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Abstract

In joint decision making, people with common goals and similar
preferences often take drastically opposing positions. In some cases,
arbitrarily small discrepancies in preferences result in arbitrarily large
losses in utility for all participants. An understanding of the properties
of polarization may help game players and mechanism designers avoid
its pitfalls.

1 Introduction

In public debates, private organizations, shared living accommodations, and
many other types of interaction, participants’ behavior is seen to polarize.
Even moderate individuals, with similar preferences often take extreme, op-
posing positions in these settings. To add to the frustration, such polarization
can be quite costly: arbitrarily small disagreements in players’ preferences
may lead to arbitrarily large losses in utility for all participants. However, in
many situations, costly polarization can be avoided by changing the rules of
interaction.

This note presents a simple game-theoretic analysis that explains some of
the reasons for polarization!. Despite the apparent game-theoretic simplicity,

1One can imagine several other types of polarized behavior. For example, in psychology,
“group polarization” refers to a phenomenon in which all members of a group support the
same decision more emphatically than they would as individuals because of an unconscious
desire for unanimity. [1]



seemingly rational individuals design or choose to play games that lead to
polarization and utility loss. This suggests that polarization is also subtle
and easily overlooked. Hopefully, a better understanding of this phenomenon
will enable mechanism designers and game players to avoid its pitfalls.

1.1 Example: Public Debate Polarization

Imagine two people involved in a debate over the severity of an illegal act
committed by a politician. At the end of the debate, the average listener
has formed an opinion, and each debater would like this average to be close
to her own opinion. We view the debate as a two-person simultaneous move
game in which each debater advocates a position and the average listener
forms an opinion which is at the point midway between the two positions.
Specifically, say the severity of the act can be described by a real number
from the interval [0, 1]. Further, suppose the players have opinions repre-
sented as real numbers 1,7, € [0,1], and advocate positions p;,p; € [0,1].
The average listener forms an opinion a = (p; + p2)/2. The debaters, having
utility functions u;(a) = —|a — |, would like the average to be close to their
own opinion.
Case 1. Suppose they agree on the severity r; = r; = 0.6. It is easy to see
that when both players advocate their true beliefs p; = p; = 0.6, they are at
a Nash Equilibrium.

Case 2. Suppose the players have a small discrepancy in their beliefs, with
ry = 0.60 and r, = 0.61. In this case, there is a unique Nash Equilibrium at
which p; = .20, p, = 1.00, and the average listener’s opinion is @ = 0.60. In
this configuration, none of the of the players can improve the outcome of the
debate relative to her own preferences. Player one has achieved her largest
possible payoff, and player two is already pushed to an extreme position
and cannot go farther. Furthermore, every other configuration is unstable
because one of the debaters will be able to unilaterally change her position
to move the average towards her own opinion thereby increasing her payoff.

This type of game models many situations in addition to public political
debates. For example, it can model the polarization of parents disciplining
a child, where the resulting discipline is the sum not the average of the
levels imposed by the parents. Similarly, roommates may polarize over how
clean the bathroom should be, with the “cleaner one” cleaning up for both.



Business partners polarize over the conduct of their affairs, and politicians
polarize over the conduct of the affairs of a nation.

The next example illustrates that polarization can be quite costly, and
the following section shows that polarization extends significantly beyond
cases of averaging or summing individual choices.

1.2 Example: Costly Household Polarization

Consider a weekly work-consumption-savings plan of a household consisting
of two individuals. Viewed as a strategic game, each of the players, : = 1,2,
decides on his own work level w; and his level of consumption of a frivolous
good f;, both measured in dollar units with 0 < f; and 0 < w; < 1600. The
income not consumed, b = (w; + w2) — (f1 + f2) is deposited as savings in
the bank (b could be negative).

Case 1. Suppose both participants have the following identical utility func-
tion,
u; = 2min(b, 500) — (w; + w2) + 0.1(f1 + f2).

In words, every dollar deposited in the bank yields twice as much utility as
the disutility of earning it, up to a maximum of $500 in the bank. On the
other hand, frivolous consumption results in a net loss of $0.90 per $1.00 con-
sumed. Each player has equal utility and disutility for his and his partner’s
consumption and work. In this case, when wy = w; =250 and f; = f, =0,
the players are at a a Nash Equilibrium with equal positive utilities of 500.

Case 2. Now suppose the players almost agree, with,

Uy = 2m1n(b, 500) - (wl + wg) + Ol(fl + f2)
up = 2min(b,500 + €) — (wy + wz) + 0.1(f1 + f2).

In this case, the only Nash Equilibrium has w; = 0, wy = 1600, f; = 1100,
f2 =0, and u; = uy = —490.

Proof. At Equilibrium we cannot have b > 500, because player 1 could
increase his utility by increasing f;. We cannot have b < 500 because one of
the players could reduce f; or increase w;. Thus at Equilibrium b = 500. But
if wy < 1600 then player 2 can improve by increasing ws. So at Equilibrium
we must have b = 500 and w, = 1600. It is easy to see that fo > 0 is
suboptimal for player 2, then, and that w, = 0 and f; = 1100.



2 Polarization in aggregation games

In both of the above examples, an aggregate quantity determines the players’
utilities. At all the Nash Equilibria, each player is either completely satisfied,
meaning that no outcome could improve her utility, or is polarized, meaning
that she is playing a strategy on the boundary of her feasible set of strategies.
This is the polarization phenomenon.

We proceed to present simple conditions on the aggregation and util-
ity functions that result in this phenomenon. Informally, the condition on
the aggregation function is that any individual player, by changing his own
strategies, can move the aggregate value in any direction (specifically in some
open set), provided that player is not constrained by his own individual limi-
tations, i.e. playing a strategy on the boundary of his feasible set. Also, each
player’s utility function must have no local maxima (that aren’t also global
maxima). Under these two conditions, we argue that, if a player is not com-
pletely satisfied, then she is not at a global or local maximum. Furthermore,
if she is playing a best response, then she must actually be at a boundary
strategy, otherwise she could move the aggregate to increase her utility. We
formalize this argument as follows.

Player i in {1,2,...,n} has a feasible set of strategies S;. Let S = x;5;
denote the set of strategy profiles. An aggregating function AGG: S — A
selects an outcome a from a set A for every strategy profile s. Each player
i has a utility function u;: A —> R describing his preferences over the
selected outcome. We assume only that the sets S; and A are subsets of
abstract topological spaces, but, in all of our examples, they are subsets of
Euclidean spaces.

An aggregation game consists of the simultaneous selection of individual
strategies where players’ payoffs are computed through the realized outcomes.
With an abuse of notation, we denote this by u;(s) = u;(AGG(s)).

Next, we would like to capture the notion that every player not limited
by his own feasibility constrains, i.e. not playing a boundary strategy, can
move the aggregate value within some neighborhood of its current value.
Formally, the range of influence of player i at s_; = (81, 2, ++ey Sic1y Sit1y ey Sn)
18 AGG(S1, -y Sic1, Siy Si41, -y Sn) C© A. An individually responsive aggregating
function AGG has the property that, for every player ¢ and strategy profile
s, if AGG(s) is on the boundary of i’s range of influence at s_;, then s; is on
the boundary of ¢’s feasible set of strategies S;.



A utility function has no local maxima if every local maximum is actually
a global maximum. That is, if u;(a) is a maximum of u; over a neighborhood
of a, then it is a maximum over A.

Finally, player i is completely satisfied with a strategy profile s if u;(AGG(s))
is a maximum of u; over A. Player i is polarized at a strategy profile s if s;
is on the boundary of S;. Based on these definitions, we have,

Polarization Lemma. In any Nash Equilibrium of an aggregation game
with an individually responsive aggregating function and utility functions with
no local mazima, every player who is not completely satisfied is polarized.

Proof: Suppose not. Say we have a Nash Equilibrium with player ¢ neither
fully satisfied nor playing a boundary strategy. Let s be the strategy profile
and R; be i’s range of influence at s_;. Since s; is not on the boundary of ¢’s
feasible set of strategies and AGG is individually responsive, AGG(s) is not
on the boundary of R;. Thus, R; is a neighborhood of AGG(s). Furthermore,
since ¢ is not completely satisfied and u; has no local maxima, u(AGG(Z)) is
neither a global nor local maximuni. This means that there must be some a’
in R; with u;(a}) > u;(AGG(s)). Since qf is in player i’s range of influence, s;
is not a best response and we have a contradiction.

Remarks:

1. The scope of the lemma. The sufficient conditions used in the polar-
ization lemma are quite general. Individually responsive aggregation
functions, as described by the general topological property above, in-
clude many aggregation methods other than those obtained by adding
or averaging individual positions. A similar observation is true for the
no local maximum condition. Clearly, if the individual utility functions
are concave, then the condition holds. But the lemma also holds for the
case that the utility functions are convex, because the maxima would
be boundary strategies, as well as for a large number of other mixed
cases. ‘

2. Mixed strategies. The polarization lemma holds for pure strategy Nash
Equilibria but not necessarily for mixed strategies. Consider the public
debate example where each player has a target value of 0.6. A mixed
strategy Equilibrium exists where each player chooses either 0.5 or 0.7



with equal probability. In this case, neither player is polarized, and
neither is completely satisfied. However, if each player’s utility is a
strictly concave function of his own strategy (keeping the opponents
fixed), it is easy to see that there are only pure strategy Nash equilibria,
and thus the polarization lemma applies in general.

3. General best response. The polarization lemma can be applied to an
individual player in a game. Specifically, if one player’s utility func-
tion has no local maxima and the aggregation function is individually
responsive to her, then any of her best response strategies will result
in her full satisfaction or polarization, for any choice of strategies for
her opponents. This observation may be useful in studying other best
response based notions, such as rationalizability and Cournot best re-
sponse dynamics.

4. Avoiding polarization. In our examples, polarization can be avoided by
slightly modifying the games. For example, in the costly polarization
example, either player would be better of by simply delegating his
choice of strategy to the other player.
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