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FUNDAMENTALS OF SOCIAL CHOICE THEORY'

1.1 _An introductory model of political institutions

Mathematical models in social science are like fables or myths that we read to get insights
into the social world in which we live. Our mathematical models are told in a specialized
technical language that allows very precise descriptions of the motivations and choices of the
various individuals in these stories. When we prove theorems in mathematical social science, we
are making general statements about whole classes of such stories all at once. In this book. we
focus on game-thearetic models of political institutions.

So let us begin our study of political institutions by a simple game-theoretic model that
tells a story of how political institutions may arise. Consider first the simple two-person "Battle

of Sexes" game shown i Table 1.1.

Player 2
f 2>
Player | f] 0,0 3,
g 6.3 0.0

Table 1.1. The Battle of Sexes game.

‘This paper is written as a draft chapter for a planned volume on political economics by
David Baron, Roger Myerson, and Kenneth Shepsle, based on lectures presented in June 1996 1n
the Summer School on Economic Theory at the Hebrew University of Jerusalem. Send comments
on this chapter to myerson(@nwu.edu.



The two players in this game, who may be called player | and player 2. must
independently choose one of two possible strategies: to defer (f) or to grab (g;). If the players
both grab or both defer then neither player gets anything; but if exactly one player grabs then he
gets payoff 6 while the deferential player gets payoft 3.

This game has three equilibria. There is an equilibrium in which player 1 grabs while
player 2 defers, giving payoffs (6,3). There 1s another equilibrium in which player | defers while
player 2 grabs. giving payotfs (3,6). There is also a symmetric randomized equilibrium in which
each player independently randomizes between grabbing, with probability 2/3, and deferring. with
probability 1/3 In this randomized equilibrium, the expected payofts are (1.1), which 1s worse for
both players than either of the nonsymmetric equilibria.

Now think of an island with a large population of individuals. Every morning, these
islanders assemble in the center of their island, to talk and watch the sun rise. Then the islanders
scatter for the day. During the day, the islanders are randomly matched into pairs who meet at
random locations scattered around the island, and each of these matched pairs plays the simple
Battle of Sexes game once. This process repeats every day. Each player's objective is to
maximize a long-run discounted average of his (or her) sequence of payoffs from these daily
Battle of Sexes matches.

One long-run equilibrium of this process is for everyone to play the symmetric randomized
equilibrium in his match each day. But rising up from this primitive anarchy, the players could
develop cultural expectations which break the symmetry among matched players, so that they will

share an understanding of who should grab and who should defer.
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One possibility is that the islanders might develop an understanding that each player has a
special "ownership" relationship with some region of the island, such that a player is expected to
grab whenever he is in the region that he owns. Notice that this system of ownership rights is a
self-enforcing equilibrium, because the other player does better by deferring (getting 3 rather than
0) when he expects the "owner” to grab, and so the owner should indeed grab confidently.

But such a system of traditional grabbing rights might fail to cover many matching
situations where no one has clear "ownership." To avoid the costly symmetric equilibrium in such
cases, other ways of breaking the players' symmetry are needed. A system of leadership can be
used to solve this problem.

That 1s, the 1slanders might appoint one of their population to serve as a leader, who will
announce each morning a set of mstructions that specity which one of the two players should grab
in each of the daily matches. As long as the leader's instructions are clear and comprehensive. the
understanding that every player will obey these instructions is a self-enforcing equilibrium. A
player who grabbed when he was instructed to defer would only lower his expected payoff from 3
to 0, given that the other player is expected to follow his instruction to grab here.

To make this system of government work on our island, the islanders only need a shared
understanding as to who is the leader. The leader might be the eldest among the islanders, or the
tallest, or the one with the loudest voice. Or the islanders might determine their leader by some
contest, such as a chess tournament, or by an annual election in which all the islanders vote. Any
method of selection that the islanders understand can be used, because everyone wants to obeyv

the selected leader's instructions as long as everyone else is expected to obey him. Thus, self-
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enforcing rules for a political system can be constructed arbitrarily from the equilibrium selection
problem in this game.

The islanders could impose limits to a leader's authority in this political system. For
example, there might be one leader whose instructions are obeyed on the northern half of the
island, and another leader whose instructions are obeyed on the southern half. The islanders may
even have ways to remove a leader, such when he loses some re-election contest or when he
issues instructions that violate some perceived limits  If a former leader tries to make an
announcement in his former domain of authority, every player would be expected to ignore this
announcement as irrelevant cheap talk

The moral of this fable is that the effectiveness of a political system may be derived simply
from a shared understanding that it 1s in effect. Thus, any political system may be one of many
possible equilibria of the more fundamental coordination game into which the population has been
born.

From this perspective, the arbitrariness of political structures validates our treating them
as exogenous explanatory parameters in political economics. A question might be posed. for
example, as to whether one form of democracy might generate higher economic welfare than
some other forms of government. Such a question would be untestable or even meaningless if the
form of government were itself determined by the level of economic welfare. But our fable
suggests that the crucial necessary condition for democracy is not wealth or literacy, but is simply
a shared understanding that democracy will function in this society (so that an officer who waves
his pistol in the legislative chamber should be perceived as a madman in need of psychiatric

treatment, not as the new leader of the country).



1.2 A egeneral impossibility theorem

There is an enormous diversity of democratic political institutions that could exast. Social
choice theory is a branch of mathematical social science that tries to make general statements
about all such institutions. Given the diversity of potential institutions, the power of social choice
theory may be quite limited, and indeed its most famous results are negative impossibility
theorems But it is good to start with the general perspective of social choice theory and see what
can be said at this level. Later we can turn to formal political theory, where we will focus on
narrower models that enable us to say more about the specific kinds of political institutions that
exist in the real world.

Modern social choice theory begins with the great theorem of Arrow (1951). This
theorem has led to many other impossibility theorems, notably the theorem of Gibbard (1973} and
Satterthwaite (1975). (See also Sen, 1970.) In this section, we focus on the theorem of Muller
and Satterthwaite {1977), because this is the impossibility theorem that applies directly to Nash-
equilibrium implementation. The Muller-Satterthwaite theorem was first proven as a consequence
of the Gibbard-Satterthwaite and Arrow theorems, but we prove it here directly, following Mouhn
(1988).

Let N denote a given set of individual voters, and let Y denote a given set of alternatives
or social-choice options among which the voters must select one. We assume that N and Y are
both nonempty finite sets. Let L{Y) denote the set of strict transitive orderings of the alternatives
in Y Given that there are only finitely many alternatives, we may represent any individual's
preference ordering in L(Y) by a utility function u; such that u,(x) 1s the number of alternatives

that the individual 1 considers to be strictly worse than x. So with strict preferences, L{Y} can be



identified with the set of one-to-one functions from Y to the set {01, . #Y-1}. (Here #Y denotes
the number of alternatives in the set Y)

We let L(Y)" denote the set of profiles of such preference orderings, one for each
individual voter. We denote such a preference profile by a profile of utility functions u = (u,), .
where each u; 15 1n L(Y). So if the voters' preference profile is u, then the inequality u,(x)> u,(y)
means that voter | prefers alternative x over alternative y. The assumption of strict preferences
implies that either u.(x) > u.(y) or u,(y) > u,(x) must hold if x # y.

A political system creates a game that is played by the voters, with outcomes in the set of
alternatives Y The voters will play this game in a way that depends on their individual
preferences over Y, and so the realized outcome may be a function of the preference profile in
L{Y)N. From the abstract perspective of social choice theory, an institution could be represented

by the mapping that specifies these predicted outcomes as a function of the voters' preferences.

So a social choice function 1s any function F:L(Y)N ~ Y, where F(u) may be interpreted as the

alternative in Y that would be chosen {under some given institutional arrangement) if the voters'
preferences were as in u.
If there are multiple equilibria in our political game, then we may have to talk instead

about a set of possible equilibrium outcomes. So a social choice correspondence is any point-to-

set mapping GL(Y)N =~ Y. Here, for any preference profile u, G(u) is a subset of Y that may

be interpreted as the set of alternatives in Y that might be chosen by society (under some
institutional arrangement) if the voters' preferences were as in u.

A social choice function F is monotonic iff, for every pair of preference profiles u and v in
L(Y)N, and for every alternative x in Y, if x = F(u) and
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Iyl vity) > i) < {yl uiy) = u(x)}. vie N,
then x = F(v). Similarly, a social choice correspondence G ts monotonic iff, for every u and v in
L(Y)N, and for every x in Y, if x € G(u) and
(1) vl vity) = vie)} < {y| wily) =y}, ¥ie N,
then x ¢ G{v}).

Any social choice correspondence that 1s constructed as the set of Nash equilibrium
outcomes of some fixed game form must be monotonic in this sense. (See Maskin, 1985.) To see
why, suppose that x is a Nash equilibrium outcome when the preferences are as in u. This means
that there is some profile of strategies that the players might use in the game such that x is the
outcome, and no player can get an outcome that he strictly prefers (under the preference-profile
u) by unilaterally deviating to another strategy. Then condition (1) above says that the set of
strategies that are better than x for any player is the same or smaller when the preferences change
from u to v, and so x must still be an equilibrium outcome under v.

Given any social choice function F:L(Y)N - Y, let F(L(Y)N) denote the range of the
function F. That is.

FLOO™) = {F(w) u e LOOY.
So #F(L(Y)™) denotes the number of elements of alternatives that would be chosen by F under at
least one preference profile. The Muller-Satterthwaite theorem asserts that any monotone social

choice function that has three or more outcomes in its range must be dictatorial.



Theorem 1.1 (Muller and Satterthwaite, 1977) If F:L(Y)N - Y is a monotone social
choice function and #F(L(Y)N) > 2 then there must exist some dictator h in N such that

F(u) = argmax_ u(x), Yue LYV

FILOYO™

Proof. Suppose that F is a monotone social choice function. Let X denote the range of F.
X = FIL(Y)Ny

We now state and prove four basic facts about F, as lemmas.
Lemma | [Ifuand v induce the same preferences on the range X, then F(u) = F(v).

Proof of Lemma 1. First fix some arbitrary ordering w in L(Y) (perhaps ordering Y by

alphabetical order, if the elements of Y are described by letters). For eachiin N, let ﬁi be derived
trom u; so that, forany x and y n Y,

i ixy) € X then u(x) > 0yy) <=> u(x) > u(y),

if vy < YAX then u(x) > u(y) <=> w(x) > w(y),

if xe X and ye YAX then ﬁi(x) > Gi(y).
That is u is derived from u by moving all alternatives outside the range X to the bottom over each
individual's preference, where they are ordered according to w. Define v from v in the same way.
Because F(u) € X (by definition of X), monotonicity implies that F(ﬁ) = F(u), and similarly F(v) =
F(v). But the assumption that u and v induce the same preferences on X implies that u=v. So

F(u} = F(v). which proves Lemma 1. Q. E.D.



Lemma?2 IfF(u)=x x#v, and
Ul u(x) > u(y)) S 1 vi(x) = vily)}

then y # F(v).

Proof of Lemma 2. Suppose that F, x, y, u, and v satisfy the assumptions of the lemma
but v = F(v), contrary to the lemma. Let U be derived from u by moving x and y up to the top ot
every individual's preferences, keeping the individual's preference among x and y unchanged.
Derive v from v in the same way. By monotonicity, we must have x = F(fi) and y = F({?). But the
inclusion assumed in the lemma implies that monotonicity can also be applied to G and v, with the

conclusion that F({-3) = F(fj) =x. But x #y, and this contradiction proves Lemma 2. Q.ED.

Lemma 3. F(v) cannot be any alternative y that is Pareto-dominated, under the preference

profile v, by any other alternative x that is in X.

Proof of Lemma 3. Lemma 3 follows directly from Lemma 2, when we let u be any

preference profile such that x = F(u). Pareto dominance gives the inclusion needed in Lemma 2,

because {il v.(x) > v.(y)} is the set of all voters N. Q.E.D.

Following Arrow (1951), let us say that a set of voters T is decisive for an ordered pair of
distinct alternatives (x,y) in X <X iff there exists some preference profile u such that
Fluy=x and T= {1 uy(x) > u(y)}.
Lemma 2 asserts that if T is decisive for (x,y) then vy is never chosen by I when everyone in T

prefers x overy.



Lemma 4 Suppose that #X > 2 If the set T is decisive for some pair of distinct

alternatives in XX then T is decisive for every such pair.

Proof of Lemma 4 Suppose that T is decisive for (x,v), wherex € X,y ¢ X, andx #v.
Choose any other alternative z such that z ¢ X and x#z #y.
Consider a preference profile v such that
vi(z) > vilx) > vily), vie T,
v_](y) > vj(z) > V_]-(x), 7] e N\T,
and v has everyone preferring X, y, and z over all other alternatives. By Lemma 3, F(v) must be in
{y.z}. because x and all other alternatives are Pareto dominated (by z). But F(v) cannot be y, by
Lemma 2 and the fact that T is decisive for (x,y). So F(v) =z and T = {if v{z) > vi(y)}. SoTis
also decisive for (z.y).
Now consider instead a preference profile v such that
vi(x) > vily) > vi{z), vie T,
\-'J-(y) = \-‘j(z) > vj(x), V] e NVT,
and v has everyone preferring x, y, and z over all other alternatives. By Lemma 3, F{v) must be
'x.v}. because z and all other alternatives are Pareto dominated (by y). But F(v) cannot be y, by
Lemma 2 and the fact that T is decisive for (x,y). So F(v) =x, and T = {i] wi(x) > w,(z)}. So T
is also decisive for (x,z).
So decisiveness for (x,y) imphes decisiveness for (x,z) and decisiveness for (zy). The
veneral statement of Lemma 4 can be derived directly from repeated applications of this fact.

QE.D.
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To complete the proof of the Muller-Satterthwaite theorem, let T be a set of minimal size
among all set that are decisive for distinct pairs of alternatives in X. Lemma 3 tells us that T
cannot be the empty set, so #T # 0
Suppose that #T > 1. Select an individual hin T, and select alternatives x, y, and z in X_
and let u be a preference profile such that
up(x) > uy(y) = up(z),
u;(z) > u(x) = uy), ¥vie Th{hj,
u‘]-(y) > uj(z) = ui(x), 1€ NAT,
and everyone prefers x, y, and z over all other alternatives. Decisiveness of T implies that F(u) #
v If F(u) were x then {h} would be decisive for (x,z), which would contradict minimality of T It
F(u) were z then T\{h} would be decisive for (z,y), which would also contradict minimality of T
But Lemma 3 implies F(u)c{x,y,z}. This contradiction implies that #T must equal 1.
So there 1s some individual h such that {h} is a decisive set for all pairs of alternatives.
That is, for any pair (x,y) of distinct alternatives in X, there exists a preference profile u such that
F(u)=xand {h} = {i| u;(x) > u;(y)}. But then Lemma 2 implies that F(v) # y whenever v (x) >
vi,(¥). Thus, F(v) cannot be any alternative in X other than the one that is most preferred by

individual h. This proves the Muller-Satterthwaite theorem. Q.E.D.

This theorem tells us that the only way to design a game that always has a unique Nash
equilibrium is to give one individual all the power, or to restrict the possible outcomes to two. In
fact, many institutions of government actually fit one of these two categories. Decision-making in

the executive branch is often made by a single decision-maker, who may be the president or the
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minister with responsibility for a given domain of social alternatives. On the other hand, when a
vote is called in a legislative assembly, there are usually only two possible outcomes: to approve
or to reject some specific proposal that 1s on the floor. (Of course, the current vote may be just
one stage in a longer agenda, as when the assembly considers a proposal to amend another
proposal that is to scheduled be considered later.)

But the Muller-Satterthwaite theorem also leaves us another way out. The crucial
assumption in the Muller-Satterthwaite 1s that F is a social choice function, not a multivalued
social choice correspondence. Dropping this assumption just means admitting that political
processes might be games that sometimes have multiple equilibria. As Schelling (1960) has
emphasized, when a game has multiple equilibria, the decisions made by rational players may
depend on culture and history (via the focal-point effect} as much as on their individual
preferences. So we can use social choice procedures which consider more than two possible
outcomes at a time and which are not dictatorial, but only if we allow that these procedures might
sometimes have multiple equihibria that leave some decisive role for cultural traditions and other

factors that might influence voters' collective expectations.

1.3 Anonymity and neutrality

Having a dictatorship as a social choice function is disturbing to us because 1t 1s manifestly
unfair to the other individuals. But nondictatorship is only the weakest equity requirement. In the
theory of democracy, we should aspire to much higher forms of equity than nondictatorship. A

natural equity condition is that a social choice function or correspondence should treat all the



voters in the same way. In social choice theory, symmetric treatment of voters is called
anonymity.
A permutation of any set 1s a one-to-one function of that set onto itself. For any

preference profile u in L{Y)" and any permutation m-N—N of the set of voters, let us7 be the

preference profile derived by from u by assigning to individual i the preferences of individual (1)
under the profile u; that is

(s T)(%) = gy ().
A social choice function (or correspondence) F is said to be anonymous iff, for every permutation
m:N — N and tor every preference profile u in L(Y)N,

F(usm) = F(u).
That is, anonymity means that the social choice correspondence does not ask which specific
individuals have each preference ordering, so that changing the names of the individuals with each
preference ordering would not change the chosen outcome. Anonymity obviously imphes that
there cannot be any dictator if #N > |

There is another kind of symmetry that we might ask of a social choice function or

correspondence: that it should treat the various alternatives in a neutral or unbiased way. In
social choice theory, symmetric treatment of the various alternatives is called neutrality. (A bias
in favor of the status quo is the most common form of nonneutrality.)

Given any permutation p:Y — Y of the set of alternatives, for any preference profile u. let

uep be the preference profile such that each individual's ranking of alternatives x and y 1s the same

as his ranking of alternative p(x) and p(y) under u. That is,



(uep),(x) = ui(p(x)).

Then we say that a social choice function or correspondence F is neutral iff, for every preference

profile u and every permutation p:Y — Y on the set of alternatives,

p(F(uep)) = F(u).
(When F is a correspondence, p(F(uep)) is {p(x}| x € F{uep)}.} Notice that neutrality of a social
choice function F implies that its range must include all possible alternatives, that is,

FIL(Y)Ny =Y.

To see the general impossibility of constructing social choice functions that are both
anonymous and neutral, it suffices to consider a simple example with three alternatives Y =
ta.b.c} and three voters N = {1.2,3}. Consider the preference profile u such that

u{a) > Ul(b) > u{c).

Ug(b) > u,(c) > us(a),

us(c) > uz(a) > us(b).
We may call this example the ABC paradox {where "ABC" stands for Arrow, Black, and
Condorcet, who drew attention to such examples). An example like this appeared at the heart of
the proof of the impossibility theorem in the preceding section. Any alternative in this example
can be mapped to any other alternative by a permutation of Y such that an appropriate
permutation of N can then return the original preference profile. Thus, an anonymous neutral
social choice correspondence must choose either the empty set or the set of all three alternatives
for this ABC paradox, and so an anonymous neutral social choice function cannot be defined.

This argument could be also formulated as a statement about implementation by Nash

equilibria. Under any voting procedure that treats the voters anonymously and is neutral to the
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various alternatives, the set of equilibrium outcomes for this example must be symmetric around
the three alternatives {a.b,c} Thus, an anonymous neutral voting game cannot have a unique
pure-strategy equilibrium that selects only one out of the three alternatives for the ABC paradox.

This argument does not generalize to randomized-strategy equilibria. The symmetry of
this example could be satisfied by a unique equilibrium in randomized strategies such that each
alternative is selected with probability 1/3. The Muller-Satterthwaite theorem does not consider
randomized social choice functions, but Gibbard (1978) has obtained related resuits on dominant-
strategy implementation with randomization. (Gibbard characterizes the dominant-strategy-
implementable randomized social choice functions as probabilistic mixtures of unilateral and duple
tunctions, which are generalizations of dictatorship and binary voting.)

Randomization confronts democratic theory with the same difficulty as multiple equilibria,
however. In both cases, the social choice ultimately depends on factors that are unrelated to the
individual voters' preferences (private randomizing factors in one case, public focal factors in the
other) As Riker (1982) has emphasized, such dependence on extraneous factors implies that the
outcome chosen by a democratic process cannot be characterized as a pure expression of the

voters' will.

1.4 Tournaments and binary agendas

When there are only two alternatives, majority rule is a simple and compelling social
choice procedure. K. May (1952) showed that, when #Y = 2 and #N is odd, choosing the
alternative that is preferred by a majority of the voters is the unique social choice function that

satisfies anonymity, neutrality, and monotonicity.
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When there are more than two alternatives, we might still try to apply the principle of
majority voting by dividing the decision problem into a sequence of binary questions. For
example, one simple binary agenda for choosing among three alternatives {a,b.c} 1s as follows.
At the first stage, there is a vote on the question of whether to eliminate alternative a or
alternative b from further consideration. Then, at the second stage, there 1s a vote between
alternative ¢ and the alternative among {a,b} that survived the first vote. The winner of this
second vote is the implemented social choice.

This binary agenda 1s represented graphically in Figure 1.1. The agenda begins at the top.
and at each stage the voters must choose to move down the agenda tree along the branch to the
left or to the right. The labels at the bottom of the agenda tree indicate the social choice for each
possible outcome at the end of the agenda. Thus, at the top of Figure 1.1, the left branch
represents eliminating b at the first vote, and the right branch represents eliminating a. Then at
each of the lower nodes, the right branch represents choosing ¢ and the left branch represents

choosing the other alternative that was not eliminated at the first stage.

Figure 1.1
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Now suppose that the voters have preferences as in the ABC paradox example (described
in the preceding section). Then there is a majority (voters 1 and 3) who prefer alternative a over
b, there is a majority {voters 1 and 2) who prefer alternative b over ¢, and there is a majority
(voters 2 and 3) who prefer alternative ¢ over a. Let us use the notation x >>y (or equivalently
v << x} to denote the statement that a majority of the voters prefer x over y Then we may
summarize the majority preference for this example as follows:

a>>b. b>>¢c, c>>a
(This cycle, of course, is what makes this example paradoxical.)

Given these voters' preferences, what will be the outcome of the binary agenda in Figure
1.17 At the second stage, a majority would choose alternative b against c if alternative a were
eliminated at the first stage, but a majority would choose alternative ¢ against a 1if alternative b
were eliminated at the first stage. So a majority of voters should vote to eliminate alternative a at
the first stage (even though a majority prefers a over b), because they should anticipate that the
ultimate result will be to implement b rather than ¢, and a majority prefers alternative b over c.
This backwards analysis is shown in Figure 1.2 which displays, in parentheses above each decision
node, the ultimate outcome that would be chosen by sophisticated majority voting if the process

reached this node.



(b)

(c) (b)

Figurc 1.2

In general, given any finite set of alternatives Y, a binary agenda on Y is a rooted tree that

has two branches coming out of each nonterminal node, together with a labelling that assigns an
outcome in Y to every terminal node, such that each alternative in Y appears as the outcome for

at least one terminal node. Given a binary agenda, a sophisticated solution extends the labelling to

all nodes so that, for every nonterminal node 8. the label at O is the alternative in Y that would be
chosen by a majority vote among the alternatives listed at the two nodes that directly follow 6. A

sophisticated outcome of a binary agenda is the outcome assigned to the initial node (or root) of

the agenda tree in a sophisticated solution.

Given any preference profile for an odd number of voters, each binary agenda on Y has a
unique sophisticated solution, which can be easily calculated by backward induction. (See
Farquharson, 1969, and Sloth, 1993 ) Thus, once a binary agenda has been specified, it is
straightforward to predict the outcome that will be chosen under majority rule, assuming that the

voters have a sophisticated understanding of each others' preferences and of the agenda.
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But different agendas may lead to different majority-rule outcomes for the same voters'
preferences. Thus the chairman who sets the agenda may have substantial power to influence the
sophisticated majority-rule outcome. To quantify the extent of such agenda-setting power, we
want to characterize the set of alternatives that can be achieved under binary agendas, for any
given preference profile.

To compute sophisticated solutions, it is only necessary to know, in each pair of
alternatives. which one would preferred by a majority of the voters. That 1s, we only need to
know. for each pair of distinct alternatives x and y in Y, whether x >> y or y >> x_ (Read ">>"
here as "would be preferred by a majority over.")

The ABC paradox shows the majority-preference relation >> is not necessarily transitive,
even though each individual voter's preferences are assumed to be transitive. In fact, McGarvey
(1953) showed that a relation >> can be generated as the majority-preference relation for an odd
number of voters whose individual preferences are transitive if and only if it satisfies the following
completeness and antisymmetry condition:

X >>yory >>x, but not both, ¥xeY, YveYi{x}.

Any such relation >> on Y may be called a tournament.

1.5 The top cycle

Let >> be any fixed tournament (complete and antisymmetric) on the given set of
alternatives Y. We now consider three definitions that each characterize a subset of Y.
Let Y*(1) denote the set of all alternatives x such that there exists a binary agenda on Y

for which x is the sophisticated outcome. That is, Y*(1) is the set of outcomes that could be
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achieved by agenda-manipulation, when the agenda-setter can plan any series of binary questions,
subject only to the constraint that every alternative in Y must be admitted as a possibility under
the agenda, and all questions will be resolved by sophisticated (forward-looking) majority votes.
Let Y*(2) denote the set of alternatives y such that, for every alternative x in Y\{y}, there
must exist some chain (z,z,,...,z,,) such that x =z, z, =y, and 7, ; << z, foreveryk=1,_...m
That is. an alternative y is in Y*(2) iff, starting from any given status quo x, the voters could be
manipulated to give up x for y through a sequence of replacements such that, at each stage, the
majority would always prefer to give up the previously chosen alternative for the manipulator's
proposed replacement if they believed that this replacement would be the last. In contrast to
Y*(1) which assumed sophisticated forward-looking voters, Y*(2) is based on an assumption that
voters are very naive or myopic.
Let Y*(3) be defined as the smallest (in the set-inclusion sense) nonempty subset of Y that
has the following property:
for any pair of alternatives x and y, if y is in the subset and x 1s not in the
subset then y >> x.
An argument is needed to verify that this set Y*(3) is well defined. Notice first that Y is itself a
"subset" that has this property (because the property is trivially satisfied if no x outside of the

subset can be found). Notice next that, if W and Z are any two subsets that have this property
then either W < Z or Z < W. (Otherwise we could find w and z such that weW, we¢Z, zeZ, and
z&W: but then we would get w >> z and z >> w, which is impossible in a tournament.) Thus,

assuming that Y is finite, there exists a smallest nonempty set Y*(3) that has this property, and

which is a subset of all other sets that have this property.
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A fundamental result in tournament theory, due to Miller (1977), 1s that the above three

definitions all characterize the same set Y*. This set Y* is called the top cycle.
1op cycle

Theorem 1.2, Y*(1)=Y*(2)=Y*(3)

Proof. We first show that Y*{1) < Y*(2). Suppose that y 1sin Y*(1) Then there is

some binary agenda tree such that the sophisticated solution is y. Given any x. we can find a
terminal node in the tree where the outcome is x. Now trace the path from this terminal node
back up through the tree to the initial node. A chain satisfying the definition of Y*(2) for x and v
can be constructed simply by taking the sophisticated solution at each node on this path, ignoring
repetitions. (This chain begins at x, ends at v, and only changes from one alternative to another
that beats it in the tournament. For exampie, Figure 1.2 shows that alternative b is in Y*(2), with

chains a << ¢ << b and ¢ <<b.)

We next show that Y*(2) < Y*(3). If not, then there would be some y such that y €
Y*(2)buty ¢ Y*(3). Let x bein Y*(3) To satisfy the definition of Y*(2), there must be some
chain such that x = z, <<z, << .. <<z =y. This chain begins in Y*(3) and ends outside of
Y *(3), and so there must exist some k such that z;_; € Y*(3) and z,_ ¢ Y*(3), but then z; | <<z,
contradicts the definition of Y*(3).

Finally we show that Y*(3) < Y*(1). Notice first that Y*(1) 1s nonempty (because binary
agendas and their sophisticated outcome always exist). Now let y be any alternative in Y*(1) and
let x be any alternative not in Y*{1). We claim that y >> x. If not then we would have x >>y;

but then x would be the sophisticated outcome for a binary agenda, in which the first choice 1s



between x and a subtree that 1s itself a binary agenda for which the sophisticated outcome would
be v, and this conclusion would contradict the assumption x ¢ Y*(1). So every y in Y*(1) beats
every x outside of Y*(1): and so Y*(1) includes Y*(3), which 1s the smallest nonempty set that

has this property.

Thus we have Y*(1) € Y*(2) € Y*(3) € Y*(1). Q.ED.

In the ABC paradox from the previous section, the top cycle includes all three alternatives
{a.b.c}. If we add a fourth alternative d that appears immediately below ¢ in each individual's
preference ranking (so that b >>d and ¢ >> d but d >> a), then d 1s also included in the top cycle
for this example, even though d is Pareto-dominated by c.

When the top cycle consists of a single alternative, this unique alternative 1s called a

Condorcet winner. That 1s, a Condorcet winner is an alternative y such that y >> x for every

other alternative x in Y\{y}. The existence of a Condorcet winner requires very special
configurations of individual preferences. For example, suppose that each voter's preferences is
selected at random from the (#Y)! possible rank orderings in L{Y'), independently of all other
voters' preferences. R. May (1971} has proven that, if the number of voters 1s odd and more than
2, then the probability of a Condorcet winner existing among the alternatives in Y goes to zero as
#Y goes to infinity. (See also Fishburn, 1973.)

McKelvey (1976, 1979) has shown that, under some common assumptions about voters’
preferences, if a Condorcet winner does not exist then the top cycle 1s generally very large. We

now state and prove a simple result similar to McKelvey's.
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We assume a given finite set of alternatives Y, and a given odd fimte set of voters N. each
of whom has strict preferences over Y. Let A(Y) denote the set of probability distributions over
the set Y. We may identify A(Y) with the set of lotteries or randomized procedures for choosing

among the pure alternatives in Y. Suppose that each individual 1 has a von Neumann-
Morgenstern utility function U.:Y — R such that, for any pair of lotteries, individual i always

prefers the lottery that gives him higher expected utility. So if we extend the set of alternatives by
adding some lotteries from A(Y), then U, defines individual i's preferences on this extended

alternative set ~ With this framework, we can prove the following theorem.

Theorem 1.3. Ifthe top cycle contains more than one alternative then, for any alternative
z and any positive number €, then we can construct an extended alternative set, composed of Y
and a finite subset of A(Y), such that the extended top cycle includes a lottery in which the

probability of z 15 at least 1-€.

Proof. Ifthe top cycle is not a single alternative, then the top cycle must include a set of
three or more alternatives {w, Wy, ..., Wi} such that w; << w, << << wp << wy.

Von Neumann-Morgenstern utility theory guarantees that every individual who strictly
prefers Wiy OVer Wi, will also strictly prefer (1-e)q + S[W_iﬂ] over (1-g)q + E[W_i] for any lottery q.
(Here (1-g)q + e[wj] denotes the lottery that gives outcome W, with probability €, and otherwise
implements the outcome randomly selected by lottery q.) Thus, by continuity, there must exist
some large integer M such that every individual who strictly prefers Wiy OVer wi. will also strictly

prefer



(1-e)((1 - (m+1D/M)[w,] + ((m+1)/M)[z]) + e[w;. ]
over
(1-e)((1 - m/M)[w,] + (m/M)[z]) + e[wi]
for any m between 0 and M-1. That is, the same majority that would vote to change from w; to
Wi would also vote to change from Wi 10 Wiy with probability € even when this decision also
entails a probability (1-€)/M of changing trom w, to z.
We now prove the theorem using the Y*(2) characterization of the top cycle. Because w,
1s in the top cycle, we can construct a naive chain from any alternative x to w (x << << w).
This naive chain can be continued from w; to z as follows:
wy = (1-e){wy] +g[w]
<< (1-e)((1-1M)[w,] + (M)[2]) + e[w,]
<< (L-e)((1-2/M)[w,] + (2/M)[z]) + £[w5]
<< (1-e)[z] + e[wj] (for some ).
So including all the lotteries of this chain as alternatives gives us an extension of Y n which a

lottery (1-g)[z] + €[w;] can be reached by a naive chain from any alternative x. Q.E.D.

The proof of Theorem 1.3 uses the naive-chain characterization of the top cycle (Y*(2)).
but the equivalence theorem tells us that this result also applies to agenda manipulation with
sophisticated voters. That is, if the chairman can include randomized social-choice plans among
the possible outcomes of an agenda then, either a Condorcet winner exists, or else the chairman
can design a binary agenda that selects any arbitrary alternative (even one that may be worst for

all voters) with arbitrarily high probability in the majority-rule sophisticated outcome.
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If more restrictions are imposed on the form of the agenda that can be used, then the set of
alternatives that can be achieved by agenda manipulation may be substantially smaller. For
example, Banks (1985) has characterized the set of alternatives that can be achieved as
sophisticated outcomes of successive-elimination agendas of the following form: The alternatives
must be put into an ordered list; the first question must be whether to eliminate the first or second
alternative in this list; and thereafter the next question is always whether to eliminate the previous
winner or the next alternative on the list, until all but one of the alternatives have been eliminated.
For any given tournament (Y,>>), the alternatives that can be sophisticated outcomes of such
successive-elimination agendas is called the Banks set.

Given a tournament (Y,>>), an alternative x is covered iff there exists some other
alternative y such that y >> x and

{z| x>>z} C {z| y>> z}.
If x is Pareto-dominated by some other alternative then x must be covered. The uncovered set is
the set of alternatives that are not covered. (See Miller, 1980.) The uncovered set is always a
subset of the top cycle, because any alternative not in Y*(3) is covered by any alternative in
Y*(3). On the other hand, the Banks set is always a subset of the uncovered set. (See Shepsle
and Weingast, 1984, Banks, 1985; McKelvey, 1986; or Moulin, 1986.) Thus, Pareto-dominated

alternatives cannot be sophisticated outcomes of successive-elimination agendas.

1 6 Two-party competition

We have studied binary agendas because they allow us to reduce the problem of choosing

among many alternatives to a sequence of votes each of which is binary, in the sense that it has
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only two possible outcomes. However, the number of binary votes that are needed to work
through a large number of alternatives goes up at least as the log (base 2) of the number of
alternatives. When we move from voting in small committees to voting in large democratic
nations, the increased cost of each round of voting makes it impractical to work through a long
sequence of votes. So democracies generally rely on political leaders to select a small subset of
the potential social alternatives, and then only this small selected set of social alternatives will be
considered by the voters in the general election. The hope for a successful democracy is that
competitton among political leaders should ensure that they will try to select alternatives that are
highly preferred by a large fraction of the voting population.

So let us consider a simple model of how political leaders might select alternatives to put
before the voters in a general election. We assume that the set of all possible social alternatives Y
is a nonempty finite set. To keep voting binary, we assume here that there are only two political
leaders, each of whom must select an alternative in Y, which we may call the leader’s policy
position. Making the simplest assumption about timing, let us suppose that the two political
ieaders must choose their policy positions simultaneously and independently.

Let >> denote the majority preference relation, satistying the completeness and
antisymmetry properties of a tournament. We assume that the leader whose policy position 1s
preferred by a majority of the voters will win the election if they choose different positions, and
each leader has a probability 1/2 of winning if both leaders choose the same policy position.
Assuming that each leader is motivated only by the desire to win, we get a simple two-person
zero-sum game. In this game, when leader | chooses position x; and leader 2 chooses position

X-, the payofls are
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+1 for leader 1 and -1 for leader 2 1f x, >> x;
-1 for leader 1 and +1 for leader 2 if x, >> x,,
and 0 for both leaders if x| = x,

If Y contains a Condorcet winner that beats every other alternative in Y, then the unique
equilibrium of this game is for both political leaders to choose this Condorcet winner as their
policy position. But if no alternative is a Condorcet-winner then this game cannot have any
equilibrium in pure strategies. because any position could be beaten by at least one other
alternative, and so each leader could make himself the sure winner if he knew which position
would be chosen by his opponent.

The general existence theorems of von Neumann (1928) and Nash (1951) assure us that
this game must have at least one equilibrium in mixed strategies, even if a Condorcet winner does
not exist. We know that all equilibria must give the same expected payoft allocation, because this
game is two-person zero-sum. The ex-ante symmetry of the leaders who are playing this game
makes it obvious that each player must have the same set of equilibrium strategies, and the
expected payoff allocation in equilibrium must be (0,0). That is, each leader's probability of
winning the election must be 1/2 at the beginning of the game (before the randomized strategies
are wnplemented).

For the example of the ABC paradox from Section 1.3, the unique equilibrium strategy for
each leader is to randomize uniformly over the three alternatives, choosing each with probability
1/3. Then there is a 1/3 probability of leader 1 choosing a position that beats leader 2's position

(in the sense that x| >> x,); there is a 1/3 probability of leader 1 choosing a position that is beaten



by leader 2's position; and there 1s a 1/3 probability of leader 1 choosing the same position as
leader 2, in which case each has an equal probability of winning the election.

If we add a fourth alternative d such that every voter ranks d immediately below c¢. then
the unique equilibrium strategy remains the same. That is, the alternative d would not chosen by
either leader, even though d is in the top cycle. Notice that d 1s covered by ¢ in this example. In
fact, the covered alternatives in any tournament are precisely the dominated pure strategies for the
leaders in this policy-positioning game.

Remarkably, Fisher and Ryan (1992) showed that there is always a unique equilibrium
strategy in this game. Our formulation and proof of this uniqueness theorem here is based on

Laffond, Laslier, and Le Breton (1993).

Theorem 1.4 The two-person game of choosing positions in a finite tournament (Y,>>)
has a unique Nash equilibrium. In this equilibrium, every alternative that is a best response is

assigned positive probability.

Proof Let p and q be randomized strategies in A(Y) in two Nash equilibria of this game.
The two players in this game are symmetric, and Nash equilibria of two-person zero-sum games
are always interchangeable, and so (p,p), (q,q), and (p,q) must all be Nash equilibria of this game.
Let
B={yeY| p(y) > 0 or q(y) > 0}.
Because randomizing according to p or q is optimal for a player against p or g, all of the
alternatives in B must offer the equilibrium expected payoff against both p and q. But we know

that the equilibrium expected payoff'is O in this game. So choosing any alternative in B must give
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a plaver a probability of winning that equals his probability of losing, when the other player
randomizes according to p or q. That 1s,
Zx»_\- p(x) = Zx«, p(x), VyeB
Yy 600 = Yeay 0(X), Wy € B.
Now let d(x) = p(x) - q(x) for every x in B. So we have
Yoy 40) = Ygeay d(x), 9y € B,
Yo dx)=0
(The latter equation holds because the p(x) and q(x) both sum to 1.) To show uniqueness. we
need only to show that this system of equations for d has no nonzero solutions.
So suppose to the contrary that this system of equations has some nonzero solution for d.
Then it must have at least one nonzero solution such that all d(x) numbers are rational, because all
coefficients are rational in these linear equations. Furthermore, multiplying through by the lowest
common denominator, this system of equations must have at least one solution such that all d(x)
are integers, and (dividing by 2 as necessary) we can guarantee that at east one integer d(y) must
be odd  Then for this alternative y, we get
0=d(y) *+ Tyeey 40x) + T oy @) = ) + 2T ey d0))
But d{y) + Z(Xx«_\. d{x)) 1s an odd integer. and 0 1s even. This contradiction proves that there
cannot be any nonzero solutions for d. Thus p = q, and so the equilibrium 1s unique.
The components of p must be rational numbers, because p is the unique equilibrium
strategy for a two-person zero-sum game that has payoffs in the rational numbers. Now let p*

denote the smallest positive multiple of p that has all integer components. This vector p* satisfies

¥ ey PHOO = Loy P00,



for every pure strategy y that is a best response to the equilibrium strategy p (which includes all v
in its support B), because all best responses give expected payotf zero. At least one p*(z) must
be odd (or else we could divide them all by 2). So the sum of the components

Yon PR = P Lgee, PR F Lo, PHX)

=p*(2) + 2L ee, P

is an odd integer. For every y that is a best response to the equilibrium strategy p. we have

PH(Y) + 2L ey PR = Loy PHX),
and so p*(y) 1s also an odd integer. But 0 is not odd. Thus, if y 1s any best response to the

equilibrium strategy p then

p(Y) = p* (L P*()) # 0. QED

The set of alternatives that may be chosen with positive probability by the party leaders in
the equilibrium of this policy-positioning game 1s called the bipartisan set of the tournament
(Y.>>). The bipartisan set is a subset of the uncovered set, because the covered alternatives are
the dominated strategies in this policy-positioning game, and so the bipartisan set 1s always
contained in the top cycle. Laffond, Laslier, and Le Breton (1993) have shown, however, that the
bipartisan set may contain alternatives that are not in the Banks set, and the Banks set may

contain alternatives that are not in the bipartisan set.

1 7 Median voter theorems

We have seen that, if a Condorcet winner exists, then we can expect it as the outcome of

rational voting in any binary agenda, or as the unique policy position that would be chosen by



party leaders in two-party competition. But when a Condorcet winner does not exist, then agenda
manipulation with randomized alternatives can achieve virtually any outcome, and the outcome of
two-party policy positioning must have some unpredictability. So we should be interested in
economic conditions that imply the existence of a Condorcet winner in Y. The most natural such
condition is expressed by the median voter theorems.

There are two basic versions of the median voter theorem. One version (from Black,
1958) assumes single-peaked preferences, and another version (from Roberts, 1977, and Gans and
Smart, 1994) assumes a single-crossing property.

To develop the single-crossing property, we begin by assuming that the policy alternatives
in Y are ordered completely and transitively, say from "left" to "right” in some sense. We may
write "X < y" to mean that the alternative X is to the left of alternative v in the space of policy
alternatives. We also assume that the voters (or their political preferences) are transitively
ordered in some political spectrum, say from "leftist” to "rightist,” and we may write "1 <" to
mean that voter i is to the left of voter j in this political spectrum.

The meaning of this ordering of voters i1s only that leftist voters tend to favor left policies
more than voters who are rightist in political preference. Formally, we assume that, for any two
voters 1 and j such that 1 <j, and for any two policy alternatives x and y such that x <y,

ift uy(x) <ufy) then uj(x) <uy(y),

butif u_](x) > uj(y) then u{x) > u;(y).

This assumption is called the single-crossing property.
Let us assume that the number of voters 1s odd and their ordering is complete and

transitive. Then there is some median voter h, such that #{ieN|i<h} =#{}eN| h<j}. Forany



pair of alternatives x and y such that x <y, if the median voter prefers x then all voters to the left
of the median agree with him, but if the median voter prefers y then all voters to the right of the
median agree with him. Either way, there is a majority of voters who agree with the median
voter. So the majority preference relation (>>) 1s the same as the preference of the median voter.
Thus, the alternative that is most preferred by the median voter must be a Condorcet winner.

That 15, we have proven the following theorem.

Theorem 1.5 Suppose that there is an odd number of voters. If the alternatives in Y have
a complete transitive ordering and the voters in N have a complete transitive ordering which
together satisfy the single-crossing property, then the ideal point of the median voter is a

Condorcet winnerin'Y.

In the single-peakedness version of the median-voter theorem, a complete transitive
ordering (<) is assumed on the set of alternatives Y only. For each voter i, it 1s assumed that there
is some ideal point 8, in Y such that, for every x and y in Y,

if 0, <x<y or y<x <0, then u(x)>uyy).
That is, on either side of 8, voter i always prefers alternatives that are closer to 8; This property

is called the single-peakedness assumption. Assuming that the number of voters is odd, the

median voter's ideal point is the alternative 8% such that

HN/2 > #{i] 8, < 8%} and #N/2 > {i| 0% <0,}.

The voters who have ideal points at 0* and to its left form a majority that prefers 0% over any

alternative to the right of 0% while the voters who have ideal points at 0* and to its right form a

)
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majority that prefers 0% over any alternative to the left of 8% Thus, this median voter's ideal
point 6* 1s a Condorcet winner in Y.

Single-crossing and single-peakedness are different assumptions, and neither is logically
implied by the other. Both assumptions give us a result that says "the median voter's ideal point is
a Condorcet winner," but there is a subtle difference in the meaning of these results. With the

single-crossing property we are speaking about the ideal point of the median voter, but with the

single-peakedness property we are speaking about the median of the voters' ideal points. Notice

also that the majority preference relation can be guaranteed to be a full transitive ordering under
the single-crossing assumption, but not under the single-peakedness assumption.

In both versions of the median voter theorem, the set of policy alternatives must be
essentially one-dimensional, because otherwise we cannot put the alternatives in a transitive order.
In general applications that do not have this simple one-dimensional structure, we do not

generally expect to tind a Condorcet winner.

1.8 Conclusions

We have considered binary agendas and two-party competition, because they are
procedures for reducing general social choice problems with many alternatives into a simple
framework of majority voting on pairs of alternatives. This reduction requires some decision-
making by political leaders: the chairman who sets the agenda, or the leaders who formulate
policy for the two major parties. So it 1s natural ask, to what extent do the outcomes of binary
agendas or two-party competition depend on the decision-making by such political leaders. rather

than on the preferences of the voters. The answer, we have seen, 1s that manipulations of an

(]
(e



agenda-setter or arbitrary and unpredictable positioning decisions of political leaders can
substantialty affect the outcome of majority voting, except in the special case where a Condorcet
winner happens to exist.

To find ways of avoiding such dependence on an agenda setter or a couple of party
leaders, we must go on to study more general voting systems that allow voters to consider more
than two alternatives at once. K. May's theorem (1952) assured us that majority rule 1s the unique
obvious way to implement the principles of democracy (anonymity, neutrality) in social decision-
making when only two alternatives are considered at a time. In contrast, there 1s a wide variety of
anonymous neutral voting systems that have been proposed for choosing among more than two
alternatives (plurality voting, Borda voting, approval voting, single transferable vote, etc.), and all
of these deserve to be called democratic. Furthermore, the impossibility theorems of social choice
theory tell us that no such voting system can guarantee a unique pure-strategy equilibrum for all
profiles of voters’ preferences. Multiplicity of equilibria means that the social outcome can
depend on any factor that focuses public attention on one equilibrium. These focal factors may
include history, cultural tradition, and public speeches of political leaders. (See Schelling, 1960.
and Myerson and Weber, 1993 )

Our mitial fable suggested that political institutions may arise out of a need to coordinate
on better equilibria in social and economic arenas, and we have found that some of this
multiplicity of equilibria may inevitably remain in any democratic political system. But having
multiple equilibrium outcomes for some preference profiles does not imply that everything must
an equilibrium outcome for all preference profiles. Game-theoretic analysis of political institutions

can show substantial differences in the equilibrium outcomes under difterent political institutions



[f social choice theory has not given us one perfect voting system, then it has left us the important
task of characterizing the properties and performance of the many voting systems that we do

have.
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