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Abstract

We study a market-game mechanism in a setting with potential information
aggregation. The mechanism has two stages and is inspired by pari-mutuel betting.
The second stage resembles the determination of final odds and payoffs, while the
first stage is a version of the announced running bet totals and odds. In a model
that is essentially a finite-state, divisible-goods version of the private/common values
model of Reny-Perry (2006), we show existence of an equilibrium that is almost ex
post effi cient when the number of players is finite, but large.

1 Introduction

We study strategic trade in a setting with potential information aggregation: there is an
unobserved state-of-the-world and there is dispersed and incomplete information about
that state in the form of private signals. Our model of strategic trade resembles a market.
There are two main approaches to modeling trade in that way. One uses a double-auction
mechanism (see, in particular, Reny and Perry [5], Cripps and Swinkels [1], and Vives
[8]). The other uses a Cournot quantity mechanism (see Palfrey [3] and Vives [7]) or some
version of a Shapley-Shubik [6] market game. We use a market-game here. Our setting is
essentially a divisible-good generalization of that in Reny and Perry [5]. In particular, we
follow them in assuming that utility depends on the unobserved state-of-the-world and
on the private signal that each person receives.

Our mechanism has two stages and is inspired by pari-mutuel betting– perhaps, the
most significant actual use of a market game. The second stage resembles the determina-
tion of final odds and payoffs, while the first stage is a version of the announced running
bet totals and odds. The mechanism also resembles some of those used in experiments that
are devoted to information aggregation (see, for example, Axelrod et al [4])– mechanisms
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which have not been analyzed theoretically. Prior theoretical work in private-information
settings does not use such mechanisms and does not achieve ex post optimality in anything
like our structure. Palfrey [3] uses a Cournot mechanism and obtains ex post optimality,
but, as Vives [7] points out, only because marginal cost is common and constant so that
it does not matter how production is allocated among the firms in the model.

A crucial aspect of our mechanism is the way it elicits information at stage-1. At
stage-1, each agent names an offer. Then, in a random way, the agents are divided into
two groups: a small inactive group and a large active group. For the inactive group, there
is no further participation; their stage-1 offers are executed at an exogenous price. For
the active group, after the histogram of their stage-1 offers is announced, they participate
in a stage-2 market game– a version that uses the refinement in Dubey and Shubik [2] in
order to eliminate no-trade as an equilibrium. The threat of being in the inactive group
induces agents to be serious about their stage-1 offers.

Our results are about existence and ex post effi ciency. Under a mild genericity condi-
tion, if the number of agents is suffi ciently large, then there exists a symmetric equilibrium
in pure strategies in which stage-1 actions reveal the private-information held by all active
agents. Moreover, the stage-2 equilibrium outcome is almost ex post effi cient. And, if
there exist other equilibria, then they, too, have almost effi cient ex post stage-2 outcomes.

A single-stage, double-auction mechanism could possibily achieve something like our
asymptotic existence and effi ciency results. Vives [8] gets such results and explicit rates
of convergence in a model with linear-quadratic payoffs and normally distributed shocks.
However, in order to get ex post effi ciency, both in his setting and, therefore, in more
general settings, actions have to be (supply) functions. In contrast, actions in our mech-
anism are simpler; they are quantities. Relative to a direct mechanism, a virtue of our
mechanism is that it works in any environment in our class; the mechanism does not rely
on the detailed structure of the economy.

2 The model and the mechanism

We describe, in turn, the environment, our mechanism, and the equilibrium concept.

2.1 Environment

Our economy is an endowment economy with two goods and N agents. (The set of agents
is denoted N .) Each agent is assigned a type, denoted x, where x ∈ X, a finite set. An
agent of type x ∈ X maximizes expected utility with ex post utility function, u(q, r;x, z),
where (q, r) ∈ R2

+ is the vector of quantities of the two goods consumed and z ∈ Z, a
finite set, is a state-of-the-world. The function u(·, ·;x, z) is strictly increasing, strictly
concave, continuously differentiable with partial derivatives uq and ur, and satisfies Inada
conditions. For simplicity, each agent is endowed with the per capita endowment of each
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good, denoted q̄ and r̄, respectively.1 Finally, we assume that u(·, ·;x, z) is such that the
implied complete-information competitive demands are monotone.2 After presenting our
analysis, we comment in detail on the role of this monotonicity assumption.

The sequence of events is as follows. First, nature draws a state-of-the-world z ∈
Z with probability κ(z), a state which no one observes. Then each agent gets a type
realization, x ∈ X, which is private to the agent. Conditional on the realization z, these
realizations are i.i.d. across people. We denote the conditional probability P[x | z] by
µz(x), and denote the implied posterior probability P[z | x] by τx(z). We assume that
x is informative in the sense that z 6= z′ implies µz(x) 6= µz′(x) for some x ∈ X. This
informativeness assumption is without loss of generality: If µz(x) = µz′(x) for all x ∈ X,
then we treat z and z′ as a single state z′′ with utility u(q, r;x, z′′) = P [z]u(q, r;x, z) +
P [z′]u(q, r;x, z′). Our interpretation is that x is an idiosyncratic taste shock and that z
is a common taste shock. Notice that the realized type, x, plays two roles: it serves as
private information about z and it is private information about preferences.3

2.2 The mechanism

After the type realizations, each agent n chooses an offer an = (anq , a
n
r ) ∈ O, where

O = {(oq, or) ∈ [0, q̄] × [0, r̄] : oqor = 0}. Then agents are randomly divided into two
groups in the following way. Let η ∈ (0, 1) be a (small) rational number and let d(1 −
η)Ne = M denote the smallest integer that is no less than (1 − η)N . An assignment
π : N → {1, ..., N} is drawn from the uniform distribution over the set of all such
assignments, and agent n is called active if π(n) ≤M and is called inactive if π(n) > M .
The payoff for each inactive agent is given by trade at the fixed price, p1 = r̄/q̄. That is,

(qn, rn) =

(
q̄ − anq +

anr
p1

, r̄ − anr + p1a
n
q

)
for n /∈M, (1)

where M is the set of active agents. Next, the mechanism announces the histogram of
the stage-1 offers of the active agents, denoted ν : O → {1, 2, ...,M}.4 Then, given that
information, stage-2 has active agents participating in a market game. Each active agent
n makes an offer bn = (bnq , b

n
r ) ∈ O and gets payoff

(qn, rn) =

(
q̄ − bnq +

bnr
p2

, r̄ − bnr + p2b
n
q

)
for n ∈M, (2)

where p2 = R/Q and

1What really matters is common knowledge about individual endowments.
2A gross-substitutes assumption about u(·, ·;x, z) is suffi cient for such monotonicity.
3Of course, we could have formulated the types x as x = (xt, xs), where xt affects the utility function

and xs is a signal about z. However, this formulation is equivalent to ours and only complicates the
notation.

4We could let the mechanism announce two histograms, one for active agents and one for inactive
agents. However, that would complicate the notation and would not change the results.
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(Q,R) = Mε+
∑
n∈M

bn. (3)

Here, ε = (εq, εr), where εq > 0 and εr > 0 are exogenous (small) quantities that prevent
no-trade from being an equilibrium, a formulation borrowed from Dubey and Shubik [2].
Notice that p2 functions as a “price,”but a price that depends on the offer of each active
agent.

As it stands, this mechanism violates feasibility. The trades of inactive agents at the
fixed price do not clear that market. In addition, resources are required for the positive
εq and εy. We proceed as if the mechanism designer has the resources required to support
this mechanism. At the end, we suggest that small entry fees could be used to provide
those resources. In any case, the departure from feasibility (and balancedness) can be
made arbitrarily small in percapita terms.

The restriction in O that agents can only make offers on one side of the market plays
a significant role in our analysis. It is used to obtain the uniqueness of best responses.
The following lemma shows that the restriction is not binding on the agent.5

Lemma 1. Fix the stage-2 offers of all other agents. If b′ ∈ [0, q̄] × [0, r̄] with payoff
(q′, r′) is such that b′qb

′
r > 0, then there exists b′′ ∈ O with payoff (q′, r′).

Obviously, the restriction is not binding in the same sense on payoffs for inactive
agents.

2.3 Strategies, beliefs, and equilibrium

Now we formulate strategies and beliefs. A stage-1 strategy is sn1 (x) ∈ O, while a stage-2
strategy is sn2 (x, a, ν−a) ∈ O, where the second component in the domain is the agent’s
stage-1 action, and the third is the announced histogram of offers of active agents net
of the agent’s own action. (That is, for any a′ ∈ O, ν−a(a′) = ν(a′) if a 6= a′ and
ν−a(a) = ν(a)−1.) A strategy profile {(sn1 , sn2 ) : n ∈ N} is a Perfect Bayesian Equilibrium
(PBE) if for each n ∈ N , sn1 is a best response to {(sn

′
1 , s

n′
2 ) : n′ 6= n} and sn2 is a best

response to {sn′2 : n′ 6= n} with respect to a belief ϕn that is consistent with Bayes’rule
whenever possible.

Throughout the paper, we focus exclusively on symmetric equilibrium in pure strate-
gies. A PBE {(sn1 , sn2 ) : n ∈ N} is a symmetric equilibrium if for all n ∈ N , (sn1 , s

n
2 ) =

(s1, s2) and ϕn = ϕ. In a symmetric equilibrium, an agent’s expected payoff at stage-2
depends only on his private history (x, a) and the configuration of other active agents’
private histories θ : X × O → {0, 1, 2, ...,M − 1}. Thus, we may formulate the belief
ϕ(x, a, ν−a) as an element of ∆(Z × Θ), where Θ is the set of all configurations θ of
type/stage-1-action of the other active agents. Then, a symmetric equilibrium is a triple
(s1, s2, ϕ) such that (a) s1(x) is a best response to s1 and s2; (b) s2(x, a, ν−a) is a best
response to s2 and ϕ(x, a, ν−a); (c) ϕ(x, a, ν−a) is derived from equilibrium behavior using
Bayes’rule whenever possible.

5All the proofs appear in section 4.
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It is also useful to define a separating equilibrium. A separating equilibrium is a sym-
metric equilibrium in which x 6= x′ implies s1(x) 6= s1(x′). In a separating equilibrium,
the belief on the equilibrium path does not depend on an agent’s private history. In par-
ticular, in such an equilibrium, ν−a and the agent’s own type reveal the true configuration
of types of the active agents and each agent uses that true configuration and Bayes’rule
to form a common posterior over Z. Thus, on the equilibrium path in a separating equi-
librium, while the agent’s private type matters for the agent’s preferences at stage 2, all
active agents share the same information at that stage regardless of their private types.

We show that a separating equilibrium exists generically for suffi ciently large N and
that the equilibrium outcome is almost ex post effi cient. We establish existence by demon-
strating that it is optimal for an agent at stage 1 to choose an action that is best contingent
on being inactive when others do so. The main ingredient in that argument is the off-
equilibrium belief formulation. The genericity qualification is very simple: it requires that
the ratios of marginal utilities at the optimal consumption levels under the fixed price p1

differ across types. As regards ex post effi ciency, we show that the limit of stage-2 ac-
tions in a separating equilibrium is close to the unique complete-information competitive
equilibrium. We get almost ex post effi ciency instead of effi ciency for two reasons. First,
we get a competitive outcome only in the limit as N → ∞. Second, that competitive
limit is for the economy of active agents that has exogenous per capita trades ε. Because,
we can let η and ε approach zero, we have almost effi ciency. Finally, under a stronger
version of informativeness and a minor modification of the mechanism, we show that any
equilibrium outcome in symmetric pure strategies is also almost ex post effi cient.

3 Separating equilibrium: existence, characterization,
and uniqueness

Our existence proof is partly constructive. Therefore, it is helpful to begin with existence
and characterization of stage-2 when stage-1 is separating.

3.1 Second-stage equilibrium when stage-1 is separating

In a separating equilibrium (s1, s2), the belief ϕ about the type/stage-1-action config-
uration is degenerate on the configuration θ given by θ(x, s1(x)) = ν−a(s1(x)). This
implies that there is common knowledge at stage 2 about the type-configuration of active
agents, a configuration we denote σ : X → {0, 1, ...,M}, whereM is the number of active
agents.6 It also implies a common posterior over Z, denoted φ, which is derived from the
type-configuration σ via Bayes’rule.

Therefore, stage-2 in a separating equilibrium only depends on the type-configuration
σ. In fact, the stage-2 game along such an equilibrium path can be regarded as a Bayesian

6In what follows, and only to simplifiy the notation, we assume that σ(x) > 0 for all x ∈ X. Obviously,
this holds with probability one for all suffi ciently large N .
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game defined as follows. Given a type-configuration σ, the stage-2 game on such an
equilibrium path is a Bayesian game in which: (a) the players are the active agents; (b)
the action set for each player consists of offers (bq, br) ∈ O; (c) the payoffs are determined
by the market game and u; (d) the number of players of type x is σ(x), which is common
knowledge among the players; (e) the common prior over Z is given by φσ ∈ ∆(Z) that
is derived from σ.7 We denote an equilibrium for this game by βσ : X → O.

Then we have

Proposition 1. For any type-configuration σ : X → {0, 1, ...,M}, βσ exists.

The proof is a routine application of Brouwer’s fixed point theorem. It does, however,
depend crucially on the constraint bqbr = 0. With it, the best response, which is the
mapping studied in order to get a fixed point, is a function; without that constraint, the
mapping is a nonconvex correspondence. It also makes use of ε > 0, which gives both
upper and lower bounds on p2.

Although there is no uniqueness claim in Proposition 1, we can characterize the limit of
βσ as N →∞ for any suitable sequence of type-configurations σN . Our characterization
result is based on the following implication of our informativeness assumption. Fix z ∈ Z
and let σN be the type configuration of active agents for an economy of size N . If the
sequence {σN}∞N=1 is such that limN→∞ σ

N(x)/d(1−η)Ne = µz(x) for each x ∈ X (which
holds almost surely conditional on z), then limN→∞ φ

σN (z) = 1. It also makes use of the
following candidate limit for a stage-2 equilibrium. Let Lz(ε) denote the economy with
z known, with a nonatomic measure of agents, with fraction of type-x agents equal to
µz(x), and with exogenous per capita trades ε. A competitive equilibrium in Lz(ε) is
a tuple {pz, (qz(x), rz(x))x∈X} such that (qz(x), rz(x)) maximizes u(q, r;x, z) subject to
pq + r = pq̄ + r̄ for each x ∈ X and

εr
p

+
∑
x∈X

µz(x)q(x) = q̄ + εq.

The following lemma shows the equivalence between the competitive equilibrium in Lz(ε)
and the Nash equilibrium of the market game in Lz(ε).

Lemma 2. The economy Lz(ε) has a unique competitive equilibrium and it is continuous
in ε. Moreover, (qz(x), rz(x))x∈X is a competitive allocation for Lz(ε) if and only if

βzq(x) = max{q̄ − qz(x), 0} and βzr(x) = max{r̄ − rz(x), 0}

is a Nash equilibrium for the market game for Lz(ε).

This is one of the places where positive ε plays a role. Without it, no-trade could be an-
other Nash equilibrium of the market game. In what follows, we denote {βzq(x), βzr(x)}x∈X
by βz.

Proposition 2. Fix z ∈ Z. If the sequence {σN}∞N=1 is such that limN→∞ σ
N(x)/d(1 −

η)Ne = µz(x) for each x ∈ X, then limN→∞ β
σN = βz.

7Indeed, it can be regarded as a one-shot, complete-information game in which φ is a preference
parameter.
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The proof uses the fact that the sequence {βσN}∞N=1 is bounded and applies the The-
orem of the Maximum to any subsequence of such equilibria.

3.2 Existence of separating equilibrium

Contingent on being inactive, an agent at stage-1 chooses a ∈ O to maximize

Gx(a) =
∑
z∈Z

τx(z)u(q̄ − aq +
ar
p1

, r̄ − ar + p1aq;x, z). (4)

By the argument in the proof of Proposition 1, a unique maximum of Gx(a) exists. We
denote it α∗ = {α∗(x)}x∈X . Generically, α∗ is separating in the sense that x 6= y implies
α∗(x) 6= α∗(y). That is, if, instead, α∗(x) = α∗(y) = (ăq, ăr) for x 6= y, then∑

z∈Z τx(z)uq(q̌, ř;x, z)∑
z∈Z τx(z)ur(q̌, ř;x, z)

= p1 =

∑
z∈Z τ y(z)uq(q̌, ř; y, z)∑
z∈Z τ y(z)ur(q̌, ř; y, z)

,

where q̌ = q̄− ăq + ăr
p1
and ř = r̄− ăr + p1ăq. But this restriction holds only for knife-edge

cases for two distinct aspects of the environment: the probabilities, τx(·) and τ y(·), and
the utilities, u(q̌, ř;x, ·) and u(q̌, ř; y, ·).

Now we describe beliefs under the assumption that α∗ is separating. For any a ∈ O,
let

q1(a) = q̄ − aq +
ar
p1

∈ [0, 2q̄]. (5)

By separation, x 6= y implies q1(α∗(x)) 6= q1(α∗(y)). Let k = #X and, without loss of
generality, order the elements ofX so that q1(α∗(xi)) < q1(α∗(xi+1)) for i ∈ {1, 2, ..., k−1}.
Next, partition the interval [0, 2q̄] into k subintervals indexed by that ordering as follows:

I(xi) =



[
0, q1(α∗(x2))+q1(α∗(x1))

2

)
for i = 1

[
q1(α∗(xi))+q1(α∗(xi−1))

2
, q1(α∗(xi+1))+q1(α∗(xi))

2

)
for i = 2, 3, ..., k − 1

[
q1(α∗(xi))+q1(α∗(xi−1))

2
, 2q̄
]
for i = k

. (6)

For k = 2, I(x1) and I(x2) are depicted in Figure 1.

Figure 1. Intervals for beliefs: k = 2

[- - - - - - - - I(x1) - - - - - - - - -)[- - - - - - - I(x2) - - - - - - - - - - -]

[– – – – – •– – – – – – – – •– – – – – – – – •– – – – – – ]

0 q1(α∗(x1)) q1(α∗(x2)) 2(q̄)

7



An agent’s belief is a joint distribution over the type/stage-1-action configuration of the
other active agents and the state-of-the-world z. It is derived from the observed histogram,
ν, and from knowledge of the agent’s own private information. In particular, each active
agent sees the stage-1 offers of all other active agents, which imply a configuration of
quantities via the mapping q1. Here, then, is our candidate for beliefs, which is defined
for arbitrary stage-1 outcomes.

Candidate for equilibrium beliefs, ϕ∗: ϕ∗(x, a, ν−a) puts probability 1 on the configu-
ration θν−a defined by

θν−a(y, a
′) =

{
ν−a(a′) if q1(a′) ∈ I(y)

0 otherwise
. (7)

Its marginal distribution over Z is given by the posterior derived from Bayes’rule using
the type-configuration of all active agents σ∗ : X → {0, 1, ...,M} defined by

σ∗(y) =

{
θν−a(y) if y 6= x

θν−a(x) + 1 if y = x
. (8)

That is, (7) says that each agent forms a degenerate distribution over the type/stage-1-
action configuration of the other active agents by treating an observed stage-1 action in
I(xi) as coming from an agent of type xi. As for (8), it says that the agent gets a type-
figuration over all active agents by using the type-configuration for other active agents
implied by (7) and the agent’s own true type.

In order to describe the candidate for equilibrium strategies, it is helpful to distinguish
between two classes of active agents according to their private histories. We call an agent
of type x a nondefector if the agent’s stage-1 action is in I(x); otherwise, the agent is called
a defector. Notice that if no one defects, then all agents have beliefs that are symmetric
in the sense assumed in proposition 1: all have the same posterior on z and all active
agents have the same belief about the type-configuration over other active agents, which
happens to be the true configuration. If one agent defects or more than one defect, then
all nondefectors have symmetric beliefs; they have the same posterior on z and any such
active agent has the same belief about the type-configuration over other active agents,
which, however, is not the true configuration. Each defector has a different posterior on
z and a different belief about the type-configuration for the active agents.

The belief ϕ∗ has each agent believing that other agents do not defect. Our specifi-
cation for a candidate equilibrium is consistent with that belief. In particular, when we
describe a stage-2 strategy for arbitrary stage-1 actions, we have each agent believing that
other agents did not defect at stage-1.

Candidate for equilibrium strategies. For stage-1, our candidate is

s∗1(x) = α∗(x), (9)

the maximum of Gx(a) (see (4)).

To describe stage-2 strategies, consider an agent with private history (x, a, ν−a) such
that q1(a) ∈ I(x′). Given the private history, let σ∗ be the agent’s belief about the type-
configuration of all active agents under ϕ∗ (see (8)). Because the agent believes that all
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other agents are nondefectors, he believes that all other agents share the same believed
type-configuration, denoted σ′. If x′ = x (the agent is a nondefector), then σ′(y) = σ∗(y)
for all y; otherwise (the agent is a defector), σ′(x) = σ∗(x)− 1, σ′(x′) = σ∗(x′) + 1, and
σ′(y) = σ∗(y) for all y /∈ {x, x′}. Then s∗2(x, a, ν−a) satisfies

s∗2(x, a, ν−a) ∈ arg max
b∈O

∑
z∈Z

φσ
∗
(z)u(q̄ +

brQ− − bqR−
R− + br

, r̄ +
bqR− − brQ−
Q− + bq

;x, z), (10)

where φσ
∗
(z) is derived from σ∗ using Bayes rule and where

(Q−, R−) = Mε+
∑
y 6=x

σ∗(y)βσ
′
(y) + (σ∗(x)− 1)βσ

′
(x).

When the agent is a nondefector, that is, when σ′ = σ∗, we have s∗2(x, a, ν−a) = βσ
∗
(x).

Notice that in the above construction we fix a βσ for any σ; that is, agents coordinate on
a particular proposition-1 equilibrium for any believed type-configuration.

Theorem 1. Suppose that α∗(x) 6= α∗(y) for any x 6= y. There exists some N̄ such that
if N ≥ N̄ , then the N -agent economy has a separating equilibrium.

The proof shows that the above candidate is an equilibrium. By construction, s∗1 = α∗

implies that ϕ∗ is consistent with Bayes’rule. Also, by construction, s∗2(x, a, ν−a) is a
best response to s∗2 with respect to ϕ

∗. That follows because, according to ϕ∗, the agent
believes that every other active agent is a nondefector. And, if they follow s∗2, then their
actions are described by βσ

′
. Therefore, what remains, and is the focus of the proof, is

to show that α∗ is optimal given that other agents follows the candidate equilibrium. An
agent at stage-1 faces a tradeoff. Conditional on being inactive, playing α∗ is optimal for
any N . Conditional on being active, a type-x agent could gain by playing something not
in I(x). By doing that, the agent influences the beliefs and, thereby, the stage-2 actions of
other active agents. The proof shows that any such gain vanishes as N gets large and is,
therefore, smaller than the loss implied by playing something that is not in I(x), which,
by construction, is bounded away from α∗(x).

Corollary. Any Theorem-1 equilibrium is almost ex post effi cient.

This follows from proposition 2.

3.3 Uniqueness of equilibrium outcomes

In the previous section we have established the existence of a separating equilibrium
and have shown that it is almost ex post effi cient. Here, with a small modification of the
mechanism, we show that any equilibrium outcome in pure symmetric strategies is almost
ex post effi cient if a generic condition about the information structure holds. We are not
showing that nonseparating equilibria exist.

The modification is that the second stage does not exist (the market shuts down)
if all agents announce the same offer in the first stage. Under the assumption that
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α∗(x) 6= α∗(y) for all x 6= y, this modification then rules out any equilibrium (s1, s2) such
that s1(x) = s1(y) for all x, y ∈ X, but does not change any other equilibrium if it exists.
(In particular, this modification does not affect the existence of a separating equilibrium.)
To see that s1(x) = ă for all x ∈ X is not an equilibrium under this modification, it is
enough to show that one agent has a profitable deviation. By assumption, there exists a
type, say type y, for whom ă 6= α∗(y). Because no trade is always available for the agent
at stage 2, playing α∗(y) is a profitable deviation.

To show that any other equilibrium (s1, s2) is almost ex post effi cient, we need the
following stronger informativeness assumption:

A1. Let Y = {Y1, Y2} be any bipartition of X and let µz(Yi) ≡
∑

y∈Yi µz(y). For any
z 6= z′, µz(Y1) 6= µz′(Y1).

Assumption A1 implies that for any partition Y = {Y1, ..., YK} of X with K ≥ 2 and for
any z 6= z′, there exists some k such that µz(Yk) 6= µz′(Yk). Although this assumption is
stronger than our original informativeness assumption, it holds generically.

Because the modification rules out the complete pooling equilibrium, any equilibrium
(s1, s2) in symmetric pure strategies is a semi-pooling equilibrium in the sense that there
is a partition Y = {Y1, ..., YK} of X with K ≥ 2 such that s1(y) = s1(y′) if y, y′ ∈ Yk and
s1(y) 6= s1(y′) if y ∈ Yk and y′ ∈ Yk′ with k 6= k′. We call each Yk a signal. Let λ : Y → N
denote a configuration of signals.

In an equilibrium (s1, s2) with associated partition Y, the signal configuration λ im-
plied by the public announcement along the equilibrium path is a random variable. More-
over, following any public announcement ν and the implied signal configuration λ along
the equilibrium path, the stage-2 game can be analyzed as an incomplete-information
game: players are the active agents; the action set for each player is O; payoffs are de-
termined by the market game and u; the number of players with types belonging to Yk
is λ(Yk), which is common knowledge among the players; and the common prior over Z
and XM is given by κ(z) and µz for z ∈ Z. However, in contrast to the stage-2 game in
a separating equilibrium, an active agent does not know the type configuration of other
active agents.

Fix a state of the world z. Because the effi ciency of the equilibrium outcome is mainly
determined by the stage-2 outcome, our goal is to show that conditional on z, the stage-
2 equilibrium outcome converges to the competitive outcome of Lz(ε). Specifically, we
show that for any sequence of equilibria, {(sN1 , sN2 )}∞N=1, the stage-2 equilibrium outcome
converges to the competitive outcome conditional on z as N goes to infinity. Because
there are only finitely many nondegenerate partitions of X, it is suffi cient to show that
for any given partition Y of X, if the subsequence {(sNs1 , sNs2 )}∞N=1 consists of equilibria
associated with Y, then the stage-2 equilibrium outcome converges to the competitive
outcome conditional on z as s goes to infinity. For each Ns, let λ

Ns (which is a random
variable) be the signal configuration on the equilibrium path in (sNs1 , sNs2 )}∞N=1 and let
βλ

Ns
be the stage-2 equilibrium actions.

Theorem 2. Let Y = {Y1, ..., YK} be a partition of X with K ≥ 2. Assume that there
is an increasing sequence of {Ns}∞s=1 such that for each s, there exists an equilibrium
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(sNs1 , sNs2 ) associated with Y. Under assumption A1, for any z ∈ Z, lims→∞ β
λNs = βz

almost surely conditional on z.

The proof has two parts. First, under A1, the histogram of stage-1 offers reveals z
almost surely as N gets large. Then, the assumption that types are i.i.d. conditional on z
implies that the type-configuration distribution of active agents converges to µz(x). The
second part of the proof follows the logic in the proof of proposition 2. However, here,
instead of appealing to the Theorem of the Maximum, an explicit limiting argument is
given.

4 Proofs

Lemma 1. Fix the stage-2 offers of all other agents. If b′ ∈ [0, q̄] × [0, r̄] with payoff
(q′, r′) is such that b′qb

′
r > 0, then there exists b′′ ∈ O with payoff (q′, r′).

Proof. Let (Q−, R−) ∈ R2
++ be total offers of other agents (including the exogenous

offers). For any b ∈ [0, q̄]× [0, r̄], we have from (2),

q = q̄ +
brQ− − bqR−
R− + br

and r = r̄ +
bqR− − brQ−
Q− + bq

. (11)

Case (i): b′rQ− − b′qR− > 0. In this case, let b′′q = 0 and let b′′r be the unique solution
to

b′′rQ−
R− + b′′r

=
b′rQ− − b′qR−
R− + b′r

≡ γ, (12)

where it follows that γ ∈ (0, Q−). The solution is b′′r = R−γ/(Q− − γ). It follows by (12)
that q(b′′q , b

′′
r) = q(b′q, b

′
r). Now

r(b′′q , b
′′
r)− r̄ = b′′r = R−γ/(Q− − γ) = r(b′q, b

′
r)− r̄,

where the last equality follows from the definition of γ.

Case (ii): b′rQ− − b′qR− < 0. This is completely analogous, but with b′′r = 0.

Case (iii): b′rQ− − b′qR− = 0. Here, of course, we let b′′q = b′′r = 0.�
Proposition 1. For any type-configuration σ : X → {1, ...,M}, βσ exists.

Proof. Let k = #X and let S = {[0, q̄]× [0, r̄]}k, which is compact and convex. We let
s = {sy}y∈X with sy = (syq, syr) denote a generic element of S. For s ∈ S and x ∈ X, let
F : S → S be given by

Fx(s) = arg max
b∈O

Hx(b;Q−, R−), (13)

where

Hx(b;Q−, R−) =
∑
z∈Z

φ(z)u(q̄ +
brQ− − bqR−
R− + br

, r̄ +
bqR− − brQ−
Q− + bq

;x, z) (14)
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and
(Q−, R−) = Mε+

∑
y 6=x

σ(y)sy + [σ(x)− 1]sx.

Here φ is the common posterior on z. We have to show that Fx(s) is unique and is
continuous in s. We start with uniqueness. Notice that (Q−, R−) ∈ R2

++ for any s ∈ S.

Because of the bqbr = 0 constraint in (13), it is helpful to separately considerHx(bq, 0;Q−, R−)
and Hx(0, br;Q−, R−), where

Hx(bq, 0;Q−, R−) =
∑
z∈Z

φ(z)u(q̄ − bq, r̄ +
bqR−
Q− + bq

;x, z) ≡ g(bq),

and

Hx(0, br;Q−, R−) =
∑
z∈Z

φ(z)u(q̄ +
brQ−
R− + br

, r̄ − br;x, z) ≡ h(br).

For (c1, c2) ∈ R2
++, let f(y) = c1y/(y + c2) for y ∈ R+. It follows that f is increasing

and strictly concave. Then, because u is strictly concave and because a strictly concave
function of an increasing concave function is strictly concave, both g and h are strictly
concave. It follows that g has a unique maximum and that h has a unique maximum,
denoted b̂q and b̂r, respectively. Moreover, by the Inada conditions on u, these maxima
are characterized by

b̂q =

{
0 if g′(0) ≤ 0

satisfies g′(b̂q) = 0 if g′(0) > 0
, (15)

and

b̂r =

{
0 if h′(0) ≤ 0

satisfies h′(b̂r) = 0 if h′(0) > 0
. (16)

Therefore, a suffi cient condition for uniqueness is min{g′(0), h′(0)} ≤ 0. But,

g′(0) =
∑
z∈Z

φ(z)

[
−uq (q̄;x, z) + ur (r̄;x, z)

R−
Q−

]
,

and

h′(0) =
∑
z∈Z

φ(z)

[
uq (q̄;x, z)

Q−
R−
− ur (r̄;x, z)

]
.

Therefore,

sign[h′(0)] = sign[
R−
Q−

h′(0)] = sign[−g′(0)] = −sign[g′(0)], (17)

which implies min{g′(0), h′(0)} ≤ 0.

Now we turn to continuity in s, which follows if (b̂q, b̂r) is continuous in (Q−, R−). By
(17), g′(0) = 0 iff h′(0) = 0. That and (15) and (16) imply that max{b̂q, b̂r} satisfies a
first-order condition with equality. Then, the implicit-function theorem applied to that
first-order condition gives the required continuity.
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It follows that the mapping F satisfies the hypotheses of Brouwer’s fixed-point theo-
rem. Notice that although the domain of the mapping, S, does not satisfy bqbr = 0, the
range does. Therefore, the fixed point satisfies bqbr = 0.�
Lemma 2. Let Lz(ε) denote the economy with z known, with a nonatomic measure
of agents, with fraction of type-x agents equal to µz(x), and with exogenous per capita
trades (and endowments) ε. The economy Lz(ε) has a unique competitive equilibrium
and it is continuous in ε. Moreover, (qz(x), rz(x))x∈X is a competitive allocation for Lz(ε)
if and only if

βzq(x) = max{q̄ − qz(x), 0} and βzr(x) = max{r̄ − rz(x), 0} (18)

is a Nash equilibrium for the market game for Lz(ε).

Proof. In order to simplify the notation, we supress the dependence on z. A competitive
equilibrium (CE) with exogenous offers ε is a price p and an allocation (q(x), r(x))x∈X
such that (q(x), r(x)) maximizes u(q, r;x, z) subject to pq + r = pq̄ + r̄ and

εr
p

+
∑
x∈X

µz(x)q(x) = q̄ + εq. (19)

Given our assumptions about u(·, ·;x, z), existence and uniqueness of a CE is entirely
standard, as is continuity in ε. Hence, we turn to the coincidence claim.

(i) Assume that (q(x), r(x))x∈X is a competitive allocation. It follows from (18) that
β(x) ∈ O. Next, we show that the CE price is

p =

∑
x∈X µz(x)βr(x) + εr∑
x∈X µz(x)βq(x) + εq

. (20)

The market-clearing condition, (19), can be written,

εr
p

+
∑
x∈X+

µ(x)[q(x)− q̄]−
∑
x∈X−

µ(x)[q(x)− q̄] = εq

where X+ means x ∈ X such that q(x) − q̄ > 0 and X− means x ∈ X such that
q(x)− q̄ < 0. By the competitive budget, pq + r = pq̄ + r̄, this can be written

εr
p

+
1

p

∑
x∈X+

µ(x)[r̄ − r(x)] +
∑
x∈X−

µ(x)[q(x)− q̄] = εq,

where r̄ − r(x) > 0. Using (18), we have

εr
p

+
1

p

∑
x∈X+

µ(x)βr(x)−
∑
x∈X−

µ(x)βq(x) = εq,

which gives (20).

It remains to show that β satisfies the best-response correspondence. This is done by
showing that the feasible choices for consumption in the game when everyone else plays β
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are the same as the competitive budget set when the price is given by (20). This follows
from (2) and the fact that one person’s action does not affect the r.h.s. of (20).

(ii) Now assume that β is a stage-2 Nash equilibrium. In the last part of the proof of (i),
we showed that the individual choice sets in the game and those implied by a competitive
budget are the same for a given price. So all we need is a price that makes (q, r) implied
by (18) satisfy market-clearing. That is guaranteed by aggregating the payoffs when the
price is given by (20).�
Proposition 2. Fix z ∈ Z. If the sequence {σN}∞N=1 is such that limN→∞ σ

N(x)/d(1 −
η)Ne = µz(x) for each x ∈ X, then limN→∞ β

σN = βz.

Proof. This proof applies the Theorem of the Maximum to a sequence of proposition 1
equilibria. We can write the best-response objective (see (14)) as

Hx(b;Q−, R−, φ) =
∑
z′∈Z

φ(z′)u (q, r;x, z′) , (21)

with

q = q̄ +
br

p(1 + br
R−

)
− bq

1 + br
R−

,

r = r̄ − br

1 + bq
Q−

+
pbq

1 + bq
Q−

,

and p = R−/Q−.

Now, let
Fx(b; p, c1, c2, φ) =

∑
z′∈Z

φ(z′)u (q, r;x, z′)

with

q = q̄ +
br

p(1 + c2br)
− bq

1 + c2br
,

and

r = r̄ − br
1 + c1bq

+
pbq

1 + c1bq
,

and where the domain for F is A = O ×
[

εr
q̄+εq

, r̄+εr
εq

]
×
[
0, 1

εr

]
×
[
0, 1

εq

]
× ∆(Z). It

follows that Fx(b; p, 1/Q−, 1/R−, φ) = Hx(b;Q−, R−, φ). Therefore, by the argument used
in the proof of proposition 1, Fx(·; p, c1, c2, φ) has a unique maximum, gx(p, c1, c2, φ). And
because Fx is continuous on A, the Theorem of the Maximum implies that gx(p, c1, c2, φ)
is continuous.

Now consider

Hx(b;Q
N
− , R

N
− , φ) = Fx(b;

RN
−

QN
−
,

1

QN
−
,

1

RN
−
, φ)

with
(QN
− , R

N
− ) =

∑
y∈X

σN(y)(βN(y) + ε)− βN(x).
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Notice that (
RN−
QN−
, 1
QN−
, 1
RN−

) ∈
[

εr
q̄+εq

, r̄+εr
εq

]
×
[
0, 1

εr

]
×
[
0, 1

εq

]
. Therefore, by the definition

of βN , βN(x) = gx(
RN−
QN−
, 1
QN−
, 1
RN−
, φ). Because {βN}∞N=1 is bounded, it has a convergent

subsequence, say {βNs}∞s=1, with limit denoted β̂. By the continuity of gx, it follows that

β̂(x) = lim
s→∞

gx(
RN
−

QN
−
,

1

QN
−
,

1

RN
−
, φ) = gx( lim

s→∞

RN
−

QN
−
, lim
s→∞

1

QN
−
, lim
s→∞

1

RN
−
, lim
s→∞

φ) = gx(p̂, 0, 0, δz)

where

p̂ =

∑
µz(y)β̂r(y) + εr∑
µz(y)β̂q(y) + εq

and δz = 1 for z′ = z (and 0 otherwise). By the definition of Fx, it follows that β̂(x)
maximizes u(q̄ − bq + br

p̂
;x, z) + w(r̄ − br + p̂bq). Therefore, it is a Nash equilibrium in

Lz(ε). By lemma 2, it follows that β̂ = βz.�
Theorem 1. Suppose that α∗(x) 6= α∗(y) for any x 6= y. There exists some N̄ such that
if N ≥ N̄ , then the N -agent economy has a separating equilibrium.

Proof. We show that for large N’s, ((s∗1, s
N
2 ), ϕN) is a PBE, where s∗1(x) = α∗(x) for all

x ∈ X, and sN2 and ϕN are given by (10) and (7)-(8), respectively. By construction, sN2 is
a best response against sN2 w.r.t. ϕN and ϕN is consistent with Bayes rule. It remains to
show that s∗1 is a best response to (s∗1, s

N
2 ) for suffi ciently large N .

Let MN = d(1 − η)Ne. Fix an agent of type x. Because the assignment π is drawn
independently from the types, conditional on being active, the agent’s belief about other
agents’types is such that those types are i.i.d. with marginal probabilities (µz(x))x∈X
conditional on each state z. Let γNz be the i.i.d. distribution over X

MN−1 generated by
(µz(x))x∈X . Given s∗2, the first stage problem for the agent of type x is maxa∈OG

N
x (a),

where
GN
x (a) = ηGx(a) + (1− η)FN

x (a). (22)

Here, Gx is the stage-1 problem contingent on being inactive; while, for a ∈ I(x̄),

FN
x (a) =

∑
z∈Z

τx(z)

 ∑
ξ∈XMN−1

γNz (ξ)
[
u(qN(a; z, ξ), rN(a; z, ξ);x, z)

] , (23)

where for each z and ξ = (ξ1, ..., ξMN−1) ∈ XMN−1,

qN(a; z, ξ) = q̄ +
s∗2,r(x, a, ν

ξ,−a)QN
− − s∗2,q(x, a, νξ,−a)RN

−

s∗2,r(x, a, ν
ξ,−a) +RN

−
,

rN(a; z, ξ) = r̄ +
s∗2,q(x, a, ν

ξ,−a)RN
− − s∗2,r(x, a, νξ,−a)QN

−

s∗2,q(x, a, ν
ξ,−a) +QN

−
,

νξ,−a is the announced histogram given that other active agents’ types are ξ and that
other agents follow s∗1, and QN

− and RN
− are the implied stage-2 offers of other active
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agents according to the candidate equilibrium. That is,

νξ,−a(s∗1(y)) =
MN−1∑
i=1

1y(ξi) for each y ∈ X and νξ,−a(a′) = 0 otherwise, (24)

and
(QN
− , R

N
− ) =

∑
y∈X

σξ(y)(βσ
ξ

(y) + ε)− βσξ(x̄) (25)

where σξ is the type-configuration believed by other active agents; namely,

σξ(y) =

MN−1∑
i=1

1y(ξi) for each y 6= x̄ and σξ(x̄) =

MN−1∑
i=1

1x̄(ξi) + 1. (26)

The theorem is proved using the following two claims.

Claim 1. There exists an ε > 0 such that for all x ∈ X, if q1(a) /∈ I(x), then Gx(a) <
Gx(s

∗
1(x))− ε.

Proof of claim 1. As mentioned before, maxa∈OGx(a) is equivalent to maxq∈[0,2q̄] Lx(q),
where

Lx(q) =
∑
z∈Z

τx(z)u(q, p1q̄ + r̄ − p1q;x, z).

The function Lx is strictly concave in q for each x. Let δ = min{ |q1(α∗(x))−q1(α∗(y))|
2

:
x, y ∈ X, x 6= y}. Then, for each x ∈ X, if q /∈ I(x), then |q − q1(α∗(x))| ≥ δ.
Fix some x ∈ X. Lx(q) is strictly concave in q and has maximum at q1(α∗(x)). Let
Ax = min{−L′x(q1(α∗(x)) + δ

2
), L′x(q1(α∗(x)) − δ

2
)} > 0. Then, for any q such that

|q − q1(α∗(x))| ≥ δ, Lx(q) ≤ Lx(q1(α∗(x))) − δ
2
Ax. Take ε = 1

2
min{ δ

2
Ax : x ∈ X}.

Then, if q1(a) /∈ I(x), then Gx(a) = Lx(q1(a)) ≤ Lx(q1(α∗(x)))− 2ε < Gx(s
∗
1(x))− ε.2

Claim 2. Let ξ = (ξ1, ..., ξn, ...) be an infinite sequence of X-valued random variables
that is i.i.d. w.r.t. the marginal distribution (µz(x))x∈X and let ξ

MN−1 = (ξ1, ..., ξMN−1),
where ξM

N−1 is interpreted as the types of the other active agents when there are MN

active agents. Then

lim
N→∞

qN(a; z, ξM
N−1) = q̄ +

βzr(x)

pz
− βzq(x), lim

N→∞
rN(a; z, ξM

N−1) = r̄ + βzq(x)pz − βzr(x),

in probability and
lim
N→∞

FN
x (a) =

∑
z∈Z

τx(z)u(qz(x), rz(x);x, z),

uniformly in a ∈ O, where (qz(x), rz(x)) is the CE allocation of L(εq, εr) (see Lemma 2).

Proof of claim 2. By definition, ξM
N−1 = (ξ1, ..., ξMN−1) is distributed according to γNz .

For each N , let σN = σξ
MN−1

as defined in (26) and let νN = νξ
MN−1,−a as defined

in (24). Then, the sequence {σN} is such that
∑

y∈X σ
N(y) = MN and for each y ∈

X, limN→∞(σN(y)/MN) = µz(y) almost surely. Consider a realization of ξ for which
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limN→∞(σN(y)/MN) = µz(y). Then, by Proposition 2, we have limN→∞ β
σN = βz. This

implies that

lim
N→∞

(
QN
−

MN
,
RN
−

MN
) =

∑
y∈X

µz(y)(βz(y) + ε) and lim
N→∞

RN
−

QN
−

= pz, (27)

where QN
− and R

N
− are defined in (25) with ξ = ξM

N−1.

Finally, we show that limN→∞ s
∗
2(x, a, νN) = βz(x). First notice that

lim
N→∞

φN [z] = lim
N→∞

margZϕ
N(x, a, νN)[z] = 1.

For each N , s∗2(x, a, νN) solves

max
b∈O

HN
x (b) =

∑
z′∈Z

φN [z′]u(q̄ +
brQ

N
− − bqRN

−
RN
− + br

, r̄ +
bqR

N
− − brQN

−
QN
− + bq

;x, z). (28)

Now, let
Jx(b; p, c1, c2, φ) =

∑
z′∈Z

φ[z′]u (q, r;x, z′)

with q = q̄ + br
p(1+c2br)

− bq
1+c2br

and r = r̄− br
1+c1bq

+ pbq
1+c1bq

, and where the domain for Jx is

O ×
[

εr
q̄+εq

, r̄+εr
εq

]
×
[
0, 1

εr

]
×
[
0, 1

εq

]
×∆(Z). It follows that Jx(b;

RN−
QN−
, 1/QN

− , 1/R
N
− , φ

N) =

HN
x (b). Therefore, by the argument used in the proof of Proposition 1, Jx(·; p, c1, c2, φ)

has a unique maximum, jx(p, c1, c2, φ). And because Jx is continuous on its domain, the
Theorem of the Maximum implies that jx(p, c1, c2, φ) is continuous.

Now, for each N , s∗2(x, a, νN) = jx(
RN−
QN−
, 1/QN

− , 1/R
N
− , φ

N). By (27) and the continuity

of jx, it follows that

b∗ = lim
N→∞

s∗2(x, a, νN) = lim
N→∞

jx(
RN
−

QN
−
, 1/QN

− , 1/R
N
− , φ

N) = jx(p
z, 0, 0,1z)

where 1z[z′] = 1 for z′ = z (and 0 otherwise). By the definition of Jx, it follows that b∗

maximizes u(q̄ − bq + br
pz

;x, z) + w(r̄ − br + pzbq). Therefore, it is a separating stage-2
equilibrium in the limit model. By Lemma 1, it follows that b∗ = βz(x).2

In order to have any effect on FN
x (a), the agent must choose an offer suffi ciently far

from s∗1, the offer that maximizes Gx(a). Claim 1 shows that that the implied loss in
terms of Gx(a) is bounded away from zero (and does not depend on N). By claim 2, any
effect on FN

x (a) goes to zero as N →∞. Together, they imply that s∗1 is a best response
to (s∗1, s

N
2 ) for suffi ciently large N .�

Theorem 2. Let Y = {Y1, ..., YK} be a partition of X with K ≥ 2. Assume that there
is an increasing sequence of {Ns}∞s=1 such that for each s, there exists an equilibrium
(sNs1 , sNs2 ) associated with Y. Under assumption A1, for any z ∈ Z, lims→∞ β

λNs = βz

almost surely conditional on z.
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Proof. Fix z ∈ Z. In order to simplify the notation, in what follows we assume that
{Ns}∞s=1 = {N}∞N=1; that is, we assume that for each N , there exists an equilibrium
(sN1 , s

N
2 ) associated with Y and with N agents. The general case is proved in exactly the

same way. For any k, we also abuse the notation and write sN1 (Yk) = sN1 (y) for y ∈ Yk.

Recall that λN(Yk) = νN(sN1 (Yk)) for each k, where νN is the public announcement
along the equilibrium path with N agents. From the ex ante perspective, both νN and
λN are random variables. Conditional on z, we have

lim
N→∞

λN(Yk)

d(1− η)Ne = µz(Yk)

almost surely for each k = 1, ..., K. Thus, consider a sequence of realizations {λN}∞N=1

for which this holds. We show that limN→∞ β
λN = βz almost surely.

Fix some type x with x ∈ Yk. As inTheorem 1, because the assignment π is drawn
independently from the types, conditional on the agent being active, the agent’s belief
about other agents’types is the i.i.d. distribution generated by (µz(x))x∈X conditional on
each state z. To simplify notation we denote βλ

N

by βN and d(1− η)Ne by MN . Define
λN− by λ

N
− (Yk) = λN(Yk) for each k 6= k and λN− (Yk) = λN(Yk) − 1. That is, λN− is the

signal configuration that pertains to other active agents from the perspective of the agent
with type x. The belief for the agent with type x satisfies the following:

(1) The belief over Z is given by

φNx [z] =
κ(z)µz(x)

∏K
k=1[µz(Yk)]

λN− (Yk)∑
z′∈Z κ(z)µz′(x)

∏K
k=1[µz′(Yk)]

λN− (Yk)
. (29)

(2) The belief over Z and the types of the other active agents’types {ξk = (ξk1, ..., ξ
k
λNx (Yk)) :

k = 1, ..., K}, where ξk ∈ Y λN− (Yk)

k describes the types for those who make offers in Yk, is
given by

ϕ(λN− ,x)[z, ξ1, ..., ξK ] = φNx [z]
K∏
k=1

λN− (Yk)∏
i=1

µz(ξ
k
i )

µz(Yk)

 ≡ φNx [z]γ
λN−
z [ξ1, ξ2, ..., ξK ]. (30)

Thus, conditional on a state z, the agent’s belief about other agents’types is i.i.d. with
respect to the conditional probabilities given by the information contained in the partition
Y and λN− . By A1, the posterior φNx satisfies limN→∞ φ

N
x [z] = 1.

Notice that along the equilibrium path νN reveals the true signal configuration λN .
However, for each Yk, the type configuration for those types that belong to the set Yk
are unknown except that their total number is λN− (Yk) agents; the distribution of those

types is described by γ
λN−
z . To represent this uncertainty and its asymptotic distribution,

for each z ∈ Z, consider K infinite sequences of random variables (ζ1, ζ2, ..., ζK) such
that ζki is Yk-valued for all i ∈ N and the K sequences are independent of each other
and ζk is an i.i.d. sequence with marginal distribution ( µz(y)

µz(Yk)
)y∈Yk . Let γz denote the
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joint distribution of (ζ1, ζ2, ..., ζK). Thus, for for each N , (ζ1,λN− (Y1), ..., ζK,λ
N
− (YK)), where

ζk,λ
N
− (Yk) = (ζk1, ..., ζ

k
λN− (Yk)) for each k = 1, ..., K, is distributed according to γ

λN−
z . Each ζk

represents the type-realizations of other active agents whose stage-1 offers belong to Yk.
Given (ζ1, ζ2, ..., ζK), for each k = 1, ..., K and each y ∈ Yk, define

ρN(y) = #{ζki : ζki = y, i = 1, ..., λN− (Yk)}/λN− (Yk).

By the LLN, for each y ∈ Yk, ρN(y) converges to µz(y)/µz(Yk) in probability under γz for
any k and for any z.

Now, let pN = RN
−/Q

N
− , where

(QN
− , R

N
− ) =

∑
k=1,..,K

∑
y∈Yk

λN− (Yk)ρ
N(y)(βN(y) + ε) + ε.

Notice that QN
− , R

N
− , and p

N only depends on (ζ1,λN− (Y1), ..., ζK,λ
N
− (YK)). Then, the equilib-

rium offer (βNq (x), βNr (x)) solves maxb∈OH
N
x (b;λN , βN), where

HN
x (b;λN , βN) =

∑
z∈Z

φNx [z]

[
E
γ
λ
Nt
−
z

(
u(q̄ +

brQ
N
− − bqRN

−
RN
− + br

, r̄ +
bqR

N
− − brQN

−
QN
− + bq

;x, z)

)]
.

To show that limN→∞ β
N = βz, we show that any convergent subsequence {βNt}∞t=1 has

the same limit βz. The following claim shows that if limt→∞ β
Nt = β∗, then for the agent

with type x, his stage-2 problem converges to the optimization problem in the competitive
equilibrium with known state-of-the-world z.

Claim 1. Suppose that limt→∞ β
Nt(x) = β∗(x) for each x ∈ X. Then,

lim
t→∞

HNt
x (b;λNt , βNt) = u(q̄ +

br
p∗
− bq, r̄ − br + p∗bq;x, z̄)

uniformly in b ∈ O.

Given Claim 1, β∗(x) solves maxb∈O u(q̄ + br
p∗ − bq, r̄ − br + p∗bq;x, z). This holds for

all x ∈ X. Hence, by lemma 2, β∗ is a separating stage-2 equilibrium at state z in
L(ε). Thus, β∗ = βz. Because this holds for any convergent subsequence, it follows that
limN→∞ β

λN = βz.

Proof of Claim 1. First notice that

lim
t→∞

(
QNt
−

MNt
,
RNt
−

MNt
) =

∑
y∈X

µz(y)(β∗(y) + ε) (31)

in probability under γz. This follows directly from the definition of QN
− and R

N
− and the

fact that, for all y ∈ Yk, limN→∞ ρ
N(y) = µz(y)/µz(Yk) in probability under γz, and, for

all k = 1, ..., K, limN→∞ λ
N
− (Yk)/M

N = µz(Yk). Of course, this limit may not hold for
other z 6= z; we focus on z becuase limN→∞ φ

N
x [z] = 1. This also implies that

lim
t→∞

pNt = p∗ =

∑
y∈X µz(y)(β∗r(y) + εr)∑
y∈X µz(y)(β∗q(y) + εq)
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in probability under γz. Moreover, limt→∞
1

Q
Nt
−

= limt→∞
1

R
Nt
−

= 0 in probability under γz
as well.

Now,

HNt
x (b;λNt , βNt) =∑

z∈Z
φNtx [z]

E
γ
λ
Nt
−
z

u(q̄ +
br

pN + br
Q
Nt
−

− bq

1 + br
R
Nt
−

, r̄ +
bqp

Nt

1 + bq

Q
Nt
−

− br

1 + bq

Q
Nt
−

;x, z)

 .
Notice that

(q̄+
br

pNt + br
Q
Nt
−

− bq

1 + br
RN−

, r̄+
bqp

Nt

1 + bq

Q
Nt
−

− br

1 + bq

Q
Nt
−

) ∈
[
0, q̄ +

r̄(q̄ + εq)

εr

]
×
[
0, r̄ +

q̄(r̄ + εr)

εq

]

for anyNt and any realization. Because the domain is compact and u(·;x, z) is continuous,
u(·;x, z) is uniformly continuous over that domain. Thus, for any ε > 0, there exists
δ1(ε) > 0 such that |u(q, r;x, z)− u(q′, r′;x, z)| < ε if |q − q′| ≤ δ1(ε) and |r − r′| ≤ δ1(ε).
For any δ1 > 0, it is straightforward to check that there exists some δ2(δ1) > 0 such that

if | Q
Nt
−

MNt
−
∑

y∈X µz(y)(β∗q(y) + εq)| < δ2(δ1) and | R
Nt
−

MNt
−
∑

y∈X µz(y)(β∗r(y) + εr)| < δ2(δ1),
then∣∣∣∣brQNt

− − bqRNt
−

RNt
− + br

− (
br
p∗
− bq)

∣∣∣∣ < δ1 and

∣∣∣∣bqRNt
− − brQNt

−

QNt
− + bq

− (−br + p∗bq)

∣∣∣∣ < δ1 (32)

for all b ∈ O.

Now, fix some ε > 0. Let t1 be so large that t > t1 implies that for δ = δ2(δ1(ε/3)),
the event that∣∣∣∣∣ QNt

−
MNt

−
∑
y∈X

µz(y)(β∗q(y) + εq)

∣∣∣∣∣ < δ and

∣∣∣∣∣ RNt
−

MNt
−
∑
y∈X

µz(y)(β∗r(y) + εr)

∣∣∣∣∣ < δ

has probability less than 1− ε
3H̄
under γz and φ

Nt [z] > 1− ε
3H̄
, where H̄ is the maximum

value for HN
x for all N . Such t1 exists because of (31). Then, for such t,∣∣∣∣HNt

x (b;λNt , βNt)− u(q̄ +
br
p∗
− bq, r̄ − br + p∗bq;x, z)

∣∣∣∣
<

ε

3H̄
H̄ + φNt [z]

[
(1− ε

3H̄
)
ε

3
+

ε

3H̄
H̄
]
< ε

for all b ∈ O.�

5 Concluding remarks

Several aspects of our model deserve comment. We start with the mechanism, and, in
particular, our modelling of payoffs for inactive agents.
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As we noted at the outset, our mechanism violates feasibility. The payoffs of inactive
agents, which we have assumed are determined by the execution of their stage-1 offers at
the exogenous price, r̄/q̄, and the exogenous stage-2 offers, ε, give rise to a net payout of
one of the goods. Any such payout could be financed by entry fees levied on all agents
before types are realized. In particular, if the entry fee is 2ε, then η can be chosen to
insure feasibility. And, provided there is suffi cient motivation for trade coming from the
appearance of types in the utility function, ε can be chosen to be small enough to induce
participation.

Amechanism that would insure feasibility except for ε and would more closely resemble
pari-mutuel betting would have the stage-1 offers of the inactive agents be part of the
offers that determine the “price”in the second-stage market game and would have their
payoffs determined as they are for active agents. However, that would give rise to two-
way interaction between the stages. In such a version, if the economy is suffi ciently large,
agents at stage 1 would, as in our version, make stage-1 offers based on the presumption
that they will be chosen to be inactive. Even so, they would want to predict the stage-
2 price which, itself, is affected by their offers– both directly and by the information
revealed by stage-1 offers. Thus, to get a fixed point, we would have to study a mapping
that takes both stages into account. Moreover, the mapping would have to be defined
over all feasible stage-1 actions, including stage-1 actions that give rise to asymmetric
information at stage-2.

We make one strong assumption about preferences; namely, that complete-information
competitive demand is monotone, which assures that there is a unique competitive equi-
librium (CE) in the version with no uncertainty. If, instead, there were multiple CE’s,
then our existence argument would fail if agents at stage 1 believed that their stage-1
actions would determine the limit to which a sequence of proposition 1 equilibria con-
verges. If that were the case, then the influence of stage-1 actions on payoffs contingent
on being active would not disappear as the size of the economy grows. One way to avoid
such a belief would be to assume that there is coordination on the sequence of proposi-
tion 1 equilibria regarding the limit to which they converge. That would work if there
is a sequence of proposition-1 equilibria that converges to any CE. Whether that is true
seems not to be known even for complete-information versions of our market game. With
a unique CE, that coordination issue does not arise.

We assume a finite number of types and a finite number of states-of-the-world. The
former is important for us. Although the realization of types is random, as the size of
the economy grows, conditional independence of types gives us something that resembles
replication in a deterministic version. Even more important, our existence result, via the
specification of beliefs, depends on a finite number of types.8 In contrast, a finite support
for the state-of-the-world plays no role. Regarding the information structure, two special
cases of the model deserve mention. For a specification in which the state-of-the-world
does not appear in preferences, all our results apply and there remains an important role

8Reny and Perry [5] cannot use a specification with a finite number of types because they have a
limit-order mechanism. With such a mechanism and a finite number of types, there can remain an
indeterminacy regarding how the gains from trade are distributed. That does not happen for market-
game mechanisms.
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for two stages and for limits as the number of agents gets large. The same is true for a
specification in which types do not appear as arguments of preferences. However, in that
case, trade disappears at stage 2 as ε → 0 and agents would not want to enter in the
presence of an entry fee.

Like all of the previous work on strategic games for accomplishing trade with private
information that we cited at the outset and all auction models, we have a two-good
model. One well-known way to extend our model to K + 1 goods is to treat good K + 1
as cash and to have K simultaneous markets with market k having trade between cash
and good k. However, then, as is well-known, we would want to have multiple rounds of
trade because the proceeds of sales in one market cannot be used to make simultaneous
purchases in another market. Such an extension with multiple rounds in real time is
pertinent for what we see as the main potential application of our model. We can imagine
our mechanism being used for spot trades in securities like the common stock of publicly
traded companies. However, in order to use it for such trades, two timing questions
have to be answered: how frequently should the market operate and what should be the
length of time between stages 1 and 2? Any attempt to address those questions requires
a dynamic version of our model.
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