security.

Since there are no penalties for default a seller of an asset will default at a node o = (c*y)

whenever b;(y) > > ,ca ki qia(((rg*))‘ By individual rationality, the actual payoff of security j at

node o = (0*y) is therefore always given by

fj(0) = min {bj(y), Z ki qa(U*) } .
a€A Ga(0”)
Since the decision to default on a promise is independent of the debtor, we do not need to
consider pooling of contracts as in Dubey et al. (2000) even though there might be default in
equilibrium. We denote agent h’s portfolio in financial assets by ¢" and write p;(o) for the
price of asset j.

Note that an agent can default on individual promises without declaring personal bankruptcy
and giving up all the assets he owns. This assumption is necessary to avoid the pooling of
contracts across borrowers’ payments on the contract (the assumption might not be com-
pletely unrealistic, e.g. in some states in the United States, households are allowed to declare
bankruptcy on their houses only).

A financial markets economy £/™ is now a collection of utility functions, endowments,

assets, financial securities, and collateral requirements.

Financial Markets Equilibrium

We define a financial markets equilibrium as follows.



Definition 1 A financial markets equilibrium for an economy ™ is a process of portfo-
lio holdings and consumptions {(0" (o), $*(0),c" (0)),..., (0% (0), ¢! (0),E7(0))} as well asset
prices {(q1(0),...,qa(0),p1(0),...,ps(0)))} for all o € ¥ satisfying the following conditions:

(1) Markets clear:
Z 0"(0) =1 and Z (o) =0 for all o € .

heH heH

(2) For each agent h :

Ah Th _\ =h _ (o
0" (o), 9" (0),c"(0)) € arg 9>1(()r,1$:)c<20 Un(c) s.t. for all o = (c*y) € X

o) = e (y) + ¢"(0") - f(0) +6"(0%) - ql0) + 0"(0)(d" (y) — 4(0) — ¢"(0)B(0)

@)+ Y Kilo)>0a=1,..,4
jejz¢?(a)<0

Note that physical assets are traded cum dividends, that is, buying a tree allows the agent
to harvest the fruit in the same period.

The following observation will be important throughout the analysis of this paper. In
each financial markets equilibrium, agents’ optimality implies that there exists a positive lower
bound on an agent’s optimal consumption. For each agent h define this lower bound on

consumption, ¢* > 0, by

un(e) + T ma () < T un(mine (),

This positive lower bound for possible equilibrium consumption always exists since uy is un-
bounded from below. The term on the right-hand side is a lower bound on the agent’s lifetime
utility if the agent has sold all her shares in trees, because she can still afford to consume
her labor endowments e”(y). The second term on the left-hand side is an upper bound on
the agent’s utility after the first period because consumption is bounded above by aggregate

endowments (see Duffie et al. (1996) for a similar argument).

Modeling default and collateral constraints

As mentioned in the introduction, there can be no doubt that our treatment of default is
unrealistic: In most economic situations default leads to a loss in the borrower’s reputation
which has effects on his ability to borrow in the future. Furthermore, declaring personal
bankruptcy results in a loss of all assets and it is rarely possible to default on some loans while

keeping the collateral for others.



An alternative interpretation of the model is that all financial assets are derivative securities
whose payoffs depend on the prices of the underlying physical assets.

The advantage of introducing default lies in the fact that it gives a endogenous justification
for collateral constraints. Modeling default in this fashion allows us to examine socially opti-
mal margin requirements. Following Dubey et al. (2000) we can also endogenize the margin
requirements by introducing a menu of financial securities. Each security promises the same
payoff but they distinguish themselves by the margin requirement k7. In equilibrium only some
of them will be traded, thereby determining the endogenous margin requirement (see Kubler
and Schmedders (2001 b) for applications of the model).

2.1 Stationary Equilibria

Our objective is to compute financial markets equilibria for our economic model. It is obviously
infeasible to calculate prices, asset holdings, and consumptions in an equilibrium as a function
of nodes o € ¥ over the infinite event tree. Instead, we want to describe equilibria as a
mapping from the beginning-of-period wealth distribution to current period equilibrium prices
and portfolio holdings. From this we will be able to infer a transition mapping the current

state of the economy into next period’s state.

The State Space

We let the state space S consist of all exogenous and endogenous variables which occur in the
economy at some node o, i.e. § = Y X Z, where ) is the finite set of exogenous shocks and
Z is the set of all possible endogenous variables such as (among others) prices, asset holdings,
and consumption allocations. For a set X, let X be the Cartesian product of Y copies of X.

It is readily apparent that in any financial markets equilibrium ¢ > 0. So, we can define
wh(0) as household A's fraction of financial wealth in the economy at the beginning of node
o= (o*y), i.e.

wh(a) = Qh(g*) i q(02 + Qsh(o-*) i f(o') )
>a=19a(0)

Let Q(0) = (w'(0),...,w(c)). Note that by the definition of f, in equilibrium, Q will always
lie in the H — 1 dimensional simplex A7~ ie. w"” > 0 Vh € H and dohen wh = 1. Next,
let z(0) = (), (c*(0),0"(0), #"(0))hen, 4(0), p(c)) be the endogenous state at 0. We define

the endogenous state space as

Zo(se AN IRY xR x I x A x IR
Zheﬂog =1forallac A
Yhen ¢ =0 for all j € J
Gabg + Z{jej:¢§?<0} kéQS? >0forallaec A hcH}



By definition, in any financial markets equilibrium, all endogenous variables will lie in Z. We
will also make frequent use of the set of endogenous variables without the wealth variables and
denote this set by Z. Note that Z = AH 1 x Z.

The Equilibrium Correspondence

Given an initial wealth distribution 2 and an initial shock y we collect all possible period 0
equilibrium values of the endogenous variables in a set B, () C Z. Formally, the equilibrium
correspondence B is a mapping from ) x A”~1 to the space Z where By () is defined to be
the set of all 2 € Z such that given 070 ) =wh Vh € H,a € A, and an initial shock 3, there

exists a financial markets equilibrium with 2(0) = 2.

Markov Equilibrium

We define a Markov equilibrium to be a financial markets equilibrium for which the state
s € § follows a Markov process. Since we rule out sunspots and the exogenous uncertainty
is discrete, we can describe this process by a ‘transition function’ F. For each (y,,b) with
b € By(Q) this function assigns a value F'(y,Q,b) = (21,...,2y) € Z x...x Z. The function F
determines the endogenous equilibrium state in a period as a function of the exogenous state
in that period and the state (y,€,b) in the previous period, thereby justifying the notion of

Markov equilibrium.

3 Existence of Equilibrium

Araujo et al. (2000) consider a model that is related to ours without long-lived assets but
durable and storable goods and prove that equilibria always exist. However, since we are
interested in approximating equilibria numerically an adaptation of their existence proof to
our model would not help us. Instead we want to construct the equilibrium correspondence
B and show that it is always nonempty. We then argue that using this correspondence, the
economy can be simulated numerically: For any finite T' the allocation for the first 7" periods
of an (infinite) financial markets equilibrium can be constructed from this correspondence by
solving systems of Euler equations.

In constructing B we closely follow the existence proof in Duffie et al. (1994). The basic
idea of our approach is very similar to backward induction. We start with a large compact set
T C Z that is large enough to ensure that for all finitely truncated economies, in equilibrium,
all variables lie in 7. The fact that such a set exists is established in Lemma 2 below. The
lemma also shows that for any equilibrium of the infinite economy all variables must lie in 7.
Assuming that next period’s equilibrium variables can be described by some correspondence
VY x A= = T we define for each exogenous shock y and wealth distribution 2, Vy”‘H(Q)



to be the set of all endogenous variables today that are consistent (in the sense that all agents’
first-order conditions and market clearing hold) with some ((4, 21),...,(Qy, 2y)) tomorrow
for which 2z, € V().

We will show that with this construction N, c/(V™(€2)) is a non-empty equilibrium cor-

respondence. In order to formalize these basic ideas we first need some additional definitions.

Expectations Correspondence

Given a state (y,z) € S, the ‘expectations correspondence’ g describes all next period states
that are consistent with market clearing and agents’ first-order conditions. A vector of en-
dogenous variables (z]",...,2") € g(s) if for all households & € H the following conditions
hold.

(a) Forally=1,...,Y,
0" g5 + Thes o mm{ ) Saea ki }

Ea 1Qay
and it = eh(y) +wht - Yl qf + 00 (dMy) —qf) - b pf >

h+ _
wy =

(b) There exist multipliers A* € IR4 and p" € IR? such that for all a € A the following

equations and inequalities hold.

e + Mo+ (da — qu)ui (") + BE* {gFuj ()} = 0
Mgl =
pa(aady + Y Kigl) = 0
jej:¢>§b<0
A> 0
we > 0

(c) In addition, if we define QS?(—) = maX(O,—QS?) and ¢§?(+) = max(0, QS?), there exist
multipliers v(+),v"(—) € IR’ such that for all j € J the following conditions are

satisfied.

S bk = pyup () + BB { fjup (")} = vi(=) =0

acA
—pjup(ch) + BE* { fjup (")} + v (+) =0
Vh(4) - ¢"(+) =0
(=) ¢ (=) =0
Vh(+) >0
V(=) =0
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Conditions (a) follow from the definition of w and the budget constraint. The conditions
(b) are part of the standard first-order conditions with respect to #”. Finally, conditions (c)
consist of the Kuhn-Tucker conditions with respect to QS?, where we treat the choices of long
and short positions in the asset separately (i.e. the agent chooses both QS?(—) and qﬁ?(—i—) and
therefore has two first-order conditions for each financial asset). Note that the constraints on
the tree holdings are already included in the definition of the endogenous state space Z and
that the sign restrictions on the two portfolio variables for each financial asset are satisfied
by definition. Also note that there is a redundancy in the Kuhn-Tucker conditions in (b) — if
the collateral constraint is satisfied the short-sale constraint on the collateralizable asset will
hold automatically. For pedagogical reasons we keep the redundant conditions in the list of
conditions.

The following lemma assures a property of the expectations correspondence g that is im-
portant for the existence proof of a financial markets equilibrium. We give the proof of this

lemma in the Appendix.
Lemma 1 The graph of g is a closed subset of the closed set S x ZY .

Using the expectations correspondence we can now formalize the details of the backward

induction approach for our model.

Constructing an Equilibrium Correspondence

Given a compact set 7 C Z and a correspondence V : Y x AH=1 = T define an operator G
which maps the correspondence V : ) x A=l = T to a new correspondence W : Y x A1 =
T as follows.

W = Gr(V) if for all Q € A",

Wy(Q) ={(c,0,¢,q,p) € T: I (21,...,2v) € g(y,Q,¢,0,¢,q,p) which satisfy for all y' € Y
Zy/ = (Qy/’ cy/,oy/’ ¢y/,qy/,py/) Wlth (Cy/’ ey/, ¢y/’qy/’py/) E Vy/(Qy/),}

In order to construct the equilibrium correspondence we first need a suitable set 7 which
is large enough to contain all endogenous variables. We prove the following lemma in the

Appendix.

Lemma 2 For all T > 2 there exists a financial markets equilibrium for the truncated economy
in which values of all prices, asset holdings, and consumption allocations lie in a compact set
T CZ.

Moreover in any financial market equilibrium for the infinite economy the endogenous vari-

ables will lie in this set.

11



Define V0 by VyO(Q) = 7% for all @ € AY=! and all y € Y. Given a correspondence
V" n=0,1,... define recursively V"*! = G- (V™). Finally let

o0

VEHQ) = () d(V™()) (2)

n=1

We can now state our main theorem.

Theorem 1 The correspondence V* is non-empty and an equilibrium correspondence as de-

fined in Section 2 above.

Proof of Theorem 1. We first prove that V* is non-empty. Since the first-order con-
ditions are necessary for optimality, Lemma 2 implies that for all n, the correspondence V"
is non-empty; for each initial wealth distribution there exists an m-horizon financial markets
equilibrium for which all endogenous variables lie in 7*.

By definition, V() C V() for all Q € AT~ But if V*(Q) C V"~1(£), the definition of
G implies directly that V" T1(Q) C V"(Q). Since the infinite intersection of nested, closed and
nonempty sets is itself nonempty, the set (1°°; ¢/(V"(2)) must be nonempty for all Q € A# -1,

It is now straightforward to verify that V,(2) describes a financial markets equilibrium.
Since by Lemma 1 the expectations correspondence has a closed graph, there will exist an
infinite sequence of variables lying in the graph of V* which satisfy the expectations corre-
spondence.

Therefore it only remains to be established that the conditions (b) and (c) are necessary
and sufficient for agents’ optimality. Necessity is standard. The proof of sufficiency follows
directly from Duffie et al. (1994), Proposition 3.2. The presence of short-lived assets does
not provide any additional technical difficulties because agents’ positions in these assets are

uniformly bounded in equilibrium through the collateral constraint. O

By construction of the equilibrium correspondence, the proof of the theorem and the as-
sumption that agents’ initial endowments in assets are proportional imply the following corol-

lary.

Corollary 1 There exists a Markov equilibrium.

4 Computation of Markov Equilibria

The analysis of the previous section suggests that one possible algorithm for the approximation

of an equilibrium correspondence would be to recursively approximate V™ until

sup sup 2™ — 2" TH|| < e
QEAH -1 |gntleVntl(Q)areVn(Q)

12



for some small € > 0. Unfortunately, implementing this strategy computationally is impossible.
The recursively constructed correspondences V™ are in general not convex-valued; therefore,
they cannot be approximated efficiently. Furthermore, applying the operator G'7 involves
finding all solutions to a complicated system of nonlinear equation. This task is known to be
impossible in general and intractable for the special case of polynomial equations. But even if
we were able to approximate the equilibrium correspondence, it would be difficult to simulate
time series of endogenous variables if we do not know the transition behavior. In summary, we

need to develop a different approach to computing equilibria.

4.1 The Policy Correspondence

In some cases there may exist Markov equilibria whose support is only a subset of the graph
of the equilibrium correspondence and it may not be necessary to approximate the entire
equilibrium correspondence.

Instead one is interested in a ‘policy correspondence’, a non-empty valued mapping P :
Y x A= = Z guch that P(y,Q) C By() for all @ € A"~y € Y, and such that there exists
a Markov equilibrium whose support lies in the graph of P. Given such a policy correspondence
P, we can generate time series of endogenous and exogenous variables as follows. For (y, (2, 2)
with Z € () find st = (@, 7),..., (2, 7)) such that for each y/,

2;7 € Py/(Q;',) and sT € g(y,Q, 2). (3)

Note that, trivially by definition, the equilibrium correspondence B itself is a policy corre-
spondence. But more importantly, there may exist Markov equilibria that are represented
by a policy correspondence P with the property that P(y,(2) is a strict subset of By(Q). In
particular in cases where there exist several equilibria, a policy correspondences could be a
single-valued selection of the equilibrium correspondence.

A priori we have, of course, no indication that such ”minimal” single-valued policy cor-
respondences do exist. But there is very surprising computational evidence that for many
parameterized examples such policy functions appear to exist. This observation is very im-
portant for the development and implementation of a robust and fast algorithm. Before we

describe our algorithm we first discuss the existence issue of policy functions.

‘Recursive’ Equilibria and Policy Functions

When the equilibrium correspondence is single-valued then there clearly exists a policy func-
tion. In that special case there would exist a unique financial markets equilibrium. Unfortu-
nately there are no known conditions ensuring uniqueness of infinite-horizon equilibria when
markets are incomplete. Although uniqueness is not a necessary condition for the existence

of a single-valued policy correspondence, it is also not known if there are weaker conditions
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which ensure the existence of a single-valued selection of the equilibrium correspondence which
describes a financial markets equilibrium.

The issue is closely related to the existence of ‘recursive’ equilibria for which the endogenous
state space consists of agents’ previous period’s portfolio positions. This notion of equilibrium
is typically used in applications, see for example Heaton and Lucas (1996) and Judd et al.
(2000). There are also no known conditions for the existence of such recursive equilibria (see
Kubler and Schmedders (2001 a)) even though their existence is routinely assumed in applied
work.

However, there are a few important differences between recursive equilibria and the Markov
equilibria that can be described by a single-valued policy correspondence. To understand these
differences consider the simplest case of a model without financial securities (and therefore no
collateral constraints and no default). In this case a recursive equilibrium is described by
a function mapping (AH *I)A X Y to current-period prices and portfolios. If in addition to
single-valuedness we also assume continuity the existence of a recursive equilibrium implies
the existence of single-valued (continuous) policy correspondence but not vice versa. In this
situation our concept is therefore more general.

If the policy correspondence is single valued and continuous a recursive equilibrium, if
it exists, can be constructed as follows. For all © = (8"),cy € (AHﬁl)A, the function I'g :

AH=1 5 AH=1 maps a wealth distribution § to a wealth vector with elements %. This
function is continuous and therefore always has a fixed-point. The policy funcgizolrfatherefore
describes a recursive equilibrium.

However, there is no guarantee that a recursive equilibrium does exist: For a given © =
(6"),c% there may be several fixed-points, that is, there may be several different pairs of asset
prices ¢(€2) and wealth distribution €2 in the policy correspondence. In that situation a recursive
equilibrium may not exist because the portfolio variables do not determine a unique equilibrium
behavior (e.g., asset prices). Intuitively, the fact that a recursive equilibrium does not use any
information about last period’s prices or consumption leads to non-existence. In contrast, the
fact that Equation (3) and the expectations correspondence are using more information from
the previous period is then crucial to establish existence of a Markov equilibrium.

On the other hand, if there does exist a recursive equilibrium with continuous pricing and
policy functions, a single-valued policy correspondence must exist. Clearly, for each ©,y, and

h‘- . .
M. If the resulting policy correspon-

Za:l qa(@)

dence is not single valued and if for some initial wealth distribution Q@ € A”~1 there exist

q = q(0) the wealth share w” is simply given by

several equilibria then there will also exist several equilibria for the initial distribution of the

tree 02 = w" for all a« € A. But if a continuous recursive equilibrium exists, there exists a

A
continuous selection over (AH _1) and there must also exist a selection over A7 1,

Evidently, without continuity or with financial assets, the existence of a recursive equilib-
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rium is neither necessary nor sufficient for the existence of a single-valued policy correspondence
in our model: This correspondence is defined on the endogenous shares of financial wealth but
not on predetermined previous period’s variables. Moreover, previous period’s prices affect the

payoffs of financial securities.

4.2 Implementation of the Algorithm
The Algorithm to Approximate Policy Functions

While there is no general existence proof for a policy function, the construction of our algorithm
is based on the assumption that a policy function does exist. In the remainder of the paper
we denote policy functions by p: Y x AH=L 5 7%,

We compute a policy function via an iterative algorithm. First, as a starting point we choose
a continuous function p® : Y x A”=1 — T*, Secondly, in each iteration of the algorithm, given
functions p", we construct pZ‘H(Q) for all y € Y, Q € A"~ by solving for prices and optimal
choices in a period that satisfy the expectation correspondence g for a given shock y and wealth
distribution 2. Intuitively, we assume that the values of the endogenous variables in the next
period as a function of agents’ wealth is determined by the function p™. We then proceed one

period backwards and determine p"t!

by solving for an equilibrium in the current period. In
the language from Section 3, we search for a single-valued selection of G« (p").

The algorithm terminates if for some prespecified € > 0,

sup [|[p" ! = p"| < e.

y,82

We then have found an approximate policy function p* = p*!

describing a Markov equilibrium.
If there does not exist a policy function, then we would expect the algorithm to fail to
terminate. There are two main reasons for such a failure. First, G7+p™ could be empty

for some g, Q. Secondly, even if for all n the correspondence G+p"

is non-empty, it is not
guaranteed that p™ converges as n — oo. In our practical computational experience neither of
these two cases has occurred. The implemented algorithm has always produced a continuous

(approximate) policy function.

Outline of Main Steps

The actual implementation of the algorithm on a computer involves many tedious details,
many of which are common in the literature on finding equilibrium functions for infinite-
horizon problems. We do not discuss them in detail here and instead refer to the survey by
Judd et al. (2000). Instead, we focus on the aspects of the algorithm that are new to the
literature. The most important innovations in our algorithm are necessary due to the fact that

the wealth distribution is used as a sufficient endogenous state variable.
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We restrict attention to economies with H = 2 agents. In this case the wealth distribution
is represented by a single number in the unit interval and so the equilibrium policy function
p is a function of the discrete exogenous state variable y and the single continuous wealth
variable w' only.

We approximate the equilibrium functions by cubic splines (i.e. twice differentiable piece-
wise cubic functions). In order to handle non-differentiabilities in the policy functions we use
300 collocation points. We solve for the spline coefficients using a time iteration collocation
algorithm similar to the one described in detail in Judd et al. (2000).

Given a wealth distribution, 2 = (w',1 — w'), the current shock y today and given the
spline coefficients of an approximate map from tomorrow’s wealth distribution into tomorrow’s
prices and portfolio holdings, £, one needs to solve for prices and optimal choices today which
satisfy the expectation correspondence. In order to make this computationally tractable we

formulate the problem as a system of non-linear equations

F(Qapa (eh’ ¢h)h:1,2; wla Y, 5) =0 (4)

The Kuhn-Tucker inequalities in the agents’ first-order conditions can easily be replaced by
equalities via a change of variable (see Garcia and Zangwill (1981)). The main problem one
faces is that in order to infer tomorrow’s wealth distribution (which is needed to obtain the
(approximate) optimal choices and prices tomorrow from the guess of tomorrow’s equilibrium
map one needs to solve a nonlinear system of equations. Formally, given choices (8", ¢") h=1,2
today, as well as approximate equilibrium price functions §(£2; £), tomorrows wealth distribution

QT must solve
0oy, 0 ) + 9 fy,w' )

y) =
Eﬁzl an (y7 w1+7 6)
1+

1+(

w

(5)

We can solve this single equation in the one unknown w'™ using a standard Newton solver.
Notice that via Equation 5 we have tomorrow’s optimal choices implicitly defined as functions
of today’s portfolio choices, and so Equation 4 is well defined.

The subproblem of solving Equation 5 is an innovation that is necessary due to the use of
the state variable wealth. The novel issue in our set-up is that, contrary to the literature of
computing recursive equilibria, the agents’ choice (portfolio) variables are not state variables.
Agents’ portfolio decision today do not immediately yield tomorrow’s wealth distribution.

At the beginning of iteration n some spline coefficients £" for the policy function iterate
p" are given. For each shock y = 1,...,Y, and on a grid of w! € [0,1] the algorithm solves
the nonlinear system of Equations 4 for prices and choices (g,p, (8", ¢")nen). The resulting
functions (g, p, (6", ¢")nen)(y, w') are then approximated by splines with new coefficients ¢"+!
and the next iteration begins.

The algorithm terminates if || ! — ¢"|| < € for some small (prespecified) ¢ > 0. We then

examine the quality of the approximate solution by computing the maximum relative error of
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Equations 4 using the approximated equilibrium functions. In the examples presented below

these maximum errors were never above 10°.

4.3 Examples

The purpose of the following example is to illustrate the output of the algorithm, that is,
the policy functions describing the equilibrium portfolios and prices as a function of the state
variable wealth. In addition, we show simulated time series of simulations of the model based
on the computed policy functions. We use the simple example to illustrate how high margin
requirements can lead to excess volatility in asset prices and that there are cases where low
requirements lead to substantial default but low volatility.

Consider the following simple specification of an economy. There are Y = 4 possible
exogenous shocks in each period. There is a single physical asset with shock- and agent-
dependent payoffs, which, for simplicity, we just call stock. The agents can use the stock for
collateralized borrowing, that is, there is a single one-period bond with payoffs by (y) = 1 for
all y € Y. The two agents have identical log-utility with a discount factor of § = 0.96. The

following table summarizes individual endowments and the dividends of the stock.

y| 1 | 2] 3
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dl 1061206 1.2
e |7 3
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Figure la. Stock holding of agent 1
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Figure 2a. Price of Stock Figure 2b. Price of Bond

The shocks to individual endowments are persistent (the probability to stay in the same
income state is 0.8) while shocks to dividends are i.i.d. and independent of the shocks to
endowments. Note that the output of the stock is substantially higher if it is owned by agent
2.

We consider two different specifications for the collateral requirement, k1 = 1 and ko = 2.
For k = 2 there is never default in equilibrium. Figures 1a and 1b depict the policy portfolio
functions, mapping the wealth distribution and shock y = 2 into the asset holdings of agent 1.
Figures 2a and 2b show the corresponding policy price functions.

Agent 2’s human capital allows her to obtain a higher output of the stock than agent 1,
and so she tries to hold the entire stock whenever that is affordable for her. However, when
her wealth becomes sufficiently low, the collateral constraint forces her to sell off part of the
stock. When this sell-off occurs, then the price of the stock decreases, since it is now held by
the unproductive agent yielding lower dividends. The price of the bond peaks up, when the
collateral constraint starts binding.

The policy functions themselves are of limited interest for applied work since they do not
directly say anything about equilibrium prices and allocations along a path of the event tree.
In order to obtain this information, we simulate the economy as described in Section 4.1,
Equation (3). Figures 3a and 3b show agent 1’s stock holdings and the price of the stock,
respectively, along one such simulation. The figures show clearly how the collateral constraint
can lead to a low stock price. When the collateral constraint starts binding and agent 2 has
to sell of part of the stock, the price of the stock decreases (because only agent 1 is there to
buy it) which results in ’fire-sales’ and a further decrease of the price of the stock. The figures
are consistent with the story told by Kiyotaki and Moore (1997).
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However, while the differences in productivity between agent 1 and agent 2 are substantial,

the stock price effect of the collateral constraint is quantitatively quite small. Furthermore,

these effects disappear when the margin requirement is lowered. In the extreme case with
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Figure 4a. Simulated stock price for k =1  Figure 4b. Simulated bond holding for kK = 1

k = 1, there is default in 35 percent of the cases. But the productive agent always holds
the stock and fire-sales never occur! Figures 4a and 4b show stock prices and bond holdings
of agent 1 for the same sequence of exogenous shocks. Since agent 2 always holds the entire
stock the price never falls below 18.8. Instead of selling the stock, the agent can smooth his

consumption sufficiently by trading in the bond.
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5 Conclusion

In this paper we formulate an asset pricing model with infinitely lived heterogeneous agents,
collateral constraints and incomplete markets. We prove the existence of a Markov equilibrium
and show how one can attempt to describe this equilibrium numerically. For the special case
where there exists a single-valued policy correspondence we develop an algorithm to compute
equilibrium. The practical advantage of our approach is that we do not face a ‘curse of
dimensionality’ in the number of securities.

There is a related, applied literature in macroeconomics which considers models with col-
lateral constraints. Fernandez and Krueger (2000) consider a finite horizon model very similar
to ours but without aggregate uncertainty. In their model, margin requirements are endoge-
nous and set to ensure no default. Lustig (2000) considers a model with infinite time-horizon
and possibly aggregate uncertainty, but he assumes that a complete set of Arrow securities
is traded each period. In his model default is never optimal and margin requirements ensure
that it never happens in equilibrium. This literature relates collateral constraints to debt

constraints of the Kehoe and Levine (1993) type.

Appendix 1: Proofs

Proof of Lemma 1. Consider any sequence (s”,27,...,z{) in the graph of the g. If s" — 5
and (27,...,2%) = (#1,...,2y) then (z1,...,Zy) will lie in Z because Z is closed by definition.
Furthermore the limit will satisfy all conditions (a) — (c) because they are all equations or weak

inequalities and are satisfied by any point in the sequence.O

Proof of Lemma 2. We extend the existence proof of Radner (1972) to our model with
collateral and default in order to show that for every finite T" there exists a financial markets
equilibrium, see Geanakoplos and Zame (1998) for a similar argument. Denote the set of all
nodes over periods 0, 1,...,T of the truncated event tree by X7 = UL ,3;. Recall that there
exists a ¢ such that uy (") > ﬁuh(maxy é(y)). We define ¢ = 2¢.

In order to establish upper-hemicontinuity of the best response correspondences we add the

following two sets of constraints to each agent’s portfolio optimization problem for all o € 7.

Define bounds on the prices for trees.

= mi d d §,=He
4, ryrgjgl{r,?eag <)} and g, =Hc
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Since it will be shown that in equilibrium it will always be true that ¢ < ga(0) < ¢, We can
use these prices to obtain bounds on the agents’ holdings of financial assets in equilibrium.
The upper bounds on #"(o) and a price g,(c) imply that the collateral constraint yields a
lower bound Qj on the asset holding QS?(O') for all agents. Now we can also add the following

constraint to an agent’s optimization problem.
h
293' < QS]’ (o) < _QHQ]'

For the purpose of showing equilibrium existence we change our price normalization. In-
stead of setting the price of the consumption good at every node o to 1, we define the good
price to be p(o) and the price vector (p(o),q(c),p(c)) to be an element of the unit simplex A
of dimension (1 4+ A+ J) — 1. Agent h’s budget equation at node o is then written as follows.

p(0)c"(0) = p(o)e" (y)+p(0)¢" (07)-f (0)+6"(07)-q(0) +p(0)0" (0)-d" (y) =" (0)-4(0) ~¢" () -p(0)

Note that summing over all agents yields the equation

H
p(o) (Z o) —(y) — 6" (o) - d"(y)>

h=1

H

- plo) (Z ¢h(0*)> -f(o)
h=1
H

+ q(0) (Z 0" (o) ~ 9"(0*)>
h=1

H
+ po)- (z ¢h<0—>)
h=1

S (6)

The augmented budget set of an agent is a compact-valued, convex-valued, and continu-
ous correspondence of the asset price vectors ¢ and p and the good price p. Therefore, the
agent’s demand correspondence for the consumption good and the assets is non-empty, upper-

hemicontinuous, compact-valued, and convex-valued.

Now define the total excess good and asset demand correspondence

D(p,q,p) = (Dc(p,4,p), Do(p, a0, p), Dy (p,q,p)) = (Y " —e" =" -d" > 0" —1,>" ¢").
heH heH heH

Moreover, for § = (8., dg,d4) € D(p,q,p) and o € £ define the optimization problem

(OP(0))  max ploc+q -9 +p - dg st (0,4, p) €A

EE )
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The set of optimal (p',¢’,p") for this optimization problem is a nonempty, compact-valued,
and upper-hemicontinuous correspondence. We denote this correspondence by PP, (d). The

product of these correspondences for all o € X7 will be denoted by just PP(XT).

The correspondence PP(XT)x D(p, q, p) maps (p, q,p,8) € AIZ"Ix IRAFA+DIET] ¢4 4 subset
of AFTI x [RO+A+DIET] Thjg correspondence is nonempty, upper-hemicontinuous, compact-
valued, and convex-valued. Kakutani’s fixed-point theorem guarantees that this correspon-
dence has a fixed point (p*,¢*,p*,d"). We show next that * = 0 and (p*,¢*,p*) > 0. The
proof is by contradiction.

Suppose there is positive excess demand in some market at time ¢ = 0. Suppose the largest
excess demand is in the good market. Then the optimal solution for (OP) would be to set
p = 1 and all other prices to 0, resulting in a positive optimal objective function value. But
this outcome contradicts equation 6. If the largest excess demand is in one of the asset markets
the argument is similar due to the assumption that 3, 07(0*) = 1 and ¥, ¢"(0*) = 0.

Next, suppose there is negative excess demand in some market at time ¢ = 0. Suppose the
smallest (that is, most negative) excess demand is in the good market. Clearly it is optimal to
set p(0) = 0. Then all agents want to consume ¢ resulting in a large positive excess demand,
which is a contradiction. Hence, the good price is positive and the excess good demand equal
to zero. Similar arguments hold for all trees a € A. Since tree prices g are positive, the payoffs
of the financial assets are nonzero, and so a similar argument holds for the financial assets as
well.

In summary, 6*(0) = 0 and all prices are positive. By induction it quickly follows that
§*(o) = 0 and (p(0),q(0),p(c)) > 0 for all o € BT

Next we prove that all prices stay bounded away from 0 by showing that the quotients
7" (o) p*(o)
p*(o) p*(o)
original normalization of prices, that is, set p(c) = 1 for all o € 7. Now the task is to show

and stay within certain positive bounds. The best way to do this is to revert to the
that the asset prices always lie in compact sets not containing zero.

We start by specifying bounds on asset prices. Bounds on tree prices are as above, bounds
on the prices of financial assets are as follows.
up (") kg,

i in{b;(y) a b th (<)
.= min min 1 an = max
P; heH,acAyey uj(C) i) Ja P heH,jeT yey wy ()

bj(y).

We argue that at all nodes o it is true that ¢ < gu(0) < o. In equilibrium, at a node
o = (o*,y) the price of tree a cannot be below the highest dividend d” some agent h can
obtain from owning the tree. Otherwise she would have an arbitrage opportunity. Suppose
that in equilibrium the asset price of tree a exceeds ¢,. Then an agent holding at least %

units could sell some portion of the tree resulting in a current-period utility of u(¢) > ﬁu(é).
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Hence, her behavior would not have been optimal before, which is a contradiction.

The first-order conditions with respect to ¢; imply directly that p; < pj(o) < p for all

oexT.

It remains to prove that the additional constraints in the augmented utility maximization

problems do not affect the optimal solution. First, they cannot be binding in equilibrium

by construction. Second, the utility optimization problems have objective functions that are

strictly concave in the consumption variables and constant (and so trivially concave) in the

asset variables. O
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