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Abstract

This paper identifies a type of Bayesian equilibrium, called information-
proof, defined for n-player one-shot Bayesian games. This equilibrium is
immune to changes in the prior probability of types, in the probabilities
of mixing pure actions, and in the order of play, as well as to information
leakage and the possibility of revisions.

In large semi-anonymous games that satisfy continuity and indepen-
dence conditions all the equilibria are shown to be approximately infor-
mation proof.

Information-proof equilibrium, like rational-expectations equilibrium,
may be used to model ongoing rational interaction, as opposed to just
instantaneous one-shot play.

1 Introduction

A major concern with Nash and Bayesian equilibria is their sensitivity to details
that are often not available in the real life situation they model. Of particular
concern is the dependency of such equilibria on subjective prior probabilities,
the order of player moves and the precise information that players possess when
they are called to make a move.

Concentrating on simultaneous-move one-shot normal form and Bayesian
games, this paper identifies Nash and Bayesian equilibria, called information
proof, that are stable under changes in informational details, changes in the
order of moves and revision possibilities. While such equilibria do not exist in
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many games, in classes of large semi-anonymous games that satisfy continuity
and independence conditions, all the equilibria are approximately information
proof..

To understand the concept of information proofness, recall that at a Bayesian
equilibrium every player, with the possible aid of a randomization device, selects
an action after being informed only of his own realized type. But his payoff
depends on the realized types and selected actions of all the players. Not
knowing his opponents realized types and selected actions, he chooses his action
to be optimal relative to the distribution of their types and their action-selection
rules.

A Bayesian equilibrium is information proof if, in addition to the above,
every vector of types and actions that may be realized with positive probability
has the following ex-post stability property. No player has an incentive to
unilaterally change his own selected action, even after being fully informed of
the realized types and selected actions of all his opponents. In other words, ex-
post, knowing all the information regarding the outcome of the game, no player
regrets his chosen action. Or, alternatively, the selected actions are always a
pure-strategy Nash equilibrium of the complete information game induced by
the realized types.

The interest in stability of this type is not new to this paper. Motivated by
special problems in economics, Green and Laffont (1987) introduced the notion
of ex-post Nash implementation. The idea is that in solving an implementation
problem, after the actions of the players become publicly known, the incentives
of the players to play the selected actions should not change. If the strategies are
only ex-ante incentive compatible, and the selected actions get modified once
they are observed, what is actually implemented may be drastically different
from what was meant to be implemented.

If used by a designer of an implementation procedure, information-proof
equilibrium guarantees among other things ex-post Nash implementation in the
Green and Laffont sense. Therefore, the asymptotic results described in the
current paper suggest that ex-post Nash implementation should be easier in a
large group of participants. One may expect any Nash implementation to be
automatically ex-post Nash, or at least approximately so, provided that certain
anonymity, independence, and continuity conditions are satisfied by the selected
mechanism.

It turns out, however, that beyond ex-post stability, information-proof equi-
libria have other stability properties. They are immune to certain changes in
the prior probabilities by which player types are drawn, to changes in the prob-
abilities that opponents use to mix their pure actions, and to sequential play
with general information structure and revision possibilities. Possessing such
robustness properties, like the economic notion of rational-expectations equi-
librium, information-proof equilibrium may be used to model the steady state
of an ongoing rational interactive process, as opposed to just the equilibrium
of an instantaneous one-shot play. In addition, the incentive to learn oppo-
nents’ types and to predict their selected actions, that is typical at a general
Bayesian equilibrium of a one-shot or a repeated game, disappears when the



equilibrium is information proof. And information-proof equilibrium can serve
as a purification device, generating pure strategy equilibria for the game under
consideration.

In addition to the stability properties discussed above, information proofness
in large games offers a different outlook on private information in such games.
Being information proof means that even if all the information about all the
relevant choices in the game were publicly available, for the purpose of assessing
his own selected action, each player would be interested only in his own private
information. This means that private information is a private concern, or
alternatively, full decentralization in the use of information is compatible with
individual incentives.

The next section illustrates some of the ideas through simple examples. The
following presents a formal definition of information-proof equilibrium, its struc-
ture and relationship to Nash’s notion of interchangeable equilibria, and its
stability properties. The next section develops bounds on the level of informa-
tion proofness of any given Bayesian equilibrium. These bounds are used in
the following section to derive the asymptotic convergence to information-proof
equilibria as the number of players becomes large.

Two additional features should be noted. First, the bounds developed
on information proofness are sufficiently strong to imply that the asymptotic
convergence is at an exponential rate in the number of players. Moreover,
this convergence is uniform. The convergence to information proofness occurs
simultaneously by all the equilibria of all the large games within the classes
under consideration, and at each such equilibrium most of the outcomes are ex-
post Nash for all the players simultaneously. Second, the bounds are computed
relative to a measure of strategic interdependence developed in this paper. In
addition to being useful for this purpose, this measure, which is closely related
to Nash’s notion of interchangeability, is likely to have other applications. The
final section contains additional discussion and questions for follow-up research.

The literature related to this paper is too large to be fully discussed here.
The following are some suggestive examples. The first paper on general strategic
anonymous games with many players is Schmeidler (1973). Unlike here, Schmei-
dler’s paper concentrates on games with a continuum of players and complete
information and studies existence of pure strategy equilibria. Despite these
differences, it seems reasonable to expect connections between his paper and
the information-proof equilibria discussed here. If one views the continuum as
the limit of finite games with many players, and as the laws of large numbers
become perfect in the limit, the incomplete information may fully disappear and
the equilibria coincide.

Uses of laws of large numbers, similar to the one here, were made in many
economic and game theory papers. This is due to the basic phenomenon that
when a number of interactive participants is large, a player does not have to
consider the actions of individual opponents. He can act, instead, against the
aggregate behavior as predicted by the prior probabilities. Examples of such
can be found in Hart, Hildenbrand and Kohlberg’s (1974) work on large markets,



Groves and Hart’s (1982) generalization of the work of Arrow and Radner (1979)
on teams, Rustichini, Satterthwaite and Williams’ (1994) and Satterthwaite’s
(1999) work on double auctions , Pesendorfer and Swinkels’ (1997) work on
auctions and Feddersen and Pesendorfer’s (1997) work on voting.

While this paper discusses the relationship of information-proof equilibrium
to rational-expectations equilibrium, a more thorough exposition to rational-
expectations equilibrium can be found in Radner (1981 and 1991) and in Jordan
and Radner (1982). Moreover, related studies connecting rational-expectation
equilibrium to games of incomplete information can be found in Forges and
Minelli (1997 and 1998), Minelli and Polemarchakis (1997) and Minehart and
Scotchmer (1999).

Other connections, ones that suggest potential future research, are offered
by the literature on player smallness, see for example Green (1980), Sabourian
(1990), Fudenberg, Levine and Pesendorfer (1998), and Al-Najjar and Smorodin-
sky (2000), and by the literature on information smallness, see for example
Mailath and Postlewaite (1990), Gul and Postlewaite (1992), and McLean and
Postlewaite (1999). As discussed in the concluding section of this paper, phe-
nomena described in this paper may be found to have a greater generality when
facts from this literature are brought into the analysis.

Finally, another topic that is discussed in the concluding section is the con-
nection of information proofness to the Bayesian learning literature, see Jordan
(1991) and Kalai and Lehrer (1993). The somewhat surprising conclusion may
be that learning and playing becomes easier as the number of opponents in-
creases beyond some critical number.

1.1 Examples and Elaboration

The first two examples, a coordination game and a match pennies game, offer
a quick illustration of the ideas involved. To connect them better to economic
applications, they are presented in a language of economic choices.

Example 1 : Coordinated computer choices. Simultaneously, each of two
players have to choose computer B or M. If their choices match they will each
be paid 1, and if they mismatch, they will each be paid 0.

Example 2 : Mis/matching computer choices. FEach of two players, a
game theorist and a poet, have to choose computer B or M. If their choices
match the game theorist is paid 1 and the poet 0, and if they mismatch the game
theorist is paid 0 and the poet 1.

Compare a pure strategy Nash equilibrium of the coordination game, say
when they each choose computer B, with the mixed strategy Nash equilibrium
of the mis/matching game, where each player chooses one of the computers
randomly with equal probability.

Starting with the question of information proofness, it is easy to see that the
pure strategy equilibrium of the coordination game is information proof, while
the mixed strategy equilibrium of the mis/matching game is not. In the former,



after being informed of the selected choices, (B, B), no player has incentive to
unilaterally change his own choice. This is clearly not the case for the mixed
strategy equilibrium of the mis/matching game. There, there are four possible
outcomes, (B,B), (B,M), (M,B), and (M,M), and at each one of them, when the
outcome becomes publicly known one player has incentive to revise his choice.
This strongly violates the condition of information proofness that at no outcome
should any player have an incentive to revise.

Indeed in n-person normal form games, as obvious from its definition, any
pure strategy Nash equilibrium is information proof. This is not the case for
mixed strategy equilibrium. There is only a small group of mixed strategy
equilibria that are information proof. To be so, as discussed later in the paper,
the support of the mixed strategy profile must consist of pure strategy equilibria
that are interchangeable in Nash’s sense. But the situation is less clear cut
when we move from normal form to Bayesian games where there are many pure
strategy equilibria that fail to be information proof.

The difference in stability of the two equilibria above are also apparent. If
the coordinated matching game was played sequentially, say with player one
moving first and his choice being observed by player two before making her own
move, the (B,B) equilibrium would still be a Nash equilibrium of the extensive
form game (player one’s strategy is to play B and player two’s strategy is to
play B independently of what she observes, see the concluding section for a
discussion of subgame perfection). Again, this is not the case for the extensive
form of the mis/matching game. Here, if the matcher moves first and uses the
mixed strategy it is no longer optimal for the mismatcher to mix her choices.
She would rather observe the realized choice of the matcher and choose her own
to mismatch his with certainty. As discussed later in the paper, invariance to
sequential play is a general property of all information-proof equilibria, not just
pure strategy equilibria in normal form games.

A second issue of stability relates to sustainability over time. If the com-
puters above were to be used for some continuous period of time, rather than an
instantaneous one-shot use, then the first equilibrium remains stable while the
second one does not. Whatever the outcome of the randomization is in the sec-
ond game, as soon as the players see the computers selected by the opponents,
one of them will switch. Following this, the other player would switch, and so
on. It would be hard to model the outcome of the game in this situation. But
for the pure strategy equilibrium, as for all information-proof equilibria, there
is no problem. The players can continuously use the computers (B,B) without
anyone having the incentive to change.

To see how large numbers make equilibria approximately information proof,
even when mixed strategies are used, consider the following.

Example 3 : Mis/matching computer choices with many players. Si-
multaneously, each of n game theorists and n poets have to choose computer
B or M. The payoff to every game theorist equals the proportion of poets his
computer matches. The payoff to every poet equals one minus the proportion
of game theorists his computer matches.



With n = 2 this example is the earlier mis/matching game. Thus, it is
impossible to have information-proof equilibria here for all values of n. But
for large values of n, the equilibria are nearly information proof. If every
player, game theorist or poet, chooses one of the two computers randomly with
equal probability, then within each group the proportions of the two selected
computers are likely to be close to one half, and no player would be able to gain
much by switching. This is a strong version of an approximate stability since
there is a high probability for the events of no possible improvement greater
than some given epsilon holding simultaneously for all players.

It is impossible, however, to have approximate information-proof equilibria
in every large game, as illustrated by the following.

Example 4 : Majority mis/matching game. Again, simultaneously, n
game theorists and n poets must each choose computer B or M. The payoff to a
game theorist is one, if his computer matches at least one half of the poets and
zero otherwise. The payoff to a poet is zero, if his computer matches at least
one half of the game theorists, and one otherwise.

If n is odd, for example, no matter what strategies are played, at every pub-
licly known outcome at least one half of the players will have a strong incentive
to unilaterally revise their choices. This failure of information proofness is
due to a discontinuity in the payoff functions. In particular, small variations
in the empirical distribution of computer choices in the large population may
drastically alter the payoffs of some players.

Discontinuity in the payoff may become more sever when Bayesian games, as
opposed to normal form games, are considered. Now, even strict pure-strategy
equilibria in large games may fail to be approximately information-proof.

Example 5 : Matching the expert. Again, simultaneously, each of n play-
ers have to choose computer B or M. But every player may be of two different
types. Player one is equally likely to be an expert who likes B or an expert who
likes M. Independently, every other player is equally likely to be a monexpert
who likes B or a nonexpert who likes M. The payoff to player one is one, if he
chooses the computer he likes, and zero otherwise. To every other player the
payoff is the sum of two components. The first component is 1/3, if he likes the
computer he chooses, and zero otherwise. The second component in his payoff
is 2/3 if the computer he chooses is the one the expert likes, and zero otherwise.

The strategies consisting of every player choosing the computer they like
constitute a strict pure-strategy Nash equilibrium. However, it is not approx-
imately information proof, no matter how large n is. With high probability,
once the choice of the expert is revealed, close to one half of the players would
have strong incentive to revise their own choices.



2 General Definitions and Notations

Two finite universal sets, 7 and .A, describe respectively all possible player types
and all possible player actions that appear in games discussed in this paper. To
save notations, a universal set C = 7 x A denotes all possible player (type-action)
compositions.

A Bayesian game is described by a five-tuple (N, T, 7, A, u) as follows.

N ={1,2,...,n} is the set of players.

T = x;T; is the set of type profiles (or vectors), with each set T; C T
describing the feasible types of player i .

T =(T1,T2,...,Tn) is the vector of prior probability distributions, with 7;(¢;)
denoting the probability of player i being of type t; (7;(t;) > 0 and >_, 7i(t;) =
1).

A = Xx;A; is the set of action profiles, with each set A; C A describing the
feasible actions of player 1, .

Let C; = T; x A; describe the feasible (type-action) compositions of player
i, and C' = Xx;C; denote the set of feasible composition profiles. Then, the
players’ utility functions described by the vector u = (uy, ug, ..., up), assuming
a suitable normalization, are of the form wu; : C' — [0, 1].

In addition, standard game theoretic conventions are used throughout the
paper. For example, for a vector x = (21,22, ...,%,) and an element z}, x_; =
(@1, ooy Tim1y Tig 1y ooy Tpy) AN (Ti—1 1 ) = (T2, oy Tim1, Ty Tie 1y oovy T)-

The Bayesian game is played as follows. In an initial stage, independently
of each other, every player is selected to be of a certain type according to his
prior probability distribution. After being privately informed of his own type,
every player proceeds to select an action, possibly with the aid of a randomiza-
tion devise. Following this, the players are paid, according to their individual
utility functions, the payoffs computed at the realized profile of (type-action)
compositions.

Accordingly, a strategy for player i is defined by a vector o; = (04(a; | t;))
where o;(a; | ¢;) describes the probability of player ¢ choosing the action a;
when he is of type t;. Together with the prior distribution over his types, a
strategy of player ¢ determines an individual distribution over player i’s com-
positions, v;(¢;) = 7Ti(t;) x oi(a; | t;). The profile of these distributions,
¥ = (V1;Ya, -+ V), under the independence assumption, determines the overall
probability distribution over outcomes of the game, namely composition profiles,
by Pr(c) = ], 7:(ci). Unless otherwise specified, all probabilistic statements
in this paper are made with respect to this distribution.

Using expectation and with abuse of notations, the utility functions of the
players are extended to vectors of strategies by defining u;(c) = E(u;(c)). As
usual, a vector of strategies o is a (Bayesian) Nash equilibrium if for every player

i and every one of his strategies o}, w;(0) > wu;(0_; : 7}).



3 Information-Proof Equilibrium

Definition 6 : Information Proofness.

A profile of compositions ¢ is information proof for player i if for every
action al, wi(c—; : (t;,a})) < u;(c).

A profile of compositions c is information proof if it is so for every player.

A strategy profile o is information proof if it yields information-proof com-
position profiles with probability one.

In words, at an information-proof composition profile, even under full knowl-
edge of the complete profile, no player has incentive to unilaterally change his
own selected action. Alternatively, the vector of actions described by the pro-
file is a Nash equilibrium of the complete information game determined by the
vector of profile types. This means that a strategy profile is information proof if
with probability one it would lead to outcomes that are ex-post Nash. Ex-post
here is in a strong sense, since it requires that the realized actions, not the mixed
strategies, constitute a Nash equilibrium of the complete information game.

3.1 Structure

To gain further insight into this concept, consider first the simple case of normal
form games. Since such games are a subclass of Bayesian games (with every
player being restricted to one possible type) the definition of information proof-
ness is applicable. As discussed in the introduction, it is easy to see from its
definition that every pure strategy Nash equilibrium is information proof. But
in general, for a mixed strategy equilibrium to be information proof it has to
have a highly restricted special structure. To understand this, it is useful to
generalize Nash’s notion of interchangeability, see for example Luce and Raiffa
(1957), from two to n player games and from a pair of equilibria to any number
of them.

Definition 7 : Interchangeability. Consider a set M of pure strategy Nash
equilibria of a given n-person mormal form game. The equilibria in M are
interchangeable, if every action profile a which is a coordinatewise combination
of elements in M, i.e., every coordinate a; = aj for some a'eM, is a Nash
equilibrium of the game.

When a set of equilibria is interchangeable, maximizing against one of the
profiles from the set means maximizing against all of them, or even against
any coordinatewise combination of them. So every player may be playing a
different equilibrium, yet everybody is maximizing to the actual play which is at
equilibrium. Or in other words, for the purpose of choosing their own individual
actions, the players do not have to be concerned with which equilibrium is
played.

Proposition 8 A (mized strategy) equilibrium of an n-person normal form
game 1is information proof if and only if its support consists of a set of in-
terchageable pure strateqy Nash equilibria.



Proof. Clearly if the support of a strategy profile consists of Nash-equilibrium
action-profiles, it must be information-proof. And, as was already discussed,
every action profile in the support of an information-proof equilibrium must be
a Nash equilibrium of the game. Combining this with the fact that the sup-
port of a strategqy profile must contain all its coordinatewise combinations, the
conclusion follows. m

The structure described above carries over easily to general Bayesian equi-
librium under the assumption of type independence assumed throughout this
paper. Consider a set of composition profiles S, and recall that every one of
its elements ¢ = (eq,...,¢,) can be viewed as a pair of profiles (¢,a) describing
the corresponding types and actions of the n players. The elements of S are
information-proof interchangeable if every coordinatewise combination of such
elements , i.e., ¢ with every ¢; = ¢} for some ¢’ € S, has the information-proof
property, i.e. a is a Nash equilibrium of the complete information game induced
by t.

Proposition 9 A strategy profile of a Bayesian game is an information-proof
equilibrium if and only if its support consists of information-proof interchange-
able composition profiles.

Proof. Under the assumption of type independence the support of a strategy
profile includes all the coordinatewise combinations of its elements. Thus, by
its definition, every information-proof equilibrium must have an iterchangeable
support. Conversely, if the support of the strategy profile consists of composi-
tion profiles that has the information-proof property then it is by definition an
information-proof equilibrium. m

Note that the same interpretation of Nash interchangeability carries over to
information-proof interchangeability. Within a set of information-proof inter-
changeable profiles, a player who learns that he is of type ¢; and plans to take
the action a; does not have to be concerned with the multiplicity issue regarding
the possible types and actions of his opponents. If, given his type, his action is
optimal against one of the realizations of his opponents’ parameters, it is also
optimal against any one of the other realizations in the interchangeable set.

3.2 Stability

While the condition of information proofness requires ex-post stability after
complete revelation of information about the final outcome of the game, it is also
stable to revelation of partial information. Formally, let a signalling function be
any g : C — M, where C is the set of composition profiles and M is an abstract
set of messages. The Bayesian equilibrium o is (4, g)-information proof if for
every positive probability composition profile ¢, conditioning on the information
g(c) with the knowledge of his own type ¢; and selected action a;, player ¢ cannot
improve his expected utility by switching to a different action aj.



Proposition 10 An information-proof equilibria is (i, g)-information proof for
all players i and all signalling functions g.

Proof. Given any outcome ¢ and an action a; different from a;, consider all
the positive probability outcomes ¢ that are compatible with player’s i informa-
tion t;,a;, and g(c). The assumed information proofness implies that switching
at any ¢ from a; to a; can only decrease player i’s payoff. Thus his conditional
expected gain from the switch could only be negative. M

Information-proof equilibria are stable under certain changes in the prior
distribution, and to the probabilities of mixed strategies of the opponents. For-
mally, given a Bayesian game G = (N, T, 7, A,u), a game G' = (N, T, 7', A, u)
has modified priors with no new types if for every type profile ¢, 7/(¢) > 0 implies
that () > 0.

Proposition 11 If an equilibrium o is information proof in a game G then it
is also an information-proof equilibrium in every game G’ with a modified priors
with no new types.

Proof. This follows immediately from the fact that any positive probability
composition profile generated by o in G’ has positive probability of being gener-
ated in G, and thus has the desired ex-post robustness property. m

For exactly the same reasons the following is also true. Given any equilib-
rium o of G, a modified strategy profile with no new actions is a strategy profile
o', with the property that for every player i and type t;, o%(a;|t;) > 0 implies
that Ui(ai|ti) > 0.

Proposition 12 If an equilibrium is information proof then every modified
strategy profiles with no new actions is an information-proof equilibrium.

The above two propositions illustrate that in playing or in analyzing a simul-
taneous move Bayesian game, at an information-proof equilibrium one should
only be concerned with the type profiles that may be generated by nature, and
not with their probabilities, and with the actions that may be selected by the
players, but not with the probabilities used to select them. The following ob-
servations discuss stability with regard to sequential play, information leakage
and revision possibilities.

Given a Bayesian game with a set of players N, for any ordered partition of
the set of players O = (N, Na, ..., N,.), consider the sequential extensive form
game described as follows. In an initial stage all the players are privately in-
formed of their own realized types, drawn according to the prior distributions of
the given game. Then, simultaneously in a first stage, the players in N7 choose
actions from their feasible sets; each player may use a private randomization
device. The realized chosen actions are made public knowledge. Following this,
simultaneously in a second stage, the players in Ny choose actions which are
made publicly known. The game ends after the r’th stage with the simultane-
ous final selection of actions by the players in N,.. Payoffs of this extensive game

10



are made at the realized composition profile according to the utility functions
of the given game.

Every strategy profile o of the given Bayesian game induces a correspond-
ing profile of constant strategies in every O ordered sequential play as follows.
Player 4, on his turn to play, ignores all the public information received about
earlier players, and randomizes over his choices just as he does in o;(-|t;). A
Nash equilibrium of the Bayesian game is order invariant, if the corresponding
constant strategies it induces are Nash equilibria in every ordered play of the
game as described above.

Proposition 13 Information-proof equilibria are order invariant.

Proof. The order invariance follows from the fact that information-proof
equilibria are ex-post stable also with respect to partial information, which is
what the players have in an ordered play. =

But in general, information-proof equilibria satisfy a stronger form of in-
variance. This allows for the order of play to be determined randomly, as the
game evolves, with players possessing only partial knowledge about the order,
who has already played, who will get to revise, etc., and with opportunity for
revisions evolving as the game progresses.

Formally, starting with the given simultaneous move Bayesian game G =
(N, T,7,A,u) and a given finite set of messages M, define a sequential revisional
form to be any finite extensive form game of the following type. The initial
node in the game tree belongs to nature with the outgoing arcs being labeled
by the elements of 7' x M. Any probabilities may be assigned to these arcs
as long as the marginal distribution over T' coincide with the prior probability
distribution of the underlying Bayesian game. Every other node in the game
tree belongs to one of the players 7, and the arcs coming out of it are labeled by
the elements of A;. At every information set the moving player ¢ has complete
knowledge of his own type t; (all the paths that visit this information set start
with nature selecting t’s with the same coordinate ¢;) . Every play path in the
tree visits at least once one of the information sets of every player. Finally,
associate to every complete path in the tree a composition profile ¢ = (¢, a) with
t being the initial choice of types selected by nature, and with each a; being
the last action, in the play path, taken by player i. The payoffs associated to
a complete path equal the payoffs of the players from the resulting composition
profile in the given simultaneous move game.

Given a strategy profile o of a Bayesian game and a sequential revisional
form, define the corresponding constant strategies to be the ones where every
player at every one of his information sets randomizes over his actions a; with
probabilities o;(a;|t;), where t; denotes his type at the information set. In
what follows there is an abuse of language where o is used to denote a vector of
strategies in the underlying Bayesian game, but also the corresponding constant
strategies in its sequential revisional forms.

Before stating the general result, however, the following example shows that
for a given information-proof equilibrium o of a given Bayesian game, there may
be sequential revisional forms in which o is not an equilibrium.

11



Example 14 Simultaneously, each of two players has to choose among two
actions, Y or N. Player 1’s payoff depends entirely on player 2, he is paid 1
if she chooses Y and 0 if she chooses N. Player 2 is completely indifferent,
her payoff is zero no matter what was chosen. Fvery player randomizing, with
equal probability between the two actions, is an information proof equilibrium.
Whatever pair of actions are realized nobody can gain by unilaterally changing
his own action, because nobody really controls his own payoff in this game.

But in the following order of play and revision opportunities the correspond-
ing constant strategies are no longer in equilibrium.  Player 2 moves first and
with complete information of her choice player 1 follow. If player 1 follows
with a Y the game ends and his payoff is determined by her first choice. If he
follows with an N then player 2 makes a fresh choice, and player 1’s payoff is
determined by her new choice.

Notice that if player 2 randomizes with equal probabilities at every one of her
three nodes, then randomizing by player 1 at his two nodes is a suboptimal. The
unique optimal response for him is to play Y and terminate the game after Player
2 chooses the good action for him, Y, and play N to have player 2 randomize
again if her initial choice is the bad one for him, N.

It turns out, however, that an information-proof equilibrium remains an
equilibrium in all sequential revisional forms that satisfy a suitable restriction
on the revision possibilities. A node of player 7 in a sequential revisional form
is an ambiguous final revision if two play paths that go through this node have
the following properties. On one play path player ¢ plays again after the given
node (has a later decision node) and on the other play path he never moves
again. In other words it is not clear whether player ¢ will play again without
knowing what he and the other players will do.

Proposition 15 An equilibrium of the Bayesian game is information proof if
and only if it is an equilibrium in every sequential revisional form that has no
ambiguous final revisions .

Proof. First, if o is invariant in the sense above, for every player i consider
a sequential revisional form with all the players other then i moving sequentially
first, and player i moving last with complete information of all the realized types
and all the realized actions of the earlier players.  The fact that o;(-|t;) is
optimal for him under this full information means that every positive probability
composition profile is information proof for him.

To show the converse assume that o is an information-proof equilibrium of
the given Bayesian game and consider a given sequential revisional form. It
suffices to show that o is an equilibrium of the perfect information version (every
information set is a singleton) of the sequential revisional form. Moreover, if
o is an equilibrium in every subgame that follows nature choice, then it is an
equilibrium of the entire game. This means that without loss of generality, the
proof of the converse can be restricted to normal form games (each player has
only one type) and to perfect information sequential revisional forms.

The lemma that follows shows that in such an extensive game, if the players
choose strategies that correspond to o, the induced probability of an action profile
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ais[[;05(a;) (conditioning on t is omitted due to the assumption that the game
is a normal form one), whereas if player i changes his strategy, even to a non-
constant one, this probability is of the form n;(a;) [1;.; 0;(a;), wheren; is some
probability distribution over A;. Thus, the proof follows from the fact that o;
s 1’s best response in the simultaneous move-one shot game. M

Lemma 16 Consider a finite n person normal form game, a perfect infor-
mation sequential revisional form with no ambiguous final revisions and an
information-proof equilibrium o. For every node x let A(xz) denote the players
that are still active in the subgame that starts at x (i.e., the players that have a
move on some, equivalently all, the paths that follow the node x).

1. The distribution generated over the play paths in the subgame, i.e., over
XicA()Ai, is given by Pr(a) = [, 4y 0i(ai).

2. For a strategy profile of the form (o_;,0%), the distribution generated over
play paths in the subgame is of the form Pr(a) = n;(a;) H#jeA(x) oj(a;), with
7, being some distribution over the action set of player i, A;.

Proof. The proof is by induction on the depth of the subgame (i.e., the
mazimal length of a path in it). If player i is the first mover in the subgame
and this is his final revision, then both parts 1 and 2 follow directly from the
induction hypothesis.  If i is the first mover in the subgame and this is not
his final revision, part 1 still follows directly from the induction. Part 2 also
follows, but after noticing that in this case the overall distribution is a convex
combination of a finite number of distributions each having the form in part
2, which yields a distribution of the same form. For part 1 one needs to also
analyze the case where the first mover in the subgame is a player j # i. But
the same analysis of the convex combinations that are created by the initial
randomization of j leads to the same conclusion. m

3.3 Ongoing Interaction and Rational-Expectation Equi-
librium

Consider for example a computer rental market. Economic agents include own-
ers and potential users of the existing computers. Each agent has some private
knowledge, a private signal regarding the quality and other characteristics of
the various computers; and his overall preferences for final computer choices
depend not only on his own signal, but also on the unknown signals of the other
agents and their own computer choices. Assuming that the agents are rational
and know the prior probabilities by which signals are generated, what is an
appropriate equilibrium concept to model the rental activity?

A naive game-theoretic approach may be to have every agent decide on a
rental strategy as a function that depends only on his own signal. If every
profile of strategies of this nature leads to a well-defined expected payoff, this
establishes a well-defined game whose Bayesian equilibrium may be proposed as
the proper solution. This approach, however, is too simplistic since it leaves
out the market rental prices of the various computers. These are important
for two reasons. First, even in a world of complete information (say everybody
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shares the same signal) agents would like to know the prices before they make
their choices. But, in addition, the prices are important since they may reveal
information about the private signals of other agents. So if the prices are not
revealed to the agents until after the play took place, then this model fails to
capture an important aspect of trade, namely, the fact that prices are taken
directly into consideration at the time decisions are made.

Recall that rational-expectations equilibria resolve the above difficulty by in-
cluding prices, in addition to trades, in the domains of the strategies. A rational-
expectations equilibrium identifies a fixed point of a system in which trades and
prices are determined simultaneously. Moreover, it requires agents do Bayesian
updating regarding opponents signals for the prices they observe, and maximize
relative to these updated beliefs. In this sense, rational-expectations equilib-
rium may be viewed as a steady state of an ongoing process of trade rather than
an instantaneous one-shot trade. But rational-expectations equilibrium does
not allow for mixed strategies, and it may fail to exist.

Returning to the Bayesian equilibrium and its criticism above, notice that
the criticism is highly diminished if the equilibrium is information proof. If
a vector of prices is a function of the trade strategies and the realized private
signals, then it may be viewed as a signalling function in the sense described
earlier. The stability of information-proof equilibrium to ex-post signals then
implies that no player would have an incentive to change his choice once the
realized equilibrium prices are revealed. This means that the agents would
be willing to carry on with their equilibrium trades even after observing the
prices. Or put in other words, at a Bayesian equilibrium of such a market,
price distribution was anticipated by the agents correctly and was optimally
responded to even in an ex-post sense. Being information proof implies that
once a realized price is revealed, still no agent wants to revise his choice.

3.4 Approximate Information Proofness

As stated in the introduction, approximate information-proofness is automatic
in certain classes of large games. The sense of approximation is the following.

Definition 17 : (g, p) information proofness. Letc > 0 and p > 0 be given.
A profile of compositions ¢ is € information proof for player i if for every
action a, wi(c—; : (t;,a})) < wui(c) +e.
A profile of compositions c is € information proof if it is so for every player.
A strategy profile is (e, p) information proof if it yields e-information-proof
composition profiles with probability of at least 1 — p.

Note that when € and p are small the above approximation is strong in
the following sense. It assigns a high probability, 1 — p, to the event that,
simultaneously, none of the players may improve their individual payoffs by
more than the threshold e.

It is also important to note that, due to the assumption that payoffs were
normalized to be in the interval [0, 1], the threshold ¢ describes the payoff im-
provement as a percentage of the total possible payoff variability in the game.
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What happens to the robustness properties, discussed above for full information-

proof equilibrium, as we move to approximate-information proof equilibrium?
This question, which may become fairly involved and is left for future research,
is important because the convergence properties that follow assure only approx-
imate information proofness in finite large populations.

4 Bounds on Information Proofness of a Given
Equilibrium

This section concentrates on a fixed Nash equilibrium of a fixed Bayesian game
as defined above.

4.1 A Measure of Strategic Interdependence

The following measure is useful for constructing minimal bounds on the level
of information proofness of the given equilibrium. It deals with situations
where the play of the game is restricted to a set of composition profiles M,
and conditional on that, it measures the extent to which a player’s choice of
an action is sensitive to changes in the composition profiles of the opponents.
In this paper M describes all the possible compositions that may result with
positive probability at the play of the given equilibrium. But this measure
may be of interest in other contexts, for example, when one wishes to study the
strategic interdependence within a subgame of an extensive form game. In this
case, M will include all the outcomes that end up in the subgame.

Definition 18 : Strategic Interdependence.
The strategic dependence of a player i in a set of composition profiles M,
sd;(M), is defined to be

max |[us(ch; : (8, a7)) +wi(c® ;¢ (ti,af)] = [wi(c, « (8, af)) +ui(2, : (4, a7))]|

with the mazimum taken over all players i, all actions af and a}, all types t;,
and all composition profiles c},c2eM with t} = t? = t;.

The strategic interdependence in M is defined by
si(M) = max sd;(M).
K3

Useful interpretations of strategic dependence can be obtained by rearrang-
ing terms within the absolute value in the definition above. One interpretation
regards the change in any player i’s payoff when the opponents change from
¢t to ¢ and he holds action a, versus the same change when he holds ac-
tion a. The difference in these changes can be at most si(M). Thus, if the
play is likely to take place in M and si(M) is small, even though the opponents’
types and actions may be highly relevant for his payoff, in deciding which action
to select the player should not be highly concerned with the opponents’ types
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and actions. A similar interpretation, one which is used below, is obtained by
rearranging the absolute value above to read as follows.

max [[ui(cl; : (¢, a7)) —wilel; « (t,a)))] = [us(e2; « (b, 07)) — uilcZ; « (b, af))]|

This interpretation shows that if sd;(M) is small and the composition profile is
likely to be in M, then the gain to i in a switch from action a} to af is almost
independent of his type and the compositions of the opponents.

Low strategic dependence may be obtained if, when being of a certain type,
the player’s payoff depends mostly on his own actions, and not on the type
or actions of his opponents, or if his payoff depends mostly on the types and
actions of his opponents, and not on his own actions. In the first case, the
player’s choice of an action can be done with high disregard to the information
on opponents. In the second case, information about opponents matters, but
not in determining his own action since his own action is highly irrelevant. In
the extreme case of zero dependence, the following characterization is obtained.

Proposition 19 The strategic dependence of player i in a set of outcomes M
is zero, sd;(M) = 0, if and only if player i’s utility for composition profiles in
M can be written as the sum of two functions

u;(c) = gi(c) + hi(c)

with g; being dependent only on player i's own compositions and h; being in-
dependent of player’s i own actions. More precisely h;(c') = hi(c®) whenever
(thcl,) = (t2,¢2,), and for c',c?eM gi(c') = gi(c®) whenever ¢! = c2.

Proof. It is easy to see that functions of the form of g; and h; have zero
strategic dependence. Moreover the sum of functions with zero strategic depen-
dence must also have zero strategic dependence. Thus if u; is of the form above
it has zero strategic dependence.

For the converse, fix an arbitrary action for player i, aY, and define for every
¢, hi(e) = ui(c_; : (t;,a?)) and gi(c) = u;(c) — hy(c). C’learly h; is independent
of player i’s actions and u; is the sum of the two functions. To see that g;
depends only on player i’s compositions let c', c2eM with (t;,a;) = ¢} = 2.

gi(c") — gi(c®) = [ui(c!) — hi(ch)] — [ui(c?) — hi(c?)]

( ) - uz(c H(ti )] - [uz(cz) - UL(CQ : (ti,a)))]
Dt (ta?))] = [a(e?) + e, : (t,a0))]

= [u
= [uy(
=0 b ecause the zero strategic dependence of i z m M. m

Given the decomposition above, it follows immediately that in normal form
games, full strategic independence implies full interchangeability of all Nash
equilibria.

Proposition 20 If the set of all action profiles in a normal form game has zero
strategic interdependence , then the set of all Nash equilibria is interchangeable.

Proof. Under the decomposition above, the Nash equilibria of the game are
exactly the action profiles a with the property that each a; is a maximizer of the
individual function g;. m
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4.2 Bounds on Information Proofness

Lemma 21 A Bayesian equilibrium is (e, p) information proof if for a set of
composition profiles M

p>Pr(M) ande > si(M) +maxPr(M¢ | ¢;)/pr(M | ¢;)

where the mazimum is taken over all ¢;’s that are part of a composition profile
ceM.

Proof. Suffice to show that at any ceM, no player can improve his payoff
by more than € by switching from a; to another action. >From the definition
of strategic interdependence, if switching at ¢, from a; to a}, improves player ’s
payoff by r, then the same switch must improve his payoff by at least r — si(M)
at any other ceM with ; = t; (the improvement referred to is the following:
fix the opponents’ compositions and i’s type to be as in ¢, and consider the
gain to his payoff as he switches from a; to a}). Thus, given his type ¢; and
his selected action a;, player ¢ can improve his expected payoff by at least
[r—si(M)]Pr(M | ¢;) —Pr(M¢€ | ¢;). But since a; was selected to be an optimal
response by i, the last expression must be nonpositive, which yields the desired
bound. m

The above computational result illustrates that if o generates a high prob-
ability (in the conditional senses just described) low strategic-interdependence
set M, then o is highly information proof. The following discussion illustrates
that under natural restrictions on the game, and assuming a large number of
players, such sets are natural.

Starting with a strategy profile o the induced vector of measures v =
(V15Y2s -, Vn) May be viewed as a vector of extended distributions, all being
defined over the (same) universal set of all possible player compositions C (as
opposed to each v, being defined on C; C C). Simply, for any possible player
composition k € C, v;(k) = v;(¢;) if kK equals some ¢; € C;, and v,(k) = 0
otherwise.

Definition 22 : Expected play. For a vector of strategy profile o and the
induced distribution y = (Y1, Ya, ---» V) define the expected play on the universal
set of compositions C to be the distribution exp, (k) =, v;(k) /n

Definition 23 : Empirical play. For every composition profile ¢ define the
empirical distribution induced by ¢ on the universal set of compositions C by
emp.(k) =

(the number of coordinates i with ¢; = k) /(the number of coordinates of c).

For a fixed o, the empirical distribution, being defined for every randomly
selected ¢ € C, may be viewed as a |C| dimensional random variable. The
expected play on C, on the other hand, is a fixed vector of |C| numbers. Co-
ordinatewise, for every k € C, the expected value of the empirical distribution
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equals the expected play at k. By laws of large numbers one may expect with
high probability to obtain ¢’s whose empirical distribution is close to the ex-
pected play.

Lemma 24 Chernoff-Hoeffding additive bounds. Let X1, X5,..., X, be
a_sequence of independent 0-1 random variables with Pr(X; = 1) = p;. Let
X=>X;/nand@=> p;/n. Then for every § > 0,

Pr(|X —7] > 6) < 2¢~26°n

Proof. See Theorem A.J in Alon, Spencer and Erdos (1992) page 235.
Apply it once to the variables X; — p, and once to their negatives. m

Lemma 25 Let X1, Xs, ..., X;, be a sequence of independent 0-1 random vari-
ables with Pr(X; = 1) = p;. Let X = > X;/n and @ = > u;/n. Then for
every 6 > 0 and every 1,

Pr(|X — m >6|X;) < 2¢~2l(n6=1)/(n=1)*(n=1)

Iioof. Let X_; = Dk XJ_/(n —Dandu_; =>4 pn;/(n—1).

’X—ﬁ| > 6 implies that |X_i —ﬁ_i| >én/(n—1)—1/(n—1) = (n6 —
1)/(n —1). The lemma follows by applying the previous lemma to X _;. m

Define the ¢ neighborhood of exp, by

nbd(exp,, ) = {c € C' : max |emp.(k) — exp, ()| < 6}.

Lemma 26 For any § > 0, Pr[c ¢ nbd(exp,,8)] < 2|C| e—28°n

So for any given small ¢ and the fixed cardinality |C| of the universal set of
possible configurations, if the number of players is large there is a high proba-
bility of the empirical distribution of compositions being uniformly close to the
expected distribution of compositions. Moreover, the same holds true for the
conditional probabilities.

Lemma 27 For any 6 > 0, Pr[c ¢ nbd(exp,,0)|c;] < 2|C| e=2l(né=1)/(n=1)P’(n-1)

Applying the previous general bounds on information proofness to M =
nbd(exp,, 6), one obtains the following bounds.

Theorem 28 The Bayesian equilibrium o is (e, p) information proof if for
some 6 > 0,

e > si[nbd(exp,,9d)]
+2[C|e=2mO=D /=D (=1) 11 _ g |¢| =2m6=D/m-DF(=D)] | gpg

p > 2[Cle2"m,
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While somewhat long and complex, the above expressions offer a good insight
about rates of convergence. For any fixed C and ¢, the bound on p becomes small
at a rate which is exponential in the number of players. A similar conclusion is
possible for e, provided however that the strategic interdependence is a function
that goes to zero at a fast rate in small neighborhoods of the expected play.
The next section exploits this observation to obtain convergence to information-
proof equilibrium which is uniform for all equilibria in some interesting classes
of games.

5 Information Proofness in Large Games

This section deals with large (many-players) Bayesian games in which the payoff
influence of each player on his opponents is small. The players are not sym-
metric in two senses. First, every player may have a different prior probability
distribution over his possible types. Second, different players may have differ-
ent payoff functions. However, the game is payoff anonymous in the following
sense. At any composition profile the payoff of every player depends entirely on
the player’s own composition and the empirical distribution over compositions
induced by the opponents. Since it is the distribution of opponents composi-
tions, this means also that a player’s payoff cannot depend on the number of
opponents.

Due to laws of large numbers, at equilibrium a player’s anticipation of oppo-
nents’ aggregate characteristics should be approximately correct, which implies
that the equilibrium should be approximately information proof. This intu-
ition is confirmed by an asymptotic result which shows a strong uniform rate of
convergence.

As before, there is a universal finite set of possible player types, 7, a universal
set of possible player actions, A, and a resulting universal finite set of possible
player compositions, C =7 x A.

But in addition, there is a universal set of possible payoff functions U, which
contains functions of the form g : C x A(C) — [0, 1]. The interpretation is that
the first argument in such a function is the player’s own composition and the
second argument is the empirical distribution of opponents’ compositions.

Formally, let the family of payoff-anonymous Bayesian games ' = T'(A, 7, U)
consist of all the Bayesian games (N, XT;, 7, X A;, (u;)) satisfying T; C T, A; C
A, and where every u; is imbedded in some function g € U so that w;(c) =
g(Ci, EMpe_, ) .

Theorem 29 Assume that the set of possible payoff functions U consists of a
finite number of continuous functions. For every positive € and p there is an
integer m such that all the equilibria of the Bayesian games in I' with more than
m players are (g, p) information proof.

While all the examples given earlier may be modeled with the set U contain-
ing a single possible payoff function, the fact that U contains more functions
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allows for the possibility of including several families of games at once. Ac-
tually, substantially richer families of games can be included, as shown by the
lemma below that includes the theorem above as a special case.

Recall that a collection of common-domain functions is uniformly equicon-
tinuous if for every positive ¢ there is a positive 6 such that for every two
points z,y in the common domain and for every function f in the collection
|f(z) — f(y)| < € whenever the distance between z and y is less then §. Recall
that every finite collection of continuous functions defined on the same com-
pact domain is uniformly equicontinuous, and thus the above theorem is an
immediate consequence of the following.

Lemma 30 The conclusion of the theorem holds under the assumption that U
consists of any collection of uniformly equicontinuous functions.

Proof. Recall that an equilibrium o is (e, p) information proof if for some
6 > 0 the following two inequalities are satisfied.

e > silnbd(exp,, )] +2|C|e~26=D/=DP(=1) /1] _ 9 |¢| ¢=2m=1)/ (=D (n=1)]
and
p > 2|Cle 2",

Relying on the assumption that |C| is fixed for all the games in the collection,
for any 6 > 0 all the equilibria of the games in I' can be made to satisfy
simultaneously the second inequality, provided that only games with more than
some large number n of players are considered. So, it suffices to show that by
making ¢ sufficiently small, and n sufficiently large, the first inequality can be
simultaneously satisfied for all large games. The second term in the right hand
side of this inequality can be made uniformly arbitrarily small, by choosing n
to be sufficiently large, again for every given positive §. Thus, it remains to
be shown that si[nbd(exp,,6)] can be made uniformly smaller than any given
positive € by choosing a sufficiently small positive ¢, and restricting attention
to games with more than some large number of players n.

Recall that si[nbd(exp,,d)| is defined to be the maximum of the expression
below, when you consider all players 7, all pairs of actions a; and af, all types
t;, and all pairs of composition profiles ¢y, coenbd(exp,, é) having t; = to = t;:

[wi(ch; < (ti,a7)) +wi(c®y : (tiyall)] = [wilc, < (8, af) + ui(c?, = (6, af))]l.

But rearranging terms this expression equals
[ui(cl; = (t,a7)) —wi(c2; : (t,ap)] = fuilely « (6, a)) —wilcZ; : (ti,af))]]

This last expression can be made arbitrarily small by making each of its two
terms arbitrarily small. So it suffices to show that expressions of the form
wi(ct, : (ti,a})) —wi(c,; : (ti,al)) can be made arbitrarily small by restricting
attention to ¢’s in nbd(exp,,8). However, the uniform equicontinuity assures
us that by making ¢ sufficiently small, we can make these expressions small,
simultaneously, for all the strategy profiles of all the games in I". =
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6 Concluding Remarks

6.1 Subgame Perfection and Other Refinements

As discussed earlier, an information-proof equilibrium is order invariant in the
sense that if the game is played sequentially, the equilibrium remains a Nash
equilibrium also in the sequential game. However, the induced equilibrium in
the sequential game is not necessarily subgame perfect. Consider for example
the 2 person coordinated computer choice game discussed earlier with both
players preferring to match, but with player 1 preferring to match on computer
B and with the other player preferring to match on computer M, i.e., a ”battle
of the sexes” instead of a coordination game. As discussed earlier (B,B) is a
Nash equilibrium outcome of the sequential game where player 2 moves first
and player 1 follows. But the only subgame perfect equilibrium outcome of this
game is (M,M). This is unavoidable. It is worth observing though, that the
severity of the problem, or the level of violation of subgame perfection, may be
diminished as the number of players increases.

Example 31 : n-Person Battle of the sexes. There are n male players
and n female players.  Simultaneously, every player has to choose computer
B or computer M. The payoff to a male who chooses B equals the proportion
of the total population that he matches, while if he chooses M his payoff equals
0.9 times the proportion of the total population that he matches. For a female
the opposite is true, i.e., she is paid the proportion that she matches when she
chooses M and 0.9 of the proportion she matches when she chooses B.

Consider the above game played sequentially, one player at a time, with the
females moving first and the males following. FEvery player is informed of the
choices made by all earlier players.

One can verify that the only subgame perfect Nash equilibrium results in
everybody choosing M. So the constant B strategy, where everybody chooses B
independent of history, is not subgame perfect. Nevertheless it is highly perfect
in the following sense, see Kalai and Neme (1992) for the general measure of
perfection that is applied below.

At a pure strategy subgame perfect equilibrium of a perfect information
game, every action in every node of the tree is optimal given the actions taken
at all other nodes. Consider now a pure strategy equilibrium which is not
subgame perfect. Since it is a Nash equilibrium, at every node on the play
path the selected action is optimal. Thus it takes some deviations from the
play path and possibly from other equilibrium prescribed actions to reach an
”irrational action,” i.e., a node where the equilibrium action is suboptimal. Let
the minimal number of deviations, i.e., equilibrium actions that are changed,
needed to reach a suboptimal action be the level of perfection of the equilibrium.
Thus, every Nash equilibrium is O-perfect equilibrium, since with zero deviations
no irrational action is reached, and every subgame perfect equilibrium is oo-
perfect, since any number of deviations will fail to reach an irrational action.
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And if an equilibrium is m-perfect it means that simultaneously, m deviations
from the equilibrium strategies must take place to lead to an ”irrational action.”

As m becomes large the stability of m perfect equilibrium increases. Recall
that a logic of subgame perfection is that if the game was diverted to a node
where an irrational action is taken, then, when called upon to play, the irrational
actor will change to a rational action. And if this would benefit the players who
can guide the play to such a node they would choose to do so. But when m is
large it requires the coordinated effort (or the cumulation of mistakes, depending
on your interpretation of subgame perfection) of many players participating in
many deviations to guide the play to such a node. And the faith of the first
deviator that the others will follow may be diminished as m gets larger.

This is the case for the constant B equilibrium in the Battle of the Computers
game. It yields every female a payoff of 0.9 and a female that deviates, 0. Would
the first female deviate? Her successor, the second female, if she stays with the
equilibrium strategy will be paid close to 0.9 and if she deviates, without the
rest of the females following, will be paid close to zero. To make the deviation
of the first female worthwhile she needs to count on successful deviation by at
least 0.9 of the players that follow, including almost all the early females who
share similar concerns.

The level of subgame perfection of the constant strategy B can be shown to
be approximately n.

Related issues of refining and of weakening the Nash equilibrium concept can
be found in recent economic literature. For example Dekel and Wolinsky (2000)
study large auctions with independent types and show that strategy profiles that
are only rationalizable already have strong implications regarding the outcome
of the auction. On the other hand, Chung and Ely (2000) stay with Bayesian
equilibrium as a solution concept, but strengthen the requirement on the ex-
post stability. Rather than just being a Nash equilibrium they require that it
be refined through the sequential elimination of dominated strategies.

6.2 Voting games: more general sufficient conditions.

The voting equilibrium below shows that even when a game is discontinuous in
the sense of the previous section, it may still have equilibria that are highly
information proof. This is obtainable from the general bounds defined ear-
lier in the paper, which did not assume full continuity of the payoff functions.
The second voting equilibrium below shows that one may obtain information
proofness even when these general bounds are not applicable. In other words,
the sufficient conditions for information proofness offered in this paper could
possibly be made more general.

Consider a political game, where simultaneously n voters have to each select
between two candidates, A and B. Suppose n is odd and the candidate with
the majority vote is elected. A proportion p of the voters prefers A to B, say
they each receive a utility one when A is elected and zero when B is elected,
and a proportion 1 — p has the symmetrically opposite preferences.
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The payoff functions of these games cannot be imbedded in a continuous
payoff function as required in the previous section. At the point where the votes
for the two candidates are split evenly there is a payoff discontinuity for all the
voters. But if the prior probability of support for A is not in the middle, p # 0.5,
then the equilibrium in which every voter votes for his preferred candidate is
approximately information proof. With high probability the outcome will have
close to a proportion p of the voters vote for A, and the remaining ones vote
for B. Near these expected proportions, strategic interdependence is very low
(actually zero due to the fact that no the outcome cannot be changed by a player
unless the proportion becomes very close to 0.5), so by the bounds given in the
earlier section the equilibrium must be (0, p) information proof with a low value
for p.

But even when p = 0.5, there is still a high degree of information proofness
due to a different use of the law of large numbers. Consider the same equilib-
rium, with every player voting for his favorite candidate, so that the expected
support is 0.5 for each candidate. This is exactly where the strategic inter-
dependence is high even for small neighborhoods of this point. Yet it is clear
that with high probability there will be some positive gap between the realized
empirical proportions and the expected proportions. Moreover, if n is large,
with high probability no one player should be able to close the gap in order to
swing the outcome of the election in the opposite direction. Thus, the outcome
is likely to stay information proof.

6.3 Large auctions: a continuum of types and actions

This paper exhibits a strong form of convergence to information-proof equilib-
rium. For given € and p the convergence is at an exponential rate and it is so
simultaneously for all games, all equilibria, and where a high proportion of the
outcomes are information proof for all players simultaneously. To a significant
degree this is due to the restriction of the games to have finite sets of possible
types and actions. However, as the following discussion suggests, there are
games where a model with a continuum of types and actions may be better.

Consider an n bidder first price sealed bid auction of an item whose private
valuation by each bidder is a random integer from 1 to 100, generated by inde-
pendent prior probability distributions. Simultaneously, each bidder submits
a bid that consists of an integer from 1 to 100. The highest bidder wins the
object and pays for it the amount of his bid. If several bidders tie at the highest
bid one of them is selected at random to be the winner. The payoffs may be
represented as follows. If bidder i is a highest bidder his payoff is (v; — b;)/m
with v; being his valuation, b; being his bid, and m being the number of highest
bidders. Otherwise his payoff is zero.

The above payoff functions cannot be imbedded in anonymous ¢’s as required
in the formulation of the previous section. More specifically, the above tie
breaking rule requires knowledge of the number of players with the highest bid,
but the functions g are expressed in the language of proportions. This means
that no finite number of such ¢’s can describe simultaneously all the payoff
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functions for auctions with increasing number of bidders.

On the other hand, it seems that a model with a continuum of types and
actions, between 0 and 100, could possibly work here. Consider the strategies
where every player bids his true value. When the number of players is large and
the prior probabilities are sufficiently diffused this is an approximate Bayesian
equilibrium that is approximately information proof. The probability of a tie
at this equilibrium is zero and, due to the crowding of the bids, no player can
improve much by changing his bid ex-post.

6.4 Repeated play and learning

In the context of rational Bayesian learning, being information proof can be in-
terpreted to mean that there is no need for any learning. Consider an infinitely
repeated Bayesian game, where each of n players is drawn an independent type
that is used in an infinitely repeated play of a given one-shot n person game.
According to a result of Kalai and Lehrer (1993), at every Bayesian equilibrium,
where each player chooses his repeated game strategy based on his private knowl-
edge of his type alone, with time the play converges to a Nash equilibrium of
the complete information repeated game, as if the realized types are known to
all.

Consider now an information-proof equilibrium of the one-shot Bayesian
game. Because of information proofness the selected actions are a Nash equi-
librium of the complete information game with the realized types being known
to all. In other words, learning in the Kalai and Lehrer sense is automatic,
even in the one-shot game without the need for any repetition.

More formally, starting with the information proof Bayesian equilibrium of
the one-stage game, construct the following equilibrium for the repeated game.
After being informed of his type, every player will choose a pure action as he does
at the equilibrium of the one shot game, and will play this action repeatedly in
the repeated game. It is easy to see that such strategies are a Nash equilibrium
of the repeated Bayesian game, no matter what the discount parameter is, and
that learning, in the Kalai and Lehrer sense, took place already in the first stage.

The above observation suggests an interesting direction of research, inves-
tigating a possible connection between the speed of learning and the number
of players in the repeated game. On one hand, one would expect learning to
be easier in a game with a small number of players, since in such a situation a
player has to predict the behavior of a smaller number of opponents. On the
other hand, at an information-proof equilibrium, which is obtained for contin-
uous games with many players, learning the relevant information is immediate
(or unnecessary). Is there a monotonicity in the ease of learning as the number
of players become large beyond some critical level?

6.5 Information and action smallness

By assuming anonymity, continuity and many players, this paper implicitly
deals with players whose actions and information have only a small effect on
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their opponents. But as mentioned in the introduction there is a growing
recent literature that deals explicitly with measurements of ”action smallness”
and ”information smallness” and their effects on the play of the game. Moreover
it seems reasonable to expect that action and information smallness imply low
strategic interdependence and thus a high level of information proofness. In
other words, by combining assumptions and results from the above literature one
may be able to obtain approximate information proofness under more general
conditions than the ones assumed in this paper.
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