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Abstract

This paper is concerned with the procedural aspects of collective choice and the impact
of the parties' participation rights on the optimal mechanism. We ¯nd that the mechanism
designer generally bene¯ts from the selective engagement of the agents | the exclusion of some
agent- types from the choice process. We show that optimization of mechanisms with voluntary
participation involves two mutually dependent instruments: the scope of the agents' engagement,
and the functional form of the social choice function. The bene¯ts of selective engagement, as
well as two optimization methodologies, are illustrated on principal-agent models.

We ¯nd that the participation constraint is redundant and generally leads to suboptimal
mechanisms. Contrary to its general interpretation, this restriction does not re°ect the voluntary
aspect of the agents' participation. Rather, it gives them an additional entitlement: to force
their involvement in the collective choice.

We formulate a free-exit constraint that is devoid of incentives and fully accounts for the
voluntary aspect of participation. It also leads to an equivalent representation of incentive-
compatibility that explicates incentives and speci¯es the feasibility of a mechanism.

Key words: Participation rights, voluntary participation, economics of information, incen-
tives, incentive compatibility, principal-agent model.
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1 Introduction

In this paper, we are concerned with the problem of collective choice, i.e., selection from a
speci¯ed set of alternatives undertaken jointly by a given group of agents. The resolution of this
problem is e®ectively facilitated by the well-known device of a mechanism that is constructed
by the designer, a party introduced expressly for this purpose. Given the ubiquity of collective-
choice problems in economics, the framework of mechanism design uni¯es a vast multitude of
applications, such as provision of public goods, auctions, principal-agent relationships, bilateral
trading, etc.

The con°ict between the social and the private values of the choice alternatives is aggravated
whenever the distribution of information among the parties lacks uniformity. To mitigate the
impact of the informational disparities, the designer supplies the agents with incentives that
induce them to reveal their private information. Thus, in a principal-agent relationship with
hidden actions (HolmstrÄom [14]), the wage function is constructed to induce the agent's compli-
ance with the action allocated to him by the principal. In the model with hidden information
(e.g., Baron and Myerson [1], Maskin and Riley [18], Guesnerie and La®ont [13]), the agent is
similarly motivated to reveal truthfully his productivity or preference parameter. In the hybrid
model with both hidden actions and hidden information (e.g., La®ont and Tirole [15], Faynzil-
berg and Kumar [9]), additional incentives dissuade the agent from a simultaneous misreporting
of his type and deviation from the socially optimal action.

The literature has widely recognized that the choice made by the voluntarily participat-
ing agents requires additional considerations. The very ability of the agents to abstain may
have profound consequences for the optimal mechanism. The Myerson-Satterthwaite Theorem
demonstrates, for instance, that the voluntary aspect of bilateral trading renders the ex post
e±ciency of the allocation unfeasible (Myerson and Satterthwaite [25]).

The task of securing the agents' participation may be accomplished by incentives. For-
mally, these incentives are usually described by a restriction | the participation, or individual
rationality constraint | on the form of the social choice function. The imperfectly informed
designer who facilitates the collective choice of voluntarily participating agents is con¯ned, then,
to mechanisms that satisfy both the participation and the incentive-compatibility constraints.

In the present paper, we show that, contrary to the common assumption, the participation
constraint neither follows from nor re°ects the voluntary aspect of the agent's participation. The
incentive argument is, of course, valid: the agents who have the right to abstain from choice
need inducements to forego the exercise of this right. We ¯nd, however, that the incentive-
compatibility already accounts for the participation incentives. Consequently, the participation
constraint is, at best, redundant, and generally leads to an oversupply of incentives with dele-
terious results for the social welfare.

The agent's involvement in collective choice is governed by procedural rules, to which we
refer as participation rights. Whereas property rights are associated with the outcomes of
the collective choice, the participation rights of the parties regulate the process rather than
outcomes. Within the category of participation rights, we distinguish the privilege to abstain
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and the entitlement to participate. Accordingly, the agent's right of free exit allows him to
decline unilaterally any part in the choice process. When imputed to the agent, this right makes
the agent's involvement voluntary for him, and involuntary otherwise. The agent's entry right
creates an entitlement to participate. When imputed to the agent, it allows him to force upon
other parties his involvement in the process.

When the rights of exit and entry are allocated to the agent, they impose their dual duties
on the designer. He must not interfere with the agents' pursuit of exogenous opportunities if
they choose to abstain from choice, and, respectively, o®er them at least one choice outcome
if they prefer to participate. Naturally, these duties limit the designer in his selection of the
mechanism. Formally, they manifest themselves as the free-exit and the free-entry constraints.
The free-exit constraint is devoid of incentives and re°ects fully the voluntary aspect of the
agents' participation.

The present framework allows us to reinterpret the participation constraint: it is an entry
right granted to the agent rather than a device dissuading him from abstention. The traditional
use of the participation constraint has, therefore, a possibly unintended consequence: it gives
the agent entitlement beyond his ability to abstain from choice. The participation constraint
models a guaranteed, rather than voluntary, participation. As any of the agent's entitlements,
this privilege is costly and reduces the welfare value of the mechanism.

The legal environment may, of course, expressly grant all participation privileges to the
agents, in which case both the participation and the nonparticipation become voluntary for
them. In other words, the agents may exogenously enforce their abstinence from the choice
process as well as their participation in it. Dually, the designer has the respective duties to
comply with the involvement-related choices of the agents. Such institutional settings have
been extensively studied by the extant literature, so the present paper focuses mainly on choice
problems with voluntary participation only.

In mechanisms with voluntary participation, the designer is free from the duty to engage an
agent and may prefer to exclude some of his types from participation. Formally, this selective
engagement of the agents becomes possible because the designer is no longer limited by the
participation constraint. This is in contrast to the complete engagement, prescribed as a rule
by the extant models.1 In some multi-agent situations, such an auction with a random number
of bidders in McAfee and McMillan [19], provisions are made for the variable involvement of
the agents. These settings construe the act of an agent's (non)participation as, respectively, the
(non)participation of all types of that agent. In contrast, we allow the agent's involvement to
be type-contingent. Even in single-agent mechanisms, the designer must consider and, when
optimal, adopt the selective-engagement regime. Below, we illustrate the bene¯ts of selective
engagement on two broad classes of principal-agent models, which have attracted much atten-
tion in the mechanism-design literature (e.g., Mirrlees [20], Mussa and Rosen [21], Baron and
Myerson [1], Maskin and Riley [18], Guesnerie and La®ont [13]).

The fact that selective engagement generally improves the social welfare raises the question
of its feasibility. This question is answered in the positive by the explicit form of the incentive-
compatibility of a mechanism with voluntary participation (Equivalence Theorem 2.1 below).
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We ¯nd that the incentive-compatibility of the social choice function is equivalent to a combina-
tion of: (i) the truth-telling constraint, satis¯ed on the participating types only; (ii) the partic-
ipation constraint, also satis¯ed only on the participating types; and (iii) the nonparticipation
constraint satis¯ed only on the nonparticipating agent-types. It follows that the need for incen-
tives, including those for participation, leaves the scope of participation undetermined, hence
under the discretion of the designer.

Given that selective engagement is both bene¯cial and feasible, mechanism optimization
involves an endogenous choice of the scope of participation. The designer has therefore two
instruments at his disposal: the functional form of the social choice function, and the scope of
participation. The nature of the second instrument complicates optimization of the mechanism:
the scope of participation is a set, which must be chosen simultaneously with a social choice
function.

The general mechanism-optimization methodology is addressed elsewhere (Faynzilberg [5, 6,
7] ). The companion paper Faynzilberg [5] contains a complete characterization of the principal-
agent model with hidden information (adverse selection), which builds on the presently devel-
oped framework. As in HolmstrÄom [14], where the same task for the hidden-actions model
(moral hazard) is addressed, the characterization of the optimal contract is an e®ective means
of mechanism selection. The hidden-information contract requires a more elaborate characteri-
zation than its hidden-actions counterpart. This is because the additional variable is presently a
set (the scope of participation) rather than a number (the agent's e®ort) | a markedly greater
freedom of choice. The companion paper also shows that, generically, the designer has multiple
pooling options at his disposal. Since each of the pooling regimes extends to its own allocation
path, there exists a quantized spectrum of locally optimal social choice functions. This spectrum
may be rather large even in relatively simple settings. Consequently, the selection from it of the
globally optimal, second-best mechanism may be far from trivial. We leave these e®ects outside
the scope of the present paper, however, and merely illustrate the characterization methodology
in Section 4.2.

Thus, the scope of agents' participation is an optimization instrument in its own right. As
such, it should be built into the mechanism design from the outset, before the optimization
is undertaken. The fact that ex post, in the optimal mechanism, some agents abstain from
participation has been recognized, of course, by many authors, most notably by Baron and
Myerson [1]. The two most common alternatives to the present framework are discussed below
(Section 5). It appears that their validity is premised on certain idiosyncrasies, such as the
equivalence of the pre-choice status quo and the outside options of the parties. In addition,
the initial inclusion of all agent-types into the scope of participation presents methodological
di±culties as well, and may lead to suboptimal results. In comparison, the presently proposed
framework appears to be more general. The explicit treatment of the parties' involvement
decisions allows it to serve as a foundation for a consistent optimization methodology.

The objective of the present paper is therefore threefold: (i) to analyze the impact of par-
ticipation rights on the choice of the mechanism, (ii) to demonstrate that selective engagement
is both bene¯cial and feasible in mechanisms with voluntary participation, and (iii) to illustrate
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two optimization methodologies that allow for the endogenous determination of the scope of
participation jointly with the form of the social choice function.

The rest of the paper is organized as follows. Section 2 is devoted to participation rights
and the impact they have on the selection of the mechanism. We begin with a discussion and
de¯nitions of the participation rights in Section 2.1 and give their formal description in Sec-
tion 2.2. Focusing on mechanisms with voluntary participation, we present a characterization
of incentive-compatibility in Section 2.3 that leads to a convenient speci¯cation of feasibility.
Optimization issues are addressed in Section 3. Here we formalize the designer's optimization
problem (Section 3.1) and identify the economic e®ects of selective engagement (Section 3.2).
Optimization methodologies and applications are the subject of Section 4, where we solve in
closed form two principal-agent models. Two methodologies are presented: a step-wise opti-
mization procedure (Section 4.1), and a characterization of the optimal contract (Section 4.2).
Next, in Section 5, we revisit the alternate approaches to selective engagement. The concluding
remarks are gathered in Section 6. Technical details and proofs may be found in the Appendix.

2 Participation Rights

In the present section, we revisit the issue of agents' involvement in the collective choice. We
extend its analysis to include both of its facets | participation and abstinence. The correspond-
ing rights of free exit and free entry are formulated in Section 2.1 and formalized in Section 2.2
as constraints (2.6){(2.7) on the choice of the mechanism. The Equivalence Theorem 2.1 shows
that voluntary participation leaves the selective engagement feasible, and that incentive- com-
patibility accounts for all inducements needed to secure the agents' participation.

2.1 Collective Choice: The Rights of Exit and Entry

Consider a group of agents who collectively perform a selection from a given set of alternatives.
The parties to bilateral trading, for instance, select a pair of transfers | of the object of trade
and of the numeraire. In the agency setting, the principal and the agent jointly select a contract
comprised of wages to be paid to the agent, and an action he is supposed to take in behalf of
the principal. In a single-unit auction, the participants jointly determine the party to whom the
good is allocated, and the compensatory transfer to the auctioneer.

The selection made by the parties amounts to an assignment of property rights. These rights
may be merely redistributed, such as when exiting goods are being traded. Alternatively, the
process may end with an allocation of claims to the objects that are yet to come into existence.
In agency settings, for instance, the agent contributes to the output of the technology that
belongs to the principal. Here the property rights are both reallocated and newly assigned: the
principal is a residual claimant to the output, net of the wages paid to the agent.

In contrast to property rights, the redistribution of which is both the objective and the result
of the collective choice, we are concerned with the procedural rights and duties that govern the
very process of outcome selection. Oftentimes, these rules take the form of participation- related
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restrictions that limit the consequences of the agents' involvement in the process. To illustrate,
consider a corporate capital- allocation committee voting on a project. The ¯rm's bylaws may
contain a rule requiring unanimous participation for the committee to reach a decision. The
members' involvement decisions may then severely limit the outcome: the absence of one of
them renders the decision infeasible. The bylaws may alternatively prescribe that the decision
be reached by a dichotomous vote, in which case the presence of an odd number of members
guarantees the existence of a majority and thereby resolves the collective- choice problem at
hand.

In terms of the mechanism design, the participation-related restrictions are duties imposed
on the designer who facilitates the choice process. For the agents, it a®ects neither the freedom
to participate in nor the freedom to abstain from the process. This is because the right, which
corresponds to the designer's duty, lies outside of the mechanism. In the above-given example
of the capital-allocation committee, it belongs to the shareholders of the ¯rm, so the right-duty
pair is not fully endogenous to the mechanism. In contrast, participation rights | the focus of
the present paper | are entirely endogenous to the choice problem.

We refer as participation rights and duties to those privileges and obligations that govern the
ability of one party to exclude another from participation in the collective choice. Such rights and
duties are in the usual legal duality: a right of one party implies a duty for another, namely, for
the party being excluded to abstain from choice. Here and elsewhere in the paper participation
refers to the involvement of a party in the collective choice rather than the mechanism. Every
party takes part in the mechanism | either by taking part in the choice process (participation),
or by abstaining from it (nonparticipation).

Participation rights and their dual duties specify to the corresponding parties their courses
of action. Depending on how they are distributed, these rights may prescribe or proscribe either
or both actions | the participation in or the abstinence from choice. The mechanism designer,
for instance, prefers to engage all agents when their involvement leads to greater social welfare.
When the legal environment grants him the privilege to impose this decision on the agents, the
agents' participation becomes involuntary: the designer may proscribe their abstinence from
choice. In other situations, where an agent's contribution is negative, the designer may prefer
to prescribe the agent to abstain from choice. When this course of action is made feasible by
the legal environment, it is the agent's nonparticipation that becomes involuntary. In line with
the usual practice, we say that a party's participation is voluntary if it can unilaterally decline
its part in the choice process. By extension, the nonparticipation is voluntary if the party can
unilaterally decline not to take part. Such a party can force its participation in the collective
choice.

We concentrate below on the subclass of individual participation rights | the rights of free
entry, or entry rights, and rights of free exit, or exit rights. We shall focus, furthermore, on
the rights that govern the interactions between an agent and the designer rather than those
between two agents. A participation right granted to one agent creates a dual duty for the
designer but does not directly a®ect other agents. Clearly, this type of duality is not the only
one economically relevant: one agent may grant, for instance, a right to another (or impose a
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duty on him) to join him in the resolution of the choice problem. In Anglo- American law, the
class status of a legal action has such °avor. Further, participation rights need not be individual:
a coalition of agents may be entitled to abstain unanimously and unilaterally from taking part in
the process. Although such inter- and multi-agent privileges are well- constructed participation
rights, they lie outside the scope of the present paper.

The rights of free exit and free entry arise in certain symmetry to each other. Speci¯cally,
we refer as the exit right to the privilege of a party to decline unilaterally its participation in the
collective choice. Let us focus ¯rst on an agent and suppose that the exit right is imputed to
him. The agent's participation is voluntary: even when contrary to the wishes of the designer,
his abstinence from choice can be exogenously enforced. Alternatively, the designer in possession
of the exit right can prescribe the agent's involvement, thereby making it involuntary for the
agent.

To illustrate, consider the monopoly of Maskin and Riley [18] that sells its output to a
homogeneous population of consumers with an uncertain taste. The parties' abilities to abstain
from market interactions may be governed in one of four ways. The consumers are typically
endowed with their exit right and may therefore refuse to buy the good o®ered to them by the
monopolist. If this right is given to the monopolist instead, he can extend a binding o®er to
each type of consumer. The monopolist, too, may or may not be free to exit the market. He
may be compelled to withdraw if his costs make production prohibitively expensive. Whether
or not he may take this course of action is predicated on the imputation of the right of free exit.

In symmetry with the exit right, the entry right of a party is a privilege to decline unilaterally
its nonparticipation in the collective choice. Stated di®erently, it is the privilege of the party to
force upon the designer its involvement in the choice process. Naturally, this right expands the
agent's freedom only if it lies with that agent. The designer endowed with this right is absolved
from any duty to engage the agent, and can proscribe the agent's participation altogether.

In the aforementioned case of the monopoly pricing its good, a consumer's entry right is the
entitlement to at least one allocation from the monopolist. Whereas the consumer is still free
not to buy the good, the ¯rm is not: its withdrawal from the market is proscribed. When the
consumer's entry right is imputed, alternatively, to the ¯rm, the monopoly has no duty to the
consumer. It is free not to extend any o®er at all to some consumer types. Our choice of words
is purposeful: the absence of the ¯rm's o®er is economically distinct from an o®er to buy zero
quantity of the good. A detailed discussion of this distinction may be found in Section 5.

What the rights do not forbid or prescribe, they allow. A party to the collective choice has
three courses of action: it may decline, accept, or force its participation in the process. Which
of these avenues is open to the party is determined by the distribution of participation rights,
as summarized in Table 2.1. An interpretation of the table elements that involve the parties'
utilities requires the formal developments of the next section. We shall ¯nd there that two pairs
of scenarios | namely, Cells 2 and 4, and 2b and 4b | are behaviorally equivalent.

It su±ces therefore to consider only the three remaining situations depicted as 1, 2a; and 3
in Table 2.1. The earlier literature on mechanism design focused on the ¯rst of these settings by
imputing all participation rights to the designer. It has been subsequently recognized by many
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Exit
Right

Entry Right
Agent Designer

Agent °2

Participation: voluntary.
Nonparticipation: voluntary.
Exclusion of the agent may be:

Proscribed: No. Prescribed: Yes.
Guaranteed attainability of:

Choice outcome: Yes.
Exogenous sources: Yes.

Utility attainable:
Exogenously, U0:
Endogenously, U1:

Rational behavior:
(a) If U1 ¸ U0; the agent participates.
(b) If U1 < U0; the entry right

is inconsequential.

°3

Participation: voluntary.
Nonparticipation: involuntary.
Exclusion of the agent may be:

Proscribed: No. Prescribed: No.
Guaranteed attainability of:

Choice outcome: No.
Exogenous sources: Yes.

Utility attainable:
Exogenously, U0:

Designer °4

Participation: involuntary.
Nonparticipation: voluntary.
Exclusion of the agent may be:

Proscribed: Yes. Prescribed: No.
Guaranteed attainability of:

Choice outcome: Yes.
Exogenous sources: No.

Utility attainable:
Endogenously, U1:

Rational behavior:
(a) If exit actions are not o®ered

or o®ered but U1 ¸ U0;
the agent participates.

(b) Otherwise, the entry right
is inconsequential.

°1

Participation: involuntary.
Nonparticipation: involuntary.
Exclusion of the agent may be:

Proscribed: Yes. Prescribed: Yes.
Guaranteed attainability of:

Choice outcome: No.
Exogenous sources: No.

Table 2.1: Imputations of the Participation Rights

authors (e.g., Myerson and Satterthwaite [25]) that mechanisms so developed lack credibility
in situations where the agents are free to abstain from the choice process. To account for
the voluntary aspect of participation, extant models impose on the designer the individual-
rationality, or participation constraint. We shall see shortly that this entitles the agent to a
choice outcome and entails his complete engagement. In Table 2.1, this case of guaranteed
participation is depicted by cell 2a:

Given that the imputations 1 and 2a have been extensively studied in the literature, in the
remainder of the paper we concentrate mostly on the remaining distribution of the participation
rights | mechanisms with voluntary but not guaranteed participation.

2.2 A Formal Description of the Participation Rights

As we discussed in the preceding section, participation rights in possession of an agent create
duties on the part of the designer and thereby restrict his choice of the mechanism. Formally,
these restrictions appear below as the free-exit and the free-entry constraints (2.6) and (2.7). We
begin their derivation with the notational conventions and a brief statement of the mechanism-
design problem (see, e.g., Myerson [24], Fudenberg and Tirole [10], Mas-Colell, Whinston and
Green [17] for a complete exposition). We do so in su±cient detail to accommodate explicitly
the presently examined participation-related issues.

The choice problem being facilitated by a mechanism deals with selection of a choice outcome
from a given set of alternatives, X0; made jointly by a set of agents, I: It may be resolved with
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no selection from X0 having been made. With such no-choice ending º; the set of allocations is

X = X0 [ fºg: (2.1)

The information sets of each agent i 2 I are indexed by the type of that agent | the real numbers
in a given set Ti: The common and commonly known ex ante beliefs regarding the likelihood
of types are described by a probability P on the set of type combinations, T =

Q
i2I Ti: The

agents' type-contingent preferences over the outcomes in X0 are represented by a vector of their
utility functions, u : X0£T ! RI : If instead of a choice outcome an agent i pursues exogenous
opportunities, he attains his interim reservation utility Ui0:

The mechanism designer attempts to induce the revelation of information held privately by
the agents. Toward this end, he o®ers them to participate in a game, ¡; to be played with him
and Nature. Nature chooses random realizations, and the strategy of the designer is an arbitrary
allocation-valued function ¹ : S ! X: We refer to ¹ as mechanism 2 whenever its domain has
a product form S =

Q
i2I Si; in which case the elements of a factor Si are viewed as actions

available in ¡ to player i: A Bayesian strategy of an agent i in ¡ is a function »i : Ti ! Si that
speci¯es an action »i(¿) 2 Si at each information set ¿ 2 Ti: For a type realization t 2 T; the
allocation resulting from a strategy combination » =

Q
i2I »i is described by the social choice

function © : T ! X de¯ned as a composition: © = ¹±»: This function is said to be implemented
by a mechanism ¹ in a Bayesian equilibrium » if, given ¹; the strategy »i of each agent i is a
best reply to the strategy »¡i of all others.

To illustrate, consider a ¯rm contracting with two independent agents. As usual, we think
of a contract as a wage-action pair, in which the speci¯ed action is to be taken in consideration
of the wage o®ered by the ¯rm. Let Ci be the sets of the institutionally feasible contracts that
may be awarded to an agent i 2 I = f1; 2g: Then the choice set, X0 = C1 [C2 [ (C1£ C2); has
a three-component structure: the outcomes in C1£C2 obtain with the unanimous participation
of the agents, whereas C1 and C2 contain all contractual obligations that may be accepted by
the respective agent when the other abstains. An agent's abstinence from choice manifests itself
formally as his exit action, which for i 2 I we denote as aei : To ¯x ideas further, suppose that in
the game ¡ each agent i makes an o®er c 2 Ci to the ¯rm. The strategy space is, then, a disjoint
union: S = (C1 £ C2)[ (C1 £ fae2g)[ (fae1g £ C2)[ (fae1g £ fae2g) : Since it has a product form,
any allocation function ¹ : S ! X is a mechanism. The no-trade º ending is allocated by ¹
whenever both agents refuse to contract with the ¯rm, that is, ¹ (fae1g £ fae2g) = º: All other
components of S are mapped to the choice set X0: Given a strategy combination » in ¡; the sets
»¡11 (fae1g £ (C2 [ fae1g)) and »¡11 (C1 £ (C2 [ fae1g)) comprise respectively the nonparticipating
an the participating types of the ¯rst agent.

More generally, agents' participation in the collective choice enters the formal description of
the mechanism as follows. Whenever the legal environment of the mechanism allows an agent
to abstain from choice, his action set is comprised of two components: for each voluntarily
participating agent i 2 I;

Si = S0i [ Sei ; (2.2)
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where the disjoint subsets S0i and Sei contain the actions that amount to the participation in
and, respectively, the abstinence from the collective choice.

The strategy space S of ¡ is partitioned by the \participating coalitions." If the agents in
a set A µ I participate and the rest abstain, let SA be the set of their action combinations:
SA =

Q
i2A S0i : For any two di®erent groups A0 and A00; the sets SA0 and SA00 are disjoint, and

the sets of the form SA £ Q
i=2Afaeig collectively cover S: Hence, the collection of all sets SA is,

up to an isomorphism, a partition of the state space S:
The participation-related restrictions discussed in the preceding section limit the mechanism

in terms of the outcomes of X0 it can allocate. The designer may be required, for instance,
to e®ect the no-choice ending º unless one \participation coalition" from a given collection
G takes part in the process. The unanimous involvement, for instance, obtains with G = I:
Conversely, if the designer allocates a choice outcome, he observes some action combination in
the set ¹¡1(X0) =

S
A2G SA that is taken by a type realization in the set

T pG = ©¡1(X0) = »¡1
Ã [

A2G

Y

i2A
S0i

!
: (2.3)

The pullback of (2.2) to T along a strategy combination » allows us to classify the agent-types
according to their involvement: for each agent i; the inverse-image sets

T pi = »¡1i (S0i ); Tni = »¡1i (Sei ) (2.4)

are respectively the participation set and the nonparticipation set of types of that agent. Nat-
urally, either of these sets may be empty. We shall say that the mechanism is characterized by
the complete engagement of the agent i whenever Tpi = Ti: Alternatively, we shall say that the
selective engagement of i takes place if the set Tni is not empty, and T pi is a proper subset of Ti:
The choice-e®ecting type combinations (2.3) are uniquely speci¯ed by the scope of participation
as follows:

T pG =
[

A2G

Y

i2A
T pi : (2.5)

Before concluding the formal treatment of participation, we note that the designer, in com-
plete similarity with the agents, may also be free to decline his part in the collective choice. This
feature is standard in principal-agent models, where the principal acts as mechanism-designer
and may forego contracting with the agent if extensive exogenous opportunities are available to
him. In the setting of Baron and Myerson [1], for example, the regulatory agency may choose
not to control a monopolist whose technology it deems to be more useful elsewhere. Formally,
the designer's strategy set, too, has a two-component structure: besides the class of X-valued
mechanisms, it contains the designer's exit function, aeD: Thus, the no-choice allocation º may
result not only from the agents' abstinence exhibited in the interim but also from the designer's
ex ante denial of a game ¡:

The formal description of participation rights, to which we devote the remainder of the
section, re°ects the earlier discussed symmetry between them. To see the speci¯cs, consider ¯rst
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the exit right and assume that it is imputed to the designer, so that the agent's participation is
involuntary. Since the designer is able to enforce the agent's involvement exogenously, he is free
to eliminate from ¡ all exit actions by letting Sei = ;: The action set (2.2) with two components
in general is thereby reduced to having at most one. Whether or not the designer will utilize
his freedom to make Sei empty is the subject of mechanism optimization. The role of the exit
right is to make this option feasible for him.

Suppose next that the exit right of an agent i lies with the agent himself who is thereby
empowered to take the exit action unilaterally. The component Sei of the action set (2.2) is
granted to the agent exogenously, as part of the institutional setting. Thus, the imputation of
the exit right to an agent i creates a duty for the designer, namely, to make the exit component
Sei in the game ¡ nonempty.

The duty not to interfere with the agent's pursuit of exogenous opportunities has a simple
but essential implication for the social choice function © : if some allocation is reached with a
given agent abstaining, it must yield to that agent his reservation level of utility. To formalize,
let t 2 T be a type realization, » a strategy combination, and ¿i a nonparticipating under » type
of an agent i 2 I; so that the allocation x = ¹ (»i(¿i); »¡i(t¡i)) obtains with i abstaining. In
terms of the interim expectation of his utility, Ui0(ti); the \exogeneity-of- exit" property of ©
may be expressed as follows: for each agent i 2 I whose participation is voluntary,

8ti 2 Ti; 8¿i 2 Tni ; E [ui (©(¿i; t¡i); t) j ti] = Ui0(ti): (2.6)

This condition, to which we shall henceforth refer as the free-exit constraint, is imposed on the
social choice function, in contrast to (2.2) which restricts implementations.

In similarity with the right of free exit, the entry right creates a duty for the designer only
when it is imputed to the agent. Recall from the preceding section that such empowerment of
the agent makes his nonparticipation voluntary; he can force his participation onto the designer.
The agent is assured therefore of at least one choice outcome. Whereas the allocation speci¯ed
by © belongs to the extended set (2.1), the designer is presently bound to make available at
least one outcome in the smaller set X0: Since allocations in X0 are reachable, by de¯nition,
only by a participating agent-type, the component S0i of the action set (2.2) is nonempty. An
implication for the social choice function is also immediate: for each agent i 2 I endowed with
the entry right,

8ti 2 T pi ; E [ui (©(t); t) j ti] ¸ Ui1(ti); (2.7)

where Ui1(ti) is the utility expected in the interim of the guaranteed choice outcome. To the
restriction (2.7) we shall refer as the free-entry constraint. An alternative imputation of the
entry right to the designer imparts no such duty on him.

The foregoing makes explicit the aforementioned symmetry between the participation rights
of exit and entry. Indeed, the exit right deals with the participation of the agent, whereas the
entry right addresses his nonparticipation. When the agent has the right of free exit (entry),
his participation (nonparticipation) in the collective choice is voluntary for him. Further, the
exit right determines whether in the implementation ¡ the action-set component Sei is empty,
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while the entry right similarly regulates the size of the component S0i : And, whereas the exit
right imputed to the agent ensures via the free-exit condition (2.6) that the exogenously derived
reservation utility is attainable, the entry right guarantees him via the free-entry constraint
(2.7) a certain level of utility from the endogenous sources.

The entry-exit symmetry is re°ected in Table 2.1, in which the scenarios characterized with
both utilities, U0i and U1i; require further attention. The fact that the utility level U1i is
endogenously available re°ects the entry right in the possession of the agent, as in Cells 2 and
4 of the table. The two cases di®er in the reasons for the availability of the reservation utility
U0i : whereas in Cell 2 the reservation utility is made available exogenously by the exit right, in
Cell 4 it arises endogenously as an act of the designer. In the latter case, the exit actions are
neither prescribed nor proscribed, hence under the discretion of the designer. Observe that the
rationality of both parties makes both situations behaviorally equivalent. Speci¯cally, scenarios
2a and 4a always entail the agent's participation: either he has no other options, such as when
the exit actions are not provided in 4a; or he prefers to do so because it improves his welfare. In
the remaining two cases, 2b and 4b; the entry right is inconsequential since a better (exogenous)
source of utility is available to the agent; the agent's behavior remains ambiguous but una®ected
by his entry right.

The foregoing analysis enables us to interpret the individual-rationality constraint. It is
easy to see that it obtains with Ui1 = Ui0 (2.7). This is the source of the earlier-mentioned
conclusion: rather than re°ecting the voluntary aspect of an agent's participation, the individual-
rationality constraint guarantees it to him. It creates an entitlement to receive the reservation
level of utility endogenously, from a choice outcome. Scenarios 2a and 4a of Table 2.1 make the
implications clear as well: when the participation constraint is required to hold for all agent-types,
the designer's engagement of the agent is complete.

In mechanisms with voluntary but not guaranteed participation, the designer is free to engage
the agents selectively. As the ¯rst step toward optimization of such mechanisms, we provide in
the next section a convenient characterization of mechanism feasibility.

2.3 Incentive-Compatibility under Voluntary Participation

The agents' participation rights (2.6){ (2.7) apply to an arbitrary strategy combination »
adopted by the agents in the game ¡ o®ered to them by the designer as part of the mechanism ¹:
From the Revelation Principle (Gibbard [11], Green and La®ont [12], Myerson [22], Dasgupta,
Hammond and Maskin [3]) we know that, when » is an equilibrium in ¡; the implemented by ¹
social choice function © = ¹ ± » is Bayesian incentive-compatible:

8i 2 I; 8ti; ¿i 2 Ti; E [ui (©(t); t) j ti] ¸ E [ui (©(¿i; t¡i); t) j ti]: (2.8)

This circumstance allows the well-known replacement of the original choice problem addressed
by the mechanism ¹ by an equivalent one that is facilitated by a so-called direct mechanism, ¹d:
The choice set of the extended problem is the set of allocations (2.1). The mechanism ¹d is based
on the direct-revelation game ¢; in which the agents' actions are their reports, perhaps false, of
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their respective types to the designer: Sdi = Ti; and the strategies are »di : Ti ! Sdi : With the
action set of the mechanism being T; it is by de¯nition direct. From (2.8) and the Revelation
Principle it follows that whenever an incentive-compatible function © is implementable by ¹ in
an equilibrium » of the original game ¡; it is also implementable by a direct mechanism ¹d in
truthful revelation of type »d = ¶T ; where ¶T denotes the identity on T:

The two choice problems and their respective mechanisms ¹ and ¹d have a notable distinction
in terms of the agent's participation: although it may be voluntary in the original game ¡;
the agent's involvement in the direct-revelation game ¢ is always involuntary. Clearly, the
action-sets Ti of ¢ have no exit components; every agent- type reports to the designer. Since
involvement in ¢ is involuntary, no incentives beyond those for truthful revelation of type are
needed. It is for this reason that the free-exit constraint (2.6) is void of incentives. By satisfying
(2.8) alone the designer provides to the agents all the inducements he ¯nds necessary.

To see explicitly the su±ciency of the incentive-compatibility, we specialize it below to the
participating and the nonparticipating types. Both the type realization and the report of an
agent may be of either kind, so we consider four possibilities.

Participating Agent-Types: ti 2 T pi : If the social choice function © is incentive-compatible,
the agent-type ti cannot gain by reporting itself falsely. This is so regardless of whether he
misreports himself as another participating type ¿i 2 T pi ; or a nonparticipating ¿i 2 Tni : In
the former case, we have the following (optimality-of-)truth-telling constraint, which is merely
a restatement of (2.8):

8ti; ¿i 2 T pi ; E [ui (©(t); t) j ti] ¸ E [ui (©(¿i; t¡i); t) j ti]: (2.9)

We reserve the term truth-telling for (2.9) to di®erentiate it from its antecedent (2.8). They
di®er only in scope: whereas (2.8) is imposed on all of the agent-type pairs, ti; ¿i 2 Ti; the
truth-telling condition (2.9) holds only on the participating ones: ti; ¿i 2 Tpi : The intuition
behind the reduction in scope is clear: once the participation of ti is secured (via an appropriate
restriction; see below), he is not tempted to mimic the abstaining types. The only remaining
ones are of the participating kind, and the role of the truth-telling constraint is to make these
reports unpro¯table.

When the type ti 2 T pi mimics a nonparticipating ¿i; we may utilize the free-exit constraint
(2.6) in the right hand side of (2.8). The inequality no longer involves ¿i; and becomes the
participation constraint:

8ti 2 T pi ; E [ui (©(t); t) j ti] ¸ Ui0(ti): (2.10)

Our use of the name \participation constraint" should not cause any confusion: it is merely
a special case of the incentive- compatibility constraint. Rather than being logically indepen-
dent, it is a joint consequence of the incentive-compatibility constraint (2.8) and the free-exit
constraint (2.6). Note also that it acts on the participating type values only.

The reduction of scope in (2.10) is intuitive. Suppose that the truth-telling has been secured
by the restriction (2.9). Then ti has no incentives to mimic the participating types. The only
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remaining ones are of the nonparticipating kind, and (2.10) precludes gains from such false
reports.

Thus, the truth-telling and participation incentives are decoupled from each other, and their
formal descriptions are given by (2.9) and (2.10). Note that it is the scope reduction from T to
T p in both restrictions that makes selective engagement feasible.

Nonparticipating Agent-Types: ti 2 Tni : A nonparticipating agent-type ti; too, may misre-
port himself as a participating type or another nonparticipating one. The counterpart of (2.9)
is trivially satis¯ed: the free-exit constraint (2.6) is presently applicable in both sides of the
inequality, which turns it into an identity.

The remaining condition, to which we refer as the nonparticipation constraint, removes
incentives for a nonparticipating type ti to misrepresent himself as a participating type ¿i : for
all agents i 2 I and ti 2 Tni ;

8ti 2 Tni ; 8¿i 2 Tpi ; Ui0(ti) ¸ E [ui (©(¿i; t¡i); t) j ti]: (2.11)

The preceding analysis leads to an equivalent representation of the incentive-compatibility:
Equivalence Theorem 2.1 Let a social choice function © : T ! X describe the allocations
to a set of agents I with type combinations in a set T =

Q
i2I Ti: Suppose that the agent's par-

ticipation in the collective choice is voluntary, and an abstaining agent i derives his reservation
utility Ui0 : Ti ! R from exogenous sources.

Then the function © is incentive-compatible if and only if for every agent i 2 I it satis¯es:

(i) the truth- telling constraint (2.9),

(ii) the participation constraint (2.10), and

(iii) the nonparticipation constraint (2.11).

The theorem explicates the incentives provided by the designer: to induce participation (from
those whom he wants to engage), nonparticipation (from those whom he wants to abstain), and
truth-telling (by the participating agent-types). The designer's reliance on incentives emerges
in (2.9){(2.11) for rather di®erent reasons. The truth- telling, as is well known, is necessitated
by the informational asymmetry between the designer and the agent. Formally, this may be
seen from the fact that a perfectly informed designer can easily satisfy this condition by the
so-called forcing mechanism that in°icts severe disutilities on the agents who falsify their types.
In fact, not only (2.9) but also (2.11) is satis¯ed by a forcing mechanism. However, in°iction
of disutilities for abstinence from choice is expressly forbidden by the exit right. Consequently,
even the mechanism of a perfectly informed designer is subject to the participation constraint
(2.10). The incentives provided to the agents induce them to forego the perfectly e®ective exit
right in their possession. As we can see, the incentive-compatibility is required even when the
designer is perfectly informed.

As an alternative, suppose that all participation rights lie with the designer. When perfectly
informed, he is then entirely unrestricted in his choice of mechanism: a forcing mechanism
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applies to all three constraints (2.9){(2.11). With only imperfect information, however, the
designer ¯nds himself at the other extreme | his choice is subject to all of these constraints. Of
course, having the exit rights in his possession, he is still able to force the agents to participate.
If given also the entry rights, he can exclude them as well. However, the lack of information
reduces the e±cacy of the participation rights: although their enforcement is still possible on the
agent-speci¯c basis, the type-speci¯c enforcement is not, and the designer resorts to incentives.

The operationalization of incentive-compatibility o®ered by the Equivalence Theorem a®ords
us a convenient criterion of mechanism feasibility. We shall exploit it in Section 3.1 in the
formulation of the designer's second-best optimization problem. Our present objective is to
isolate the restrictions stemming from two sources: participation rights and information.

Towards this end, we shall say that a mechanism is perfectly feasible if it can be implemented
by a perfectly informed designer in possession of all participation rights. Perfect feasibility is a
convenient benchmark in that it leaves the designer most free in his choices (he remains a subject
to the idiosyncratic restrictions of the institutional setting). The earlier discussed participation-
related restrictions may be recalled as an example. In particular, the unanimity of participation
is required in all one-agent choice problems | most notably, the principal-agent relationships.
Some multi-agent settings, such as bilateral trading, place this restriction on the designer as
well.

Further, we shall say that a mechanism is participation-feasible if the possession of the
participation rights alone makes it implementable. Similarly, a mechanism is informationally
feasible if a perfectly informed designer can implemented it even when all participation rights
lie elsewhere. Mechanisms in each of these two classes are, of course, perfectly feasible.

Under voluntary participation, we distinguish between the ¯rst- and the second-best mech-
anism depending on whether the designer is perfectly or partially informed. We shall refer to
the corresponding feasibility as being of the ¯rst and, respectively, second degree. The impact
of voluntary participation on mechanism feasibility may be summarized as follows.
Proposition 2.2 For collective-choice problems with voluntary participation:

(i) A mechanism is ¯rst-degree feasible if it is perfectly feasible and, in addition, satis¯es the
free-exit condition (2.6).

(ii) A mechanism is second-degree feasible if it is ¯rst-degree feasible and incentive-compatible
or, equivalently, if it satis¯es the conditions of free-exit (2.6), truth-telling (2.9), partici-
pation (2.10), and nonparticipation (2.11).

To summarize, the impact of voluntary participation is entirely localized by the free-exit
condition. The reduced in scope participation constraint merely re°ects incentive-compatibility
and allows for the selective engagement of the agents. For mechanisms with voluntary par-
ticipation, the Equivalence Theorem presents the designer with an alternative: either (a) the
incentive-compatibility alone should be satis¯ed on all type values, or (b) a combination of
truth-telling and participation be required to hold for the participating types only, in which
case they are complemented by the nonparticipation condition for the remaining type values.
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We presently adopt the second approach: as the next section indicates, it improves methodolog-
ical tractability and provides for a parsimonious formalization of the designer's optimization
problem.

3 Optimal Mechanisms

In this section, we formulate the mechanism-optimization problem (3.2){(3.5) and identify the
generic sources of welfare gains from selective engagement of the agents (Section 3.2).

3.1 The Mechanism-Optimization Problem

The optimization task of the designer is to maximize, by a judicial selection of a feasible mecha-
nism, the social value of the allocation made by the mechanism. This value is represented by the
designer's von Neumann-Morgenstern utility function, uD : X £ T ! R: In particular, uD(º; t)
is the social value of the exogenous alternatives.

When comparing mechanisms and their social choice functions, the designer is guided by the
induced preferences. For a perfectly informed designer, they are type-contingent and de¯ned
on the set XT £ T by V (©; t) = uD (©(t); t)) : The preferences of a less informed designer are
represented on XT by his ex ante expectation of V; namely, UD(©) =

R
T uD(©(t); t)P (dt):

To illustrate, consider the principal-agent model with hidden information, where the choice
set X0 is comprised of action-wage pairs (contracts) (x̂; ŷ) ; so that X = R2 [ fºg: A social
choice function © allocates either a contract from a menu (x; y) : T ! R2; or the \no-trade"
ending º: Both the contracting and the abstaining agent-types contribute to the social welfare,
which has the following ex ante expectation in terms of the sets (2.4):

Z

Tp
uD ((x(t); y(t)); t) P (dt) +

Z

Tn
uD (º; t) P (dt):

After the subtraction of the decision-independent quantity
R
T uD (º; t) P (dt); we ¯nd that the

principal's welfare may be equivalently viewed as the expectation of the contract value net of
the opportunity costs:

UD(©) =
Z

Tp

h
uD ((x(t); y(t)); t) ¡ uD (º; t)

i
P (dt): (3.1)

In more general, multi-agent choice problems, the domain of integration is the de¯ned in (2.3)
set T pG rather than T p:

We continue to focus on the settings with voluntary but not guaranteed participation, the
feasibility of which is speci¯ed in Proposition 2.2. The designer's optimization problem is thus
to ¯nd

max
©;Tp

Z

TpG

h
uD(©(t); t) ¡ uD(º; t)

i
P (dt) (3.2)
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subject to the truth-telling, the participation, and the nonparticipation constraints: for all i 2 I;

8ti 2 T pi ; E [ui (©(t); t) j ti] ¸ sup
¿i2Tpi

E [ui (©(¿i; t¡i); t) j ti]: (3.3)

8ti 2 T pi ; E [ui (©(t); t) j ti] ¸ Ui0(ti) (3.4)

8ti 62 T p; Ui0(ti) ¸ sup
¿i2Tpi

E [ui (©(¿i; t¡i); t) j ti]: (3.5)

The form of the designer's problem (3.2){(3.5) shows that the economically relevant domain
of the social choice function is the set TpG: Since ©(t) = º for all t 62 T pG; there are no choices to be
made at such type values. The set TpG is uniquely speci¯ed by the scope of participation T p; as
may be seen from (2.5). The designer has therefore two independent optimization instruments:3

the scope of participation T p; and the form of the social choice function © on the set T pG:
The traditionally assumed complete engagement obtains from (3.2){(3.5) with a ¯xed T p = T

and optimization with respect to © only. The nonparticipation constraint (3.5) is then vacu-
ously satis¯ed, and the remaining constraints (3.3){(3.4) become respectively the incentive-
compatibility condition and the participation constraint in their traditional forms. Since the
optimization with respect to © is partial, the complete-engagement mechanism may be subop-
timal.

It is instructive to compare the present optimization problem with that of the designer to
whom the agents' actions rather than their types are unknown. Concentrate for the moment on
the single-agent case, that is, two principal-agent models with, respectively, hidden information
(adverse selection) and hidden actions (moral hazard). It is easy to see what makes the former
considerably richer in terms of economic content. In both cases the designer has two optimization
instruments at his disposal, of which one is a function: the social choice function © in hidden
information, and the wage schedule for hidden actions. The two di®er signi¯cantly in the nature
of the second instrument: whereas the hidden action is a number, the scope of participation
T p is a set. In the case of hidden information, therefore, the principal has in¯nitely greater
°exibility in mechanism optimization.

The additional degrees of freedom in the hidden-information setting are re°ected in the
characterization of the optimal contract. Recall from HolmstrÄom [14] that the optimal hidden-
actions contract is characterized by two ¯rst-order conditions: the Euler equation, which governs
the optimality of the wage function; and the Fermat condition of the usual calculus, which deter-
mines optimality of the action allocation. A complete characterization of the hidden-information
contract, which is presented in the companion paper Faynzilberg [5], requires many more con-
ditions of optimality. A relatively simple example of Section 4.2 shows that besides the Euler
equations, multiple occurrences of transversality, corner, and free-end conditions are also gener-
ally needed. This is in addition to the Kuhn-Tucker and the rent-extraction conditions, which
are non-di®erential in nature. For the model of Section 4.2, the entire ensemble takes the form
of the equations (4.28){(4.33). In comparison to the hidden-actions case, optimization becomes
far more complex.



Participation Rights and Mechanism Design 17

Observe that the present framework is rather general in that it does not rely on any structural
features of the choice model. The continuity properties of the probability P have been left
unrestricted. More importantly, the proposed approach applies equally to the discrete and
continuous cases: both the choice set X0 and the set T may contain as components continua as
well as discrete subsets.

When the set T is discrete, the optimization problem (3.2){(3.5) acquires a combinato-
rial °avor. Interestingly, even when T is continuous, the possible pooling ambiguities make a
discrete-optimization step necessary as well. More speci¯cally, recall that the designer often
pools the types by assigning to them the same allocation. The analysis in Faynzilberg [5] shows
that the pooling regime is not generally unique. The corresponding social choice functions are
quantized and form a discrete spectrum of the locally optimal mechanisms. The methods of
continuous optimization, which produce the spectrum, must therefore be followed by a discrete
optimization within the mechanism. The second stage of this process may be nontrivial because
the spectrum may comprise dozens of members, even when the informational asymmetry has
relatively simple characteristics.

To conclude, optimization of mechanisms with voluntary participation, which is formally
represented by (3.2){(3.5), calls for the selective engagement of the agents. The scope of partic-
ipation T p is determined endogenously and jointly with the functional form of the social choice
function ©: While optimization may result in complete engagement, the result T p = T may not
be presumed without loss of optimality.

3.2 The Economic Impact of Selective Engagement

A compete assessment of the impact of selective engagement on the mechanism requires, nat-
urally, the knowledge of the optima in both settings | with and without the participation
constraint. We postpone this line of analysis until Section 4 and presently provide some in-
tuition behind the welfare gains from selective engagement. An inspection of the designer's
optimization problem (3.2){(3.5) reveals that they stem from three generic sources.

To begin, the designer's choice of the participation scope is an informational signal to all
the parties to the mechanism. Taken together, the sets (2.4) form a dichotomous classi¯cation
scheme. As is well known, classi¯cation reduces uncertainty: for a given scope of participation
T p; the likelihood of a participating type is given by the conditional on T p probability P; whereas
the prior uncertainty is expressed by P itself, hence generally greater.

The reduction in uncertainty may be quanti¯ed in terms of informational measures. Recall
(from, e.g., Martin and England [16], Faynzilberg [4], Faynzilberg and Kumar [9]) that the infor-
mation function I(p) = ¡ log p and its expectation, entropy, are natural measures of information
in a probabilistic experiment. Here p is the density of the probability P: Conditioning reduces
entropy (see, e.g., Cover and Thomas [2]). We conclude that selective engagement is always
informative. Further, any reduction in uncertainty makes the observer informationally closer to
the perfectly informed agent, so the informational asymmetry between them is reduced, hence
the distortions of the mechanism subside as well. The reduced incentive-compatibility pressures
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mitigate the information-related welfare loss.
Secondly, the mere exclusion of the agent-types that contribute negatively to the social welfare

improves the mechanism. Consider, for example, a monopoly pricing its good for consumers with
uncertain tastes. The ¯rm may ¯nd it unpro¯table to serve some parts of the market: even the
optimally chosen price need not o®set the production costs. Under these circumstances, a mere
withdrawal from the unpro¯table segments improves the expected pro¯ts of the monopolist.
In general, the removal from T of a P -positive set of types on which the integrand of UD is
negative, leads to a strictly positive change in the value of welfare function UD: Observe that
such deletion makes it easier to satisfy the truth-telling and the participation constraints. The
nonparticipation constraint tightens, however, so the deletion need not be feasible.

Finally, we observe that selective engagement may qualitatively change the informational
structure of the collective-choice problem. To illustrate, return to the type-pooling phenomenon.
Recall that the designer resorts to this costly device only when his ideal, that is, ¯rst-order
incentive-compatible allocation does not have appropriate monotonicity that oftentimes results
from the second-order considerations. Most of the settings in the extant literature, as well
as the principal- agent models of Section 4, admit e®ective type E(t) (Faynzilberg [5]), the
monotonicity of which determines the need for pooling. In the companion paper we ¯nd that
the type premium, E(t)¡t; is proportional to the shadow costs of incentive-compatibility, which
depend strongly on the participation scope T p: Hence, the latter may signi¯cantly alter, via
the shadow costs, the functional forms of the e®ective type E(t) and of the ideal allocation.
Although the complete-engagement mechanism may have involved pooling because the ideal
allocation was infeasible, the exclusion from participation of some types may obviate the need
for pooling of the rest.

The three aforementioned bene¯ts of selective engagement do not come without costs. The
explicit form of (3.2){(3.5) shows that these costs are of two kinds: the loss of the contribution
of the excluded types, when this contribution is positive; and the incentives re°ected in the
nonparticipation constraint (2.11).

The models of Section 4 suggest that, when the preferences satisfy the usually assumed
sorting condition, the nonparticipation constraint is rather mild: its e®ect is localized to the
marginal types on the participation-nonparticipation boundary. As for the positive contribution
of types foregone by their exclusion, it may be more than o®set by the easing of incentive-
compatibility pressures on the remaining types.

The balance between the bene¯ts and costs of selective engagement is resolved by the simul-
taneous optimization of the welfare value (3.2) with respect to the social choice function, and
the scope of agents' participation in the collective choice.

4 Optimization Methodology and Applications

In the present section, we extend the analysis of the principal-agent model with hidden infor-
mation that has been extensively studied in the economic literature (e.g., Mirrlees [20], Mussa
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and Rosen [21], Baron and Myerson [1], Maskin and Riley [18]). Following the rather general
approach of Guesnerie and La®ont [13] to such single-agent mechanisms, we distinguish and
illustrate two classes of models | depending on whether or not the principal is indi®erent with
respect to the monetary transfer.

In both cases, we exhibit explicitly the optimal contract. In doing so we pursue three
objectives. Firstly, we quantify the bene¯ts of selective engagement outlined in Section 3.2.
By comparing the value of the optimal contract to the traditionally used complete-engagement
regime, we determine the social cost of allocating the entry right to the agent. Alternatively,
the drop in the value of the mechanism may be viewed as the cost of imposing the participation
constraint on the designer. Secondly, we show that the informational asymmetry causes the
mechanism to undergo two kinds of distortions: in the form of the optimal contract ©; and
in the scope of participation T p: Thirdly, we present two optimization methodologies, the ¯rst
of which involves a two-stage optimization and has the advantage of showing explicitly the
interdependence of © and T p: The second methodology is more e±cient. It adopts and illustrates
the complete characterization of the optimal contract developed in Faynzilberg [5].

The agency settings considered below in Sections 4.1 and 4.2 have the following common
features. The principal acts as mechanism designer and to those agent-types that he wishes to
engage he o®ers a contract, (x̂; ŷ); in which x̂ is an action the agent must take in consideration
of a pecuniary transfer, ŷ: The set of allocations is X = R2 [ fºg; where the ¯rst component
contains contracts and º is the no-trade ending that leads to the reservation utilities UP

0 and UA
0

of the respective parties. The parties' preferences for contracts are separable in the action and
money. By P we shall henceforth denote the cumulative distribution function of the respective
probability rather than the probability itself. Its density with respect to the Lebesgue measure
is denoted p:

4.1 The Principal-Agent Model: A Risk-Neutral Principal

We postpone characterization issues to the next section and presently rely on a two-stage opti-
mization procedure. Besides being e®ective in its own right, it allows us to demonstrate explicitly
the mutual dependence between the form of the optimal contract and the set of types to which
it is o®ered. In Section 5 we shall compare this method with the step-wise methods developed
in the auctions (Myerson [23] ) and agency literatures (Baron and Myerson [1] and Guesnerie
and La®ont [13]).

As we mentioned earlier, two of the objectives are to assess the information-related distor-
tions of the mechanism, and to quantify the cost of the entry right. Toward this end, we construct
two benchmarks: the ¯rst-best optimum (Proposition 4.3), and the best complete-engagement
regime (Proposition 4.2). They are subsequently compared to the second-best contract exhib-
ited in Proposition 4.3. In the notation for these contracts we employ superscripts: zero for the
¯rst-best, star for the complete-engagement by the imperfectly informed principal, and double
star for the second- best.

Following the classi¯cation of Guesnerie and La®ont [13], we ¯rst consider the following
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setting the with risk-neutral parties:

uP (x; y; t) = x ¡ y (4.1)

uA(x; y; t) = y ¡ x2

t
: (4.2)

The agent's type t; which is a real number in the unit interval T = [0; 1]; describes his aversion
to action. We ¯rst leave the ex ante uncertainty regarding the type unspeci¯ed: this allows
us to recognize the economically important e®ective type of the agent. To ¯nd the contract in
closed form, we subsequently specialize P to the uniform distribution.

The perfectly-informed principal As we discussed in Section 3.1, the perfectly informed
principal can rely on forcing contracts to elicit truth-telling and nonparticipation, but not par-
ticipation, from the agent. Of the three kinds of inducements explicated in Theorem 2.1, only
the participating incentives are utilized by the principal with the following results:
Proposition 4.1 Let the parties' respective reservation utilities be UP and UA and their pref-
erences for contracts given by (4.1){(4.2). Then the ¯rst-best contract,

8t 2 T 0p; ©0(t) =
³
x0; y0

´
=

µ
t

2
; UA

0 +
t

4

¶
; (4.3)

is formed with the agent-types in the participation set

T 0p = T \
h
4(UP + UA); +1

´
: (4.4)

It yields to the principal the indirect expected utility UP0 = t=4 ¡ UA
0 :

Not surprisingly, even the perfectly informed principal bene¯ts from selective engagement.
The size of the participation set in (4.4) may range from complete withdrawal of the principal
(T 0p = ;) to complete engagement of the agents (T 0p = T ). Whenever at least one of the
parties has lucrative exogenous opportunities, so that UP

0 + UA
0 > inf T = 0; contracting with

the agent-types t < 4(UP
0 + UA

0 ) becomes prohibitively costly for the principal. Being perfectly
informed of the type value, the principal excludes these values from T 0p; i.e., engages the agent
selectively. The extreme case of selective engagement is withdrawal, which the principal prefers
whenever 4(UP

0 +UA
0 ) > supT = 1: Here the principal extends to the agent no o®er whatsoever,

which is formally indicated in (4.3) by the empty domain of the function ©: The principal's exit
action aeP leads to an ex ante breakdown in contracting, i.e., the no-choice allocation º:

The principal's optimization problem The imperfectly informed designer need not choose
a simply connected scope of participation (Faynzilberg [7]): the set T p may be comprised of
several disjoint intervals of the set T: Given the objectives of the present paper, we omit the
details which rule out such possibility and assume that the participation set is an interval:
T p = [a; b] µ [0; 1] for some 0 � a � b � 1: Optimization with respect to T p involves, then, the
selection of two real variables, a and b:
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Proposition A.1 and Remark A.2 of the Appendix show that, instead of the transfer y;
the principal may optimize with respect to a constant, U(a); which is the utility of the least
participating type. With this modi¯cation, the principal's problem (3.2){(3.5) is to maximize
the welfare function,

UP (x; a; b) =
Z b

a
L(x(t); t;a; b)p(t)dt; (4.5)

the Lagrangian density of which,

L(x; t;a; b) =

Ã
x ¡ x2

E(t; b)
¡ U(a) ¡ UP

0

!
p(t); (4.6)

is expressed in terms of the e®ective type E(t; b) :

E(t; b) =
t2p(t)

tp(t) + P (b) ¡ P (t)
: (4.7)

As the ¯rst step in solving the principal's problem, we ¯x an arbitrary scope of participation
and optimize UP with respect to the rest of degrees of freedom: the contract (x; y) and the
constant U(a): This stage results in a partially optimized contract (x¤(t; a; b); y¤(t;a; b)) that
yields the scope-contingent utility UP ¤(a; b) = UP (x¤; a; b) to the principal. The explicit form
of this contract is given in (4.8){ (4.9) below. At the second stage, we determine the optimal
scope [a¤¤; b¤¤] by maximizing UP ¤(a; b) with respect to the boundaries a and b: Proposition
4.3 presents the fully optimal, second-best contract in terms of its functional form, (x¤¤; y¤¤) =
(x¤(t;a¤¤; b¤¤); y¤(t;a¤¤; b¤¤)) ; and domain, Tp¤¤ = [a¤¤; b¤¤]:

Stage 1: partial optimization Optimality of the contract with respect to U(a) is attained
by the complete rent extraction from the type t = a; i.e., U(a) = UA

0 : This outcome of opti-
mization is far from general: although there always exists a type with zero rent from private
information, it may lie anywhere within the participation set, and must be determined endoge-
nously (Faynzilberg [5, 6]).

The ideal action allocation, x¤; may be found by inspection. Observe that the Lagrangian
(4.6) is the principal's welfare function with the actual type t replaced by the e®ective type
(4.7). Hence, the ideal allocation may be expressed in terms of its ¯rst-best counterpart (4.3)
as follows:

x¤(t; a; b) = x0 ± E(t) =
E(t)

2
: (4.8)

It is well known that the ideal allocation need not be feasible: while (4.8) satis¯es the ¯rst-order
optimality of truth-telling, it must also be monotonically increasing to satisfy the second-order
condition of optimality. On the intervals where the e®ective type E(t) is a decreasing function,
the designer deviates from the ideal allocation and resorts to pooling.

The general theory of the e®ective type is presented in the companion paper Faynzilberg [5]
which contains, in particular, an existence criterion for E: Not all choice problems admit e®ective



Participation Rights and Mechanism Design 22

type. When they do, however, the optimization task for the imperfectly informed designer is
easily ful¯lled: his ideal allocation x¤(t) to type t is the ¯rst- best allocation to the e®ective
type E(t):

Most of the parameterizations encountered in the extant literature admit e®ective type. The
results are usually expressed in terms of a related quantity, the so-called virtual type, which in
the current setting appears in the generalized form

J(t; b) =
t2

E(t; b)
= t +

P (b) ¡ P (t)

p(t)
:

The special case, J(t; 1); which corresponds to the complete engagement, has been encountered
in a variety of mechanisms, such as auctions (Myerson [23]), bilateral trading (Myerson and Sat-
terthwaite [25]), monopoly pricing (Maskin and Riley [18]), and regulation (Baron and Myerson
[1]). Although the e®ective and the virtual types are related, it is the e®ective type rather than
the virtual that a®ords the uni¯ed treatment of the general mechanism-design framework.

Returning to the parameterization at hand, we substitute (4.8) into (A.1) and (4.2) to ¯nd
the ideal monetary transfer:

y¤(t;a; b) = UA
0 +

E2(t; b)
4t

+
Z t

a

µE(¿ ; b)

2¿

¶2
d¿: (4.9)

The pair (4.8){(4.9) is the optimal contract for an arbitrary but heretofore ¯xed scope [a; b].
An inspection of these expressions reveals two of the three e®ects of selective engagement, which
we discussed in Section 3.2. The ¯rst of those e®ects manifests itself in the range of integration
in (4.9) being reduced to [a; t] by the exclusion of types below a: The third of the discussed
e®ects may be seen in the very dependence on b of the e®ective type E:

Below, we use the partially optimized contract (4.8){ (4.9) in two ways. First, we specialize
it to [a; b] = [0; 1] and thereby ¯nd the best complete-engagement contract (Proposition 4.2).
And, second, we optimize (x¤; y¤) with respect to the scope of participation [a; b] and obtain the
second-best contract (Proposition 4.3). We henceforth specialize P to the uniform distribution:
P (t) = t and E = t2=b: Since the ideal contract is feasible, it is also optimal.

The best complete-engagement contract is a special case of (4.8){(4.9) with a = 0 and
b = 1: It has the following form:
Proposition 4.2 Let the parties' respective reservation utilities be UP and UA; their preferences
for contracts given by (4.1){(4.2), and the distribution of types be uniform on the unit interval
T = [0; 1]: Then the complete-engagement contracting is feasible if and only if UP

0 +UA
0 � 1=12;

in which case the best such contract has the form

8t 2 [0; 1]; x¤(t; 0; 1) =
t2

2
; y¤(t; 0; 1) = UA

0 +
t3

3
; (4.10)

and yields to the principal the indirect expected utility UP ¤(0; 1) = 1=12 ¡ UA
0 :



Participation Rights and Mechanism Design 23

It is easy to see that the complete-engagement contract (4.10) is suboptimal. To begin,
observe that it calls for the employment of the agent even when he not contractible in the
perfect- information situation. To ¯x ideas, let UA

0 = 1=12 and UP
0 = 0: According to Proposition

4.1, the principal excludes the agent-types in the interval [0; 1=3); o®ers the ¯rst-best contract
(x0; y0) = (t=2; t=4 +1=12) to the rest, and attains the utility t=4 ¡ 1=12 from the agent of type
t: Under the complete-engagement (4.10) the imperfectly informed principal is forced to employ
the previously excluded agent-types t < 1=3: With less information available to the principal
these types can become only more costly, and their engagement is clearly deleterious to social
welfare.

A direct examination of the contract (4.10) leads to the same conclusion. The ex post
contribution of type t to the principal's welfare is

uP (x¤; y¤; t)
¯̄
¯a=0
b=1

= x¤(t; 0; 1) ¡ y¤(t; 0; 1) =
t2

2
¡ t3

3
¡ UA

0 ; (4.11)

which is negative when the reservation utility is positive and the values of t and small. In the
preceding example of UA

0 = 1=12; half of the agent-types | those in the interval [0; 1=2] |
contribute negatively. The exclusion of these types will have a positive e®ect on the principal's
welfare. Below we show that such exclusion is, in fact, feasible, and the second-best contract
presented in Proposition 4.3 is formed only with the types t ¸ 2=

p
12: It results in the principal's

utility UP ¤¤ = 0:032 | strictly better than UP ¤(0; 1) = 0 from the complete-engagement
contract (4.10).

Stage 2: the second-best contract The gradient of the partially optimized welfare function
UP ¤(a; b) = UP (x¤; a; b) determines the optimal scope of participation. Whenever both of the
following inequalities are satis¯ed,

@UP ¤(a; b)

@a
� 0;

@UP ¤(a; b)

@b
¸ 0; (4.12)

the engagement is complete and selective otherwise. In computing the gradient of UP ¤(a; b); we
invoke the Envelope Theorem and ignore the dependence on a and b in the partially optimized
contract (x¤; y¤) :

@UP ¤

@a
= ¡L(x¤(a; b); a; b) = p(a)

�
UA
0 ¡ x¤(a; b)

2

¸
= UA

0 ¡ a2

4b
;

@UP ¤

@b
= L(x¤(b; b); b; b) +

bZ

a

@L(x; t; b)

@b

¯̄
¯̄
x=x¤(t;b)

dt

= p(b)

"
x¤(b; b)

2
¡ UA

0 ¡
Z b

a

x¤2(t; b)
t2

dt

#
=

b

6
+

a3

12b2
¡ UA

0 :
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It is easy to see that the optimal pair (a¤¤; b¤¤) is not in the interior of the unit square T 2 : the
sum of the above derivatives is equal to (2b3 ¡ 3a2b + a3)=(12b2) and positive for all b > a: In
determining the component of the boundary on which the maximum is attained, we concentrate
on the economically more interesting case of a positive reservation utility.4 The Fermat condition

(4.12) has a unique solution, a¤¤ = 2
q

UA
0 b; hence the selective engagement is optimal. The

proof of the next proposition indicates (see Appendix) that the derivative @UP ¤=@b is positive,
so the optimal is attained on the upper boundary of the set T :
Proposition 4.3 Let the respective reservation utilities of the contracting parties be UA

0 and
UP
0 ; their contracting preferences given by (4.1){(4.2), and the agent's types distributed uni-

formly on the unit interval T = [0; 1]: Then contracting is feasible if and only if UP
0 + UA

0 ¡
(4=3)

³
UA
0 _ 0

´ 3
2 � 1=12; in which case the second-best contract

x¤¤(t) = x¤(t;a¤¤; b¤¤) =
t2

2
; y¤¤(t) = y¤(t; a¤¤; b¤¤) = UA

0 +
4t3 ¡ a¤¤3

12
; (4.13)

is formed with the agent-types in the set

Tp¤¤ = [a¤¤; b¤¤] =

�
2
q

UA
0 _ 0; 1

¸
(4.14)

and yields to the principal the indirect expected utility UP ¤¤ = 1
12 ¡ UA

0 +
4(UA0 _0)

3
2

3 :
The conclusions of Propositions 4.2 and 4.3 allow us to assess quantitatively the social cost

of placing the entry right with the agent and thereby imposing on the designer the participation
constraint. To see the details, we shall assume for the remainder of the section that the agent's
reservation utility is positive. The second-best contract (4.13) is clearly superior: it exists even
when the complete engagement fails, as may be deduced by a comparison of the respective

e±ciency frontiers UP
0 + UA

0 = 1=12; and UP
0 + UA

0 ¡ (4=3)
³
UA
0 _ 0

´3=2 � 1=12: Moreover,

whenever both regimes are feasible, the utility attained under selective engagement is greater

by the amount (4=3)
³
UA
0

´2=3
; which is, then, the social cost of the entry right.

The earlier discussed e®ects of the selective engagement are quanti¯able as well. Observe,
speci¯cally, that the negatively contributing low type values are excluded altogether: the con-

tract is o®ered only to t ¸ 2
q

UA
0 : The functional distortions for the remaining types are reduced

due to the diminished disparity in information between the parties: the transfer y¤¤ is reduced
by a¤¤3=3 in comparison to the complete-engagement contract (4.10), while the action allocation
remains the same.5

In order to see the full extent of distortions, we compare the second-best contract of Propo-
sition 4.3 with its ¯rst-best counterpart of Proposition 4.1. The functional form of the action
allocation changes from linear, x0 = t=2; to quadratic, x¤¤ = t2=2 on the common domain

t ¸ a¤¤ = 2
q

UA
0 ; while the transfer is distorted by y¤¤ ¡ y0 = (4t3 ¡ 3t ¡ 2UA

0

3
2 )=12:
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The scope of participation is also distorted. It is reduced in size: the agents in the intervalh
4(UP + UA); a¤¤

´
contracted by the perfectly informed principal are not engaged by the lesser

informed one. Observe that the complete-engagement contract aggravates the principal's di±-
culties: it expands rather than reduces the scope of participation, and forces the principal to
form a contract even with the prohibitively costly agent-types.

4.2 The Principal-Agent Model: A Transfer-Indi®erent Principal

The presently analyzed agency setting is somewhat more representative than that of the pre-
ceding section: it leads to an optimal contract with both separating and pooling features. We
utilize it to illustrate the characterization of the optimal contract developed in Faynzilberg [5].

The adopted parameterization of preferences places this model into the second class of agency
settings in the classi¯cation of Guesnerie and La®ont [13]. The principal has an \ideal point"
| a type-contingent action allocation,

x0(t) = (t ¡ 1)2;

in terms of which

uP (x; y; t) = 2
h
1 ¡ 40(x ¡ x0(t))

2
i

(4.15)

uA(x; y; t) = 5
h
y ¡ x2(3 ¡ t)

i
: (4.16)

The type values are distributed uniformly on the interval T = [0; 2] of real numbers.
For a perfectly informed principal, the complete engagement of the agent is best; he allocates

to all types the action x0(t): A less informed principal is better o® under the selective-engagement
regime, as reported in Proposition 4.5 below. As for the complete engagement, we have the
following:
Proposition 4.4 Let the parties' respective reservation utilities be UP and UA; their preferences
for contracts given by (4.15){(4.16), and the distribution of types be uniform on the unit interval
T = [0; 2]:

Then the complete-engagement contracting is feasible if and only if UP
0 � ¡5=2; in which

case the optimal contract has the form
³
x0(t _ 3

2 ); y
¤(t _ 3

2)
´

; where x0 is the ideal allocation,

y¤(t) = y0 ¡ 12t + 20t2 ¡ 16t3 + 6t4 ¡ 4t5

5
; (4.17)

and y0 is a constant that is bounded below by UA
0 =5 + 3 but arbitrary otherwise. The contract

yields to the principal the indirect expected utility UP ¤(0; 1) = ¡5=2:
The type value t = 3=2 delineates the pooled and the separated regions. Observe that

the contribution to UP of the separated types t ¸ 3=2 is positive (and equal 2), whereas the
contribution of a pooled type t;

uP
µ

x0(
3

2
); y¤(

3

2
); t

¶
= 2 ¡ 5

µ
t ¡ 1

2

¶2 µ
t ¡ 3

2

¶2
; (4.18)
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is negative for most of the values t � 3=2; which suggests that selective engagement is potentially
bene¯cial for the principal.

That the complete-engagement mechanism may be improved upon may be quickly deduced
by considering T p = [1; 2] as an alternative. Such selective engagement, if feasible, yields to
the principal the utility 1 | strictly better than UP ¤ = ¡2:5 under the complete-engagement
conditions of Proposition 4.4. Indeed, the action x0(t) may be allocated to all participating
types because x0 is increasing for t ¸ 1: Every agent-type t contributes, then, 2 units of utility,
the probability of the event t ¸ 1 is 1/2, so the expected value UP = 1: Full optimization
reported as Proposition 4.5 below improves this utility value even further, to UP = 1:37:

The principal's optimization problem under selective engagement is to choose a partici-
pation set [a; b] µ [0; 2] and a de¯ned on [a; b] contract (x; y) that jointly maximize his expected
utility,

UP =
Z b

a
uP (x(t); y(t); t)

dt

2
; (4.19)

subject to the truth-telling, the participation, and the nonparticipation constraints. As most
of the extant literature, we utilize the second-order approach to truth telling, that is, replace it
with the ¯rst- and second-order condition of optimality. Feasibility is de¯ned, therefore, by the
following constraints:

8t 2 [a; b];
@uA

@x
_x +

@uA

@y
_y = 0 (4.20)

8t 2 [a; b]; _x ¸ 0 (4.21)

8t 2 [a; b]; uA(x(t); y(t); t) ¸ UA
0 (4.22)

8t 62 [a; b]; UA
0 ¸ sup

¿2[a;b]
uA(x(¿); y(¿); t): (4.23)

The monetary transfer is decoupled from the rest of the problem: because the principal is
indi®erent with respect to the transfer, the latter is present only in the equation (4.20), which
may be chosen to be continuous:

8t 2 [a; b]; y(t) = y(a) +
Z t

a
(3 ¡ ¿)

d

d¿
x2(¿)d¿: (4.24)

We shall relax the principal's problem further by ignoring at ¯rst both the participation and the
nonparticipation constraints: they impose a restriction only on the integration constants (see
the proof of Proposition 4.5 on the Appendix).

To summarize, the remaining principal's problem is to maximize (4.19) with respect to x; a;
and b; subject to the condition (4.21). The classical method of undetermined multipliers allows
us to replace it with an unconstrained maximization of

R b
a L(x(t); t)dt; where

L(x; _x; t) = 1 ¡ 40[x ¡ x0(t)]
2 + ´(t) _x(t) (4.25)
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is the Lagrangian obtained by adding to the integrand of (4.19) the left hand side of the con-
straint (4.21) multiplied by the yet to be determined factor ´(t): The latter is chosen to satisfy
the Kuhn-Tucker condition

8t 2 [a; b]; ´(t) _x(t) = 0; (4.26)

the form of which allows for both the separation ( _x > 0) and the pooling ( _x = 0) of types. The
boundary value between the pooling and separating regions is denoted t0:

A complete characterization of solutions The ¯rst-order necessary conditions of opti-
mality express the continuity of the Lagrangian along the optimal path (Faynzilberg [8]). In
the problem at hand, the potential discontinuities of the Lagrangian (4.25) may arise6 in the
interior of the participation set [a; 2]; at the point t = t0; and at the boundaries t = a and t = 2:
Accordingly, we have the following ¯rst-order conditions.

In the interior of the participation set [a; 2], the Euler equation,

@L

@x
¡ d

dt

@L

@ _x
= 0;

which in the present case has the form

_́(t) = ¡80[x(t) ¡ x0(t)]; (4.27)

must be satis¯ed. For the separated types _x > 0; the allocation x0 is feasible: by the Kuhn-
Tucker condition (4.26), ´ = 0 identically, and (4.27) becomes

8t 2 [t0; 2]; x(t) = x0(t): (4.28)

The pooled types receive a constant allocation, say C: For these values, the Euler equation yields
the shadow cost of incentive compatibility. Once the continuity of ´ is ascertained (see below
and Faynzilberg [5] for details),

8t 2 [a; t0]; ´(t) = ´(t0) ¡ 80
Z t

t0

[C ¡ x0(¿)]d¿: (4.29)

At the boundary t = 2, the momentum of the allocation must vanish by the transversality
condition:

@L

@ _x

¯̄
¯̄
t=2

= 0:

In the present case it is trivially satis¯ed since the momentum is equal to the shadow cost ´;
which vanishes for all separated types.

At t = t0, the contract x has a kink, so both the momentum and the Hamiltonian of the
allocation must be continuous (Erdmann corner conditions):

�
@L

@ _x

¸

t0

= 0;

�
L ¡ _x

@L

@ _x

¸

t0

= 0:
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Here the brackets denote a jump at the speci¯ed point: for any function f(t); the notation [f ]¿
stands for limt!¿+0 f(t)¡ limt!¿¡0 f(t): For the present parameterization these conditions take
the form

[´]t0 = 0; [1 ¡ 40(x(t) ¡ x0(t))
2]t0 = 0:

Thus, both x and ´ must be continuous at t0; hence

x0(t0) = C; ´(t0) = 0: (4.30)

At the boundary t = a, we impose the free-end conditions,

@L

@ _x

¯̄
¯̄
t=a

= 0; L(x(t); t)jt=a = 0; (4.31)

that require the momentum of the allocation and the contribution of the marginally participating
type to vanish. They have the following form:

´(a) = ´(t0) ¡ 80
Z a

t0
[C ¡ x0(¿)d¿ = 0 (4.32)

1 ¡ 40 [x(a) ¡ x0(a)] = 0: (4.33)

Equations (4.28){(4.33) jointly characterize the second-best contract. Conditions such as
transversality are often viewed as technical in nature and useful only in ¯xing the constants of
integration of the Euler equation. We have just seen, however, that they govern the optimality
of the principal's choices with respect to their respective degrees of freedom | to the same
extent as the Euler equations do that in the interior of Tp:

As a consequence of (4.30) and (4.32), we obtain an instance of the general quantization
condition that determines the optimal pooling regimes (Faynzilberg [5]):

Z t0

a
[x0(t0) ¡ x0(¿)] d¿ = 0: (4.34)

In general, this condition has multiple solutions. When this is the case, there are multiple
contracts that satisfy the ¯rst-order conditions (4.28){(4.33). In the space of social choice
functions, these contracts do not lie close to each other. Rather there is a quantized spectrum
of optimal contracts, each of which is a candidate for the second best. An additional step is
required therefore to select from the spectrum a global optimum. This global optimum need
not be unique.

In conclusion of this section, we solve the system (4.28){(4.33) for the optimal contract.
Under the assumptions made, it has a unique solution, which puts us in a position to assess the
bene¯ts of selective engagement and the informational distortions:
Proposition 4.5 Let the respective reservation utilities of the contracting parties be UA

0 and UP
0 ;

their contracting preferences given by (4.15){(4.16), and the agent's types distributed uniformly
on the unit interval T = [0; 2]:
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Then contracting with the agent of an arbitrary type is feasible if and only if UP
0 � UP¤¤ =

1 + (8=5)360¡
1
4 : In this case UP¤¤ is the indirect expected utility of the principal derived from

the second-best contract
³
x0(t _ 3

2); y
¤¤(t _ 3

2 )
´

; where x0 is the ideal allocation, t0 = 1+360¡
1
4 ;

and

y¤¤(t) =
1

5

h
UA
0 + 14

³
1 + 360¡

5
4

´i
¡ 12t + 20t2 ¡ 16t3 + 6t4 ¡ 4t5

5
: (4.35)

The corresponding numerical values are as follows:

a¤¤ = 0:54; t0 = 1:23; x0(t0) =
p

10=60 = 0:05; UP ¤¤ = 1:37:

A comparison of the second-best contract of Proposition 4.5 with the best complete-engagement
contract of Proposition 4.5 demonstrates once more the bene¯ts of selective engagement. The
exclusion of the types t < a¤ = 0:54 improves the principal's welfare from UP¤(0; 1) = ¡5=2
to UP ¤¤ = 1:37: This improvement is made possible by the two earlier discussed e®ects: the
exclusion of the unproductive types, and the reduction in the informational asymmetry. Ob-
serve, speci¯cally, that selective engagement permits the principal to allocate the ideal action
x0 to a greater proportion of types: all separated types are in the interval [1:23; 2] vs. [1:5; 2]
under complete engagement. The action allocated to the pooled types lies more close to the
ideal point (t ¡ 1)2 as well: it is x0(t0) = 0:05 whereas the complete-engagement allocation
is x0(3=2) = 0:25: As in the preceding model, we observe the second kind of distortion: the
set of participating types subsides from the ¯rst-best, complete-engagement value T = [0; 2] to
T p = [0:54; 2] for the second best.

5 Other Approaches to Selective Engagement

The extant literatures on auctions, contracting, etc., contain numerous examples of mechanisms
where the involvement of agents is incomplete. For the purpose of comparison with the present
framework, we brie°y revisit the alternative methods.

Two methodologies of addressing agents' nonparticipation appear to be prominent. The
¯rst, to which for brevity we refer as the equivalence argument, attempts to make the agents'
nonparticipation endogenous to choice. According to this argument, the mechanism allocates
quantities of goods to the agents, so whenever the designer wants to exclude some agent- type,
he merely allocates to it the goods in quantity zero. Therefore, the agents' abstinence need
not be considered separately from choice outcomes, as we have done in the present framework.
The second approach relies on what we shall call exclusion functions. It is most prominently
exempli¯ed by the monopoly-regulation model of Baron and Myerson [1] where a \shutdown"
variable at the disposal of the regulator allows him to exclude explicitly the ¯rm of a given cost
type. This method appears to be more closely related to our framework, which relies on the
participation sets rather than functions.
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Although intuitively appealing, the two aforementioned approaches su®er from certain method-
ological di±culties. In addition, their validity appears to depend on some idiosyncrasies of the
mechanism, so the properties of the resulting mechanisms may not be generalizable.

To see why the equivalence argument may not be generally valid, consider it ¯rst in further
detail. To ¯x ideas, we present it in the context of bilateral trade as in Myerson and Satterthwaite
[25], where the buyer and the seller exchange the object of trade and the numeraire. The outcome
of their collective choice is a pair of the respective transfers, (q; y); where q 2 f0; 1g is quantity
of the good sold, and y 2 R is the payment to the seller. The choice set is comprised of two
copies of the real line, X0 = (f0g £ R) [ (f1g £ R) and includes the zero transfer, ~x = (0; 0):
The preferences in Myerson and Satterthwaite [25] are trilinear in q; y; and type: the respective
utilities of the buyer and the seller are uB(q; y; tB) = tBq ¡ y and uS(q; y; tS) = ¡tSq + y; in
which the agents' types tB and tS parameterize their tastes for the good.

When applied to bilateral trade, the equivalence argument would suggest that the zero
transfer ~x = (0; 0) e®ectively excludes the agent-type to which it is allocated. Hence, if the
mechanism designer wishes to prevent the trade between the buyer of type tB and the seller of
type tS; he selects a social choice function © so that ©(tB; tS) = ~x: Although ~x is a transfer and
therefore a choice outcome, it is economically equivalent to the no-trade ending º: The abstinence
from choice | an exogenously speci¯ed feature of the model | is handled endogenously, as a
choice outcome, by the equivalent transfer ~x: If no loss of generality is incurred, this approach
should lead to the same results as the present framework, perhaps with even greater e±ciency.

The argument is not generally valid, however. Contrary to its postulate, the allocation ~x is
not economically equivalent to the no-trade ending º: Some of the di®erences between the two
are as follows.

To begin, observe that the allocations º and ~x are informationally incommensurate. Con-
sider the buyer and the seller who attempt to predict their indirect utilities in two cases: ex
ante, before receiving an incentive-compatible message ¹ from the designer; and in the interim,
upon receiving this message.7 For the nonparticipating types the message ¹ carries no new in-
formation: they take exit actions, the consequences of which they knew ex ante. In contrast, for
the parties of a participating type combination t; the message ¹ is informative. Their truthful
reports ¶T (t) = t lead them to expect the speci¯ed by ¹ allocation x = ¹± ¶T (t): This allocation,

although random in the interim, yields certain expectations | E
h
uB(x; tB) j tB

i
for the buyer

and similarly for the seller. These expectations are dependent on ¹; so this message is indeed
informative.

Further analysis of the equivalence argument reveals additional di±culties. To see them,
suppose that this argument is valid: there exists a choice outcome ª 2 X0; not necessarily zero,
that is economically equivalent to the breakdown of trade º: Then such ª = (ªq;ªy) must be
type-contingent because two allocations should yield the same utilities:

E
h
uB (ªq;ªy; t) j tB

i
= UB

0 (tB); E
h
uS (ªq;ªy; t) j tS

i
= US

0 (tS): (5.1)

A specialization to a uniform distribution shows at once that a constant ª does not satisfy
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this system with arbitrary reservation utilities. Thus, the outcome ª; which is posited by the
equivalence argument, is not even an outcome | it is a social choice function.

Of course, the idiosyncrasies of the setting may result in this function being constant. The
system (5.1) is solved by ª(t) = ~x = (0; 0) whenever the reservation utilities vanish identically,
as assumed in Myerson and Satterthwaite [25]. Observe that this choice of the reservation
values is rather special: it assumes that, in economic terms, the exogenous opportunities are
equivalent to the status quo. The pre-trade conditions in which the parties ¯nd themselves
are entirely di®erent and independent from the outside options they may have, so the assumed
parity between the two is coincidental.

Further, even when the equivalent social choice function ª exists, it need not be feasible.
Recall that the second-order considerations usually require the allocations to be appropriately
monotone. The derivative of the reservation utility is arbitrary, however, and the expectations
E [ªq(t) j tB ] and E [ªq(t) j tS] in (5.1) need not have the appropriate monotonicity. Of course,
additional idiosyncrasies may still make this possible. In Myerson and Satterthwaite [25], for
instance, the assumed risk- neutrality of both parties allows ª to be incentive- compatible.

Furthermore, not only is the incentive-compatibility of ª in question, but it may not be
even ¯rst-degree feasible. With arbitrary reservation utilities, the path ª(t) may lie outside the
region in R2 de¯ned by the initial endowments and the indivisibility of the goods being traded.
In system (5.1), for instance, ªq may take only the values 0 and 1. For some values of the
reservation utilities, this may be too restrictive and render ª infeasible.

Moreover, even the very existence of the ª is problematic due to the curse of dimensionality.
The equivalence of ª and º requires, in addition to (5.1), the designer's indi®erence as well:
uD (ªq; ªy) = UD

0 : The resulting system of three equations cannot be generally solved with only
two degrees of freedom in ª = (ªq;ªy):

Finally, the economic interpretation may preempt the equivalence argument altogether. To
illustrate, consider the agency setting, for which zero allocation ~x may be suggested as being
equivalent to the nonparticipation of the agent. Recall that in the moral-hazard model, the
agent is called upon to take action, a; in exchange for wages, w: Here © = (a;w) and under the
allocation ~x = (0; 0); the agent is not paid for the action a = 0 taken by him. We speak of a
as \action" and often interpret it as the agent's e®ort. This is no more than an abbreviation
device, however. The value of a is actually a factor in the production technology, and the agent's
action amounts to the selection of a level of that factor. The distinction is presently relevant: as
factors of production, all values of a; including a = 0; are part of the technological speci¯cation
of the agency setting. When a contract is not formed, however, the agent does not use the
principal's technology. Thus, working for the principal with zero e®ort under the allocation ~x is
distinct from not working for him at all. The agent's abstinence has no equivalents among the
factors of the production technology.

We conclude that the equivalence argument lacks general validity. It may be applicable in
some settings due to their additional, idiosyncratic features. Such exceptional situations are
characterized in the following proposition, which summarizes the preceding analysis.
Proposition 5.1 The endogenous treatment of nonparticipation is valid if and only if there
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exists a choice-valued function ª : T ! X0 that satis¯es all feasibility requirements of the
choice problem at hand and, in addition, provides the reservation utilities to all parties:

8i 2 I; 8ti 2 Ti; E [ui (ª(t); t) j ti] = U0i(ti) (5.2)

E
h
uD (ª(t); t)

i
= E

h
uD(º; t)

i
: (5.3)

If a function ª has the properties annunciated in the proposition, the designer is free to
choose a social choice function © so that it coincides with ª for some types. The allocations to
these types are economically indistinguishable form their exogenous opportunities. The e®ect
on the mechanism is the same as if these types were excluded, i.e., selectively engaged by the
designer.

The regulatory setting of Baron and Myerson [1], to which we turn for the remainder of
the section, exempli¯es the second approach to selective engagement, by means of the exclusion
functions. The regulated monopolist receives an allocation (r; p; q; s) that consists of a price p
to be charged by the ¯rm, a prescribed output level q; a subsidy s to be provided to the ¯rm by
the regulator, and r | \the probability that the regulator will permit the ¯rm to do business
at all." When r = 0; the authors refer to the ¯rm as being shut down, hence nonparticipating
in the market; the other extreme, r = 1; corresponds to the ¯rm operating with certainty.

In comparison to the mechanism-optimization problem of Section 3.1, this formulation has
two additional layers. Although the regulator shuts down the ¯rm of some cost types, these
type values are initially included into the scope of participation. This is done by subjecting
the regulator to the participation constraint that must be satis¯ed by all types, including those
that will be ultimately shut down. The extraneous types t are subsequently removed by the
\shutdown" variable: r(t) = 0: In comparison, the formulation (3.2){(3.5) of the regulator's
problem appears to be more parsimonious and e±cient: it avoids the nonparticipating types
altogether and makes the exclusion variable r unnecessary.

The presence of the shutdown variable creates, in fact, certain di±culties in both interpre-
tation and selection of the regulatory policy. Optimization of the policy is carried out in a
two-stage procedure, which is an adaptation of the auction- design method developed by My-
erson [23]. This procedure is very similar to the one we have o®ered in Section 4.1, and we
compare the two in more detail below. Baron and Myerson begin with ¯nding, for the ¯rm
of each cost type t; the optimal operating regime (p¤(t); q¤(t); s¤(t)) and compute its welfare
value. Next, the optimal scope of participation is determined by setting r(t) = 0 if type t
contributes negatively, and r = 1 otherwise. This yields the participation and nonparticipation
sets T p = r¡1(1) and Tn = r¡1(0); respectively.

It is not always clear how the monopolist should interpret the prescriptions of the regulator.
In what follows we shall omit the price and view the remaining triple © = (r; q; s) as the policy of
the regulator. Indeed, for a given level of output, the price of the good is determined by market
forces (the demand function is assumed to be known), hence beyond the regulatory control.
Observe that the ¯rst stage of the Baron-Myerson method results in a path (q¤(t); s¤(t)) with
positive q and s: Consider now a type value t being shut down by r(t) = 0 at the second stage.
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How should the monopolist of this type interpret the regulator's orders? His allocation is of the
form (0; q¤(t); s¤(t)); so he is required to seize operations (r = 0) and reach the production level
q¤(t) > 0 at the same time. The allocations to the nonparticipating types t 2 Tn do not appear
to be consistent.

The monopolist may attempt to regain consistency by an alternate interpretation. He may
view q¤ and s¤ in (0; q¤; s¤) as the quantity and the subsidy that would have been realized had
the ¯rm been allowed to operate, i.e., as if they where a part of the triple (1; q¤; s¤) instead. In
actuality, every non-operating ¯rm receives the allocation ~x = (0; 0; 0):

Unfortunately, this interpretation does not eliminate the aforementioned di±culties: it re-
places them with the methodological ones. The latter stem from the discontinuities in the
optimal policy, which experiences a jump every time it changes from (1; q¤; s¤) to (0; 0; 0) and
conversely. Far from being merely technical, this property is of considerable economic impor-
tance. As we have seen in Section 4.2, the regulator acquires additional optimization freedoms
whenever the allocation-subsidy path lacks continuity or smoothness. This additional °exibility
is gainfully exploited by the regulator both at the aforementioned jumps of the policy (disconti-
nuities), and at the boundaries of the pooling regions (kinks). Although the additional degrees
of freedom improve the optimization results, they require special handling during the process of
policy optimization.

Discontinuities along the regulatory path may be handled within the framework of the cal-
culus of variations or optimal control, as we have done in Section 4.2. The policy must be
assumed, then, to be only piece-wise continuous. Any imperfections along the path call into
existence the corresponding ¯rst-order conditions | transversality, quantization, free-end, etc.
A construction that does not utilize such conditions makes a tacit assumption regarding the
optimality of the regulator's decisions and may be, therefore, suboptimal.

Alternatively, the discontinuities of the policy may be handled by the calculus of general-
ized functions, or distributions in the sense of L. Schwartz. The di®erentiation of a generalized
function leads, however, to an additional term for each jump of the function.8 Thus, di®eren-
tiation without regard to these terms amounts to a supposition about their values, which may
be suboptimal.

Baron and Myerson rely on heuristic considerations based on convex approximations of
functions. Since the aforementioned e®ects are not addressed explicitly, it is di±cult to ascertain
the optimality of the conjectured second-best policy. The generalizability of the Baron-Myerson
method is also called in to question by the rather unlikely feature of the optimal policy: the
optimal output-subsidy allocations, (q¤(t); s¤(t)); depend only on the informational asymmetry
between the ¯rm and the regulator. We have seen, however, both in the general case of Section
3 and in the models of Section 4, that the policy (q; s) and the scope of participation T p are
mutually dependent. In fact, their interdependence is one of the generic sources of gains from
selective engagement. The regulator's task (3.2){(3.5) is the problem of joint optimization with
respect to T p and © precisely because the two cannot be chosen independently.

To see the source of the aforementioned feature of the Baron- Myerson solution, we explicate
their procedure in further detail and compare it to the step-wise procedure of Section 4.1. To
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ease the comparison, we specialize to T = [0; 1] and use the same notation.
The two approaches diverge at the ¯rst step of the optimization process. The Baron-Myerson

procedure begins with the complete engagement of the ¯rm, [a; b] = T = [0; 1] and, by an
elaborate convexity-related construction, computes the optimal quantity- subsidy regulation,
(q¤(t; 0; 1); s¤(t; 0; 1)) : At the second step, the assumption b = 1 is relaxed. The authors proceed
to maximize with respect to b the expected contribution of the ¯rm,

Z b

0
uD(q¤(t; 0; 1); s¤(t; 0; 1))dt: (5.4)

In comparison, the procedure of Section 4.1 begins with an entirely unrestricted participation
set [a; b]: The ¯rst step results in the partially optimized policy ((q¤(t; a; b); s¤(t; a; b)) that, unlike
the preceding solution, depends on the scope of participation. The expected welfare value,

Z b

a
uD(q¤(t;a; b); s¤(t;a; b))dt; (5.5)

is now optimized with respect to both a and b:
Baron and Myerson assume that it is always desirable to employ the most e±cient ¯rm and,

accordingly, set a = 0: The alternative, a > 0; cannot be ruled out automatically. Whether the
¯rm should be shut down is determined by the balance between the consumer surplus of the
good it produces and its informational rents. The balance may be positive for the less e±cient
cost types, which will be allowed to operate, and negative for the most e±cient type, which is
then shut down. An example of such situation is presented in Faynzilberg [6].

The principal di®erence between (5.4) and (5.5) is not, however, in the value of a: For
even with a = 0 the utility (5.5) is a®ected by both the quantity and productivity of \labor."
Formally, they stem from the presence of b in the range of integration and, respectively, in the
integrand. Since the Baron-Myerson procedure accounts only for the ¯rst of the two e®ects, it
may be suboptimal. The aforementioned independence of the optimal policy from the scope of
participation appears in that solution as an assumption made at the ¯rst step of optimization.

The foregoing does not imply, of course, that the policy conjectured by the authors is not
optimal in the speci¯c illustration they have chosen. Recall that besides the informational
disparity between the ¯rm and the regulator | the main focus of analysis | Baron and My-
erson make the following assumptions: (i) the cost function of the ¯rm is bilinear in type and
output, C(q; t) = k0 + k1 + q(c0 + c1); (ii) the coe±cients of proportionality are nonnegative,
minfk0; k1; c0; c1g ¸ 0; and (iii) the reservation utilities are constant and equal to zero. In
economic terms, the later assumption posits equivalence between the exogenous opportunities
and the status quo | the pre-production state with zero consumer surplus and zero monopoly
pro¯ts. By employing variational methods, we show in the companion paper (Faynzilberg [5])
that the solution conjectured in Baron and Myerson [1] is valid for the stated parameterization.

Thus, the commonly used \normalization" to zero of the reservation utilities appears to be
essential for both the equivalence argument and the exclusion functions. As we have seen, this



Participation Rights and Mechanism Design 35

amounts to a supposition that the status quo, pre-choice state and the exogenous opportunities
are economically equivalent.

The methodological di±culties arise, not surprisingly, in the treatment of nonparticipating
agent-types. They may be traced to the imposition on the designer of the individual-rationality
constraint, which leads him to include all agent-types into the scope of participation. Once this
is done, the removal of the undesirable types at the subsequent stages becomes di±cult, and
may not be resolved fully. In comparison, the redundant types do not even enter the designer's
problem (3.2){(3.5). The presently proposed formulation appears to be more conducive to a
consistent optimization methodology.

6 Conclusions

We have seen that the results of collective redistribution of property rights are substantially
a®ected by the procedural rules that govern this process. Speci¯cally, the manner in which the
participation rights and duties are distributed among the parties has a signi¯cant impact on the
feasibility of the mechanism.

The involvement of an agent in the collective choice is often described as dichotomous: he
may either participate or abstain from the process. We have seen, however, that it is helpful to
think of involvement as having three facets rather than two, and di®erentiate the agent's ability
to decline, accept, and force his participation. In order to govern three alternatives, at least two
rights are needed, and we identi¯ed them as the rights of free exit from and free entry into the
collective- choice process. Formally, these rights of the free-exit and free-entry enter the picture
as constraints (2.6){(2.7) on the designer's choice of the mechanism.

The proposed approach to mechanism design accommodates all possible imputations of
the participation rights of exit and entry, which we summarized in Table 2.1. For the agent,
involvement in the choice process may be: (i) altogether involuntary, if all participation rights
lie with the designer; (ii) altogether voluntary, if he himself is in possession of all participation
rights; and, (iii) partly voluntary wherein he may decline but not force his involvement. Most
of our analysis involved the last scenario, i.e., mechanisms with voluntary but not guaranteed
participation.

The rights of free exit and entry are void of incentives. The Equivalence Theorem 2.1
shows that the incentive-compatibility alone is su±cient to induce the cooperation of the agent.
The cooperation includes, of course, the participation of those whom the designer wishes to
engage, and the abstention of those whom he wishes to exclude from the choice process. The
corresponding incentives arise because the e±cacy of the participation rights, even when all of
them are imputed to the designer, is reduced by the lack of perfect information regarding the
type realizations. We have seen, more speci¯cally, that it is in the interest of the designer to
exercise his rights in a type-speci¯c fashion. With less than perfect information, however, he is
unable to do so, and resorts to incentives.

The type-speci¯c exercise of the designer's rights, i.e., selective engagement of the agents, re-
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quires less participation and truth-telling incentives, which increases the value of the mechanism.
In Section 3.2, we have traced these welfare gains to a decrease in the designer's uncertainty.
Extra information is acquired, however, at a cost in the form of the nonparticipation constraint.
In addition, the designer foregoes the contribution of the excluded types, which itself may be
bene¯cial as well as costly. Whether the net e®ect of the selective engagement is positive is
determined, of course, by the solution of the optimization problem (3.2){(3.5).

The solution of the designer's problem (3.2){(3.5) appears to be more complex, in comparison
to both the traditionally assumed complete-engagement regime, and hidden-action equivalent.
The complication stems from a substantial gain in °exibility from an additional optimization
instrument | the scope of participation. We encountered the added degrees of freedom and
saw their impact on the optimization process in the two methodologies we employed in Section
4: the step-wise procedure, and the characterization of optimal contract.

The step-wise procedure of Section 4.1 allowed us to measure the welfare impact of selective
engagement. We have seen that the scope of participation changes both the productivity and
quantity of the agent's involvement. The former manifests itself through the presence of the
participation set in the designer's utility, the integrand of the expected welfare value. The latter
comes from the range of integration, which itself is the agents' participation set.

The characterization of the optimal mechanism in Section 4.1 has been also complicated by
the selective engagement. When the set of types is disconnected, the problem (3.2){(3.5) must
be solved by discrete-optimization methods, which may require complete enumeration. In the
continuous case, the endogenous treatment of the participation set entails free- end conditions
of the calculus of variations. The generally multiple instances of these restrictions augment
numerous other ¯rst-order conditions, and increases further the already substantial complexity
of the characterization task. Nonetheless, the characterization methodology appears to be more
e±cient than the step-wise procedure. In addition, it quanti¯es the shadow costs of incentive-
compatibility, which furthers the economic intuition and allows the comparative- statics analysis
of the optimal mechanism.

Mechanisms with selective engagement merely re°ect the overall economic richness of the
collective-choice problem. Most applications have exploited the freedom of mechanism design
stemming from the great variety of social choice functions. Our analysis shows that a second
avenue | the scope of agents' participation is generically available to the designer. The sub-
stantive and methodological implications of this additional freedom remain to be fully explored.

A Proofs

Proof of Proposition 4.1. Let v(t) = uA(x(t); y(t); t):With the change of variables from y to v; the principal may
be viewed as maximizing his utility x¡ (v+ x2=t) with respect to v and x: The participation constraint v ¸ UA0
must be satis¯ed, which makes v = UA0 the optimal choice. The ¯rst-order condition for x is 1¡ 2x=t = 0; and
results in x0(t) = t=2: The associated transfer is given by y0(t) = UA

0 + x
02(t)=t = UA

0 + t=4; as stated. The
indirect utility of the principal is equal to x0¡y0 = t=4¡UA0 and, in order to ensure participation of the principal,
must exceed the reservation level UP0 : Thus, the agent is contractible if and only if U

P
0 +U

A
0 � t=4; which de¯nes
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the ¯rst-best scope of participation (4.4). Q.E.D.

Proposition A.1 If the preferences of the agent are given by (4.2) and the allocation x(t) is continuous, then the
agent's indirect utility U(t) is continuously di®erentiable, hence absolutely continuous, and given by the following
expression:

U(t) = U(a) +

Z t

a

x2(¿)

¿2
d¿: (A.1)

Proof of Proposition A.1. The truth-telling condition (2.9) implies the following for t; ¿ 2 [a; b] :

U(t) = y(t)¡ x2(t)

t
¸ y(¿)¡ x2(¿)

t
= U(¿) + x2(¿)

t¡ ¿
t¿

x2(t)
t¡ ¿
t¿

¸ U(t)¡U(¿ ) ¸ x2(¿)
t¡ ¿
t¿

;

where the second inequality is obtained from the ¯rst by an interchange of t and ¿:
The assumption that the set T p is an interval and hence connected allows one to take limits ¿ ! t¡ 0 and

t ! ¿ + 0 in the preceding inequalities, which gives the following bounds on the left and right derivatives D§U
of U :

x2(t)

t2
¸ D¡(t) ¸ x2(t¡ 0)

t2
;

x2(t)

t2
� D+(t) � x2(t+ 0)

t2
:

The assumed continuity of x implies now that these one-sided derivatives exist. Moreover, D§ = x2(t)=t2; and
the function U is both continuous and continuously di®erentiable (should an idiosyncratic discontinuity at t = 0
exist, the convergence x ! 0 must be rapid enough to ensure the continuity.) Under these circumstances, the
Fundamental Theorem of the calculus applies and leads to A.1. Q.E.D.

Remark A.2 on the form of the Lagrangian (4.6) in principal's problem. By eliminating y from (4.1){(4.2) with
the help of (A.1) we obtain

UP =

Z b

a

�
x(t) +

x2(t)

t
¡ U(a)¡

Z t

a

x2(¿)

¿2
d¿

¸
p(t)dt:

The last term may be integrated by parts:

p(t)

Z t

a

x2(¿ )

¿2
d¿ =

d

dt

�
P (t)

Z t

a

x2(¿)

¿ 2
d¿

¸
¡ P (t)x

2(t)

t
;

which leads to (4.5) and (4.6).

Proof of Proposition 4.2 amounts to verifying the feasibility of the stated mechanism. The expression for x¤

follows from (4.8) with a = 0 and b = 1: With the transfer y¤ given by (4.10), the agent of type t who reports
it as ¿ attains the utility UA0 + ¿3(4t ¡ 3¿ )=(12t): This function has a maximum ¿ = t; where the value is
UA0 + ¿

3=12 ¸ UA0 : Thus, the mechanism (4.10) is feasible and satis¯es the Euler equations. A substitution of the
mechanism (4.10) into the expression (4.5) yields the stated in the proposition value 1=12¡UA0 of the principal's
utility. Q.E.D.

Proof of Proposition 4.3. With a = 2
p
Ua0 b obtained from the Fermat condition @UP=@a = 0; the derivative

@UP =@b in (4.13) takes the following form,

@UP

@b
=
b

6
+
2UA0

3=2

3b1=2
¡ UA0 = UA0

³
z

6
+

1

3z1=2
¡ 1

´
;

after a substitution b = zUA
0 : The polynomial in z is always positive in the relevant region z ¸ 4 de¯ned by the

nonemptiness condition b > a: Hence, b¤¤ = 1 and a¤¤ = 2
p
UA0 : With this choice of the participation set, the
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partially optimized solution (4.8){(4.9) leads to the contract (4.13), a substitution of which into the objective
function UP yields the stated in the proposition expression for the principal's utility.

It remains to verify that the menu (x¤¤; y¤¤) in (4.13) is feasible, that is, the nonparticipation constraint (2.11)
is satis¯ed: for all t =2 [a¤¤; b¤¤]; we must have sup¿2[a¤¤;b¤¤] u

A(x¤¤(¿); y¤¤(¿); t) � UA0 : The utility attained by
the agent of a type t who reports it as ¿;

uA(x¤¤(¿ ); y¤¤(¿); t) = UA0 +
t(4¿3 ¡ a3)¡ 3¿4

12t
;

is increasing in t and decreasing in ¿ for all pairs (¿; t) in the interior of the set [a¤¤; b¤¤]£ [0; a¤¤]: Therefore its
supremum is attained at t = ¿ = a¤¤; and the maximal utility gained by misreporting the type is

sup
t=2[a¤¤;b¤¤]

sup
¿2[a¤¤;b¤¤]

uA(x¤¤(¿); y¤¤(¿); t) = uA(x¤¤(a¤¤); y¤¤(a¤¤); a¤¤) = UA0 :

We conclude that the nonparticipation constraint (2.11) is satis¯ed, the exclusion of the types t < a¤¤ is incentive-
compatible, and the contract (x¤¤; y¤¤) is second-best. Q.E.D.

Proof of Proposition 4.4 is based on the computations utilized in the proof of Proposition 4.5 below. Speci¯cally,
with a = 0 we ascertain from (A.2) that t0 = 3=2; and C = 1=4: As before, the optimal transfer is obtained by
(4.24) and has the form (A.3). The participation condition necessitates the constant y0 to be su±ciently large
(and arbitrary otherwise) so that mint u

A(x(t); y(t); t) ¸ UA0 ; which leads to the stated in the proposition lower
bound on y0: Q.E.D.

Proof of Proposition 4.5. The quantization condition (4.34), after integration and omission of the extraneous
solution a = t0; yields the following expressions:

t0 =
3¡ a
2

; C =
³
1¡ a
2

´2
: (A.2)

The free-end a condition (4.33) reads: 1 = 40(t0 ¡ a)2(t0 + a¡ 2)2: After a substitution of expression (4.24) for
t0; it reduces to (a¡ 1)4 = 2=45: Discarding once again the irrelevant (negative) roots, we arrive at the stated in
the proposition value of a¤¤: A substitution of a = a¤¤ into (A.2) results in the stated value of t0: The fact that
x¤¤ = x0 follows from the statement of the Euler equation (4.28), by using which in (4.24) we obtain

y¤(t) =
y0
5
+¡12t+ 20t2 ¡ 16t3 + 6t4 ¡ 4t5

5
; (A.3)

for some constant y0: By subjecting this solution to both the participation and the nonparticipation constraints
(4.22) and (4.23) we ¯nd that y0 must be, respectively, not smaller and not greater than, hence equal to, U

A
0 +

14
³
1 + 360¡

5
4

´
: The indirect utility UP is now obtained by integration. Q.E.D.
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Remarks

1. See, however, Faynzilberg and Kumar [9] who in the context of the generalized principal-agent model allow
for the endogenous determination of the participation set. Some models, such as Baron and Myerson [1], provide
for the exclusion of agent-types after their participation has been initially secured (see below).
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2. To ease exposition, we concentrate on deterministic mechanisms. The mechanism-design framework incor-
porated the designer's randomizations on some set  by the extensions ¹ : S £  ! X; © : T £  ! X; P on
T ; etc.

3. One could formally say that the designer optimizes with respect to one instrument, ©; if © is viewed as a
partial function, that is, a single-valued binary relation from T to X: Its domain T pG may be smaller than T: In
the traditionally employed complete engagement, © is a true function with full domain.

4. The case of a negative reservation utilities is, not surprisingly, simple: faced with poor exogenous oppor-
tunities, the agents have strong incentives to accept the principal's o®er, and their employment does not involve
large transfers. As expected, it is optimal for the principal to employ all available agent-types. A direct calcu-
lation con¯rms this intuition: the derivative @UP =@a is negative, so that a¤¤ = 0; which in turn implies that in
(4.13) the derivative @UP=@b is positive, and b¤¤ = 1:

5. Independence of the action allocation from the choice of the participation set appears to be idiosyncratic
to the chosen parameterizations (c.f., Section 4.2).

6. The discontinuities of the function `(t) = L(x(t); _x(t); t) may arise: at the boundaries | because L vanishes
identically outside the interval [a; b]; in the interior of [a; b] | if L lacks continuity; and, at t = t0 where `(t) may
have a jump inherited from _x even when the function L is continuous.

7. The order of moves by Nature and the designer is immaterial. To ease exposition, we assume that they
move simultaneously, so the type-related timing references are the same as those related to the message ¹:

8. Speci¯cally, if f(x) is discontinuous at x = x0; and df(x)=dx is its (classical) derivative, where it exists, and
then the derivative of f as a distribution is Df=Dx = df=dx+ [f ]x0±(x¡ x0); where ± is the Dirac distribution.


