Mechanism Design and Student Assignment: Some Developments

Parag A. Pathak, MIT

February 2011
MEDS Northwestern
Student Assignment in Practice

Two main policy developments

- New mechanisms, with direct involvement of matching theorists
 - ✓ 2003: New York City
 - ✓ 2005: Boston

Mechanisms abandoned/illegal, without direct involvement of matching theorists (as far as I know)

- ✓ 2007: England
- ✓ 2009: Chicago

Provide motivation for study

Feedback between mechanisms in theory and in the field at heart of 'market design' conceit

Want to focus on latter developments
Two main policy developments

- **New mechanisms, with direct involvement of matching theorists**
 - ✓ 2003: New York City
 - ✓ 2005: Boston

- **Mechanisms abandoned/illegal, without direct involvement of matching theorists (as far as I know)**
 - ✓ 2007: England
 - ✓ 2009: Chicago
Student Assignment in Practice

Two main policy developments

- New mechanisms, **with** direct involvement of matching theorists
 - ✔ 2003: New York City
 - ✔ 2005: Boston

- Mechanisms abandoned/illegal, **without** direct involvement of matching theorists (as far as I know)
 - ✔ 2007: England
 - ✔ 2009: Chicago

Provide motivation for study

- Feedback between mechanisms in theory and in the field at heart of ‘market design’ conceit
- Want to focus on latter developments
Canonical Model

From Abdulkadiroğlu and Sönmez (2003):

Primitives

1. a set of students \(I = \{i_1, \ldots, i_n\} \),
2. a set of schools \(S = \{s_1, \ldots, s_m\} \),
3. a capacity vector \(q = (q_{s_1}, \ldots, q_{s_m}) \),
4. a list of strict student preferences \(P = (P_{i_1}, \ldots, P_{i_n}) \), and
5. a list of strict school priorities \(\pi = (\pi_{s_1}, \ldots, \pi_{s_m}) \).

Matching \(\mu : I \rightarrow S \) is a function from the set of students to the set of schools such that no school is assigned to more students that its capacity.

Mechanism: systematic way to compute a matching for each problem.
Three Mechanisms

Initial terms of the debate framed by Abdulkadiroğlu and Sönmez

Formally considered three mechanisms

1) Boston Mechanism
 ✓ Appears to be the most common mechanism actually used

2) Student-optimal stable mechanism
 ✓ Based on Gale and Shapley’s student-proposing deferred acceptance algorithm (DA)

3) Top trading cycles mechanism (TTC)
 ✓ Adapted from Gale’s top trading cycles algorithm for housing market model
Some Issues Related to New York and Boston

✓ One-sided vs. two-sided market: welfare and strategic considerations
Some Issues Related to New York and Boston

✓ One-sided vs. two-sided market: welfare and strategic considerations

✓ Indifferences in school orderings over students
 ◇ New mechanisms and tradeoffs
Some Issues Related to New York and Boston

✓ One-sided vs. two-sided market: welfare and strategic considerations

✓ Indifferences in school orderings over students
 ◊ New mechanisms and tradeoffs

✓ Strategy-proofness, sophisticated and naive interaction
Some Issues Related to New York and Boston

✓ One-sided vs. two-sided market: welfare and strategic considerations
✓ Indifferences in school orderings over students
 ◊ New mechanisms and tradeoffs
✓ Strategy-proofness, sophisticated and naive interaction
✓ Message space restrictions: ordinal and sometimes constrained
Some Issues Related to New York and Boston

- One-sided vs. two-sided market: welfare and strategic considerations
- Indifferences in school orderings over students
 - New mechanisms and tradeoffs
- Strategy-proofness, sophisticated and naive interaction
- Message space restrictions: ordinal and sometimes constrained
- Empirical issues
 - Quantitative aspects: resolving indifferences, TTC vs. DA
 - Origins of student preferences
Some Issues Related to New York and Boston

✓ One-sided vs. two-sided market: welfare and strategic considerations

✓ Indifferences in school orderings over students
 ◊ New mechanisms and tradeoffs

✓ Strategy-proofness, sophisticated and naive interaction

✓ Message space restrictions: ordinal and sometimes constrained

✓ Empirical issues
 ◊ Quantitative aspects: resolving indifferences, TTC vs. DA
 ◊ Origins of student preferences

✓ Experimental performance of mechanisms
Some Issues Related to New York and Boston

✓ One-sided vs. two-sided market: welfare and strategic considerations
✓ Indifferences in school orderings over students
 ◊ New mechanisms and tradeoffs
✓ Strategy-proofness, sophisticated and naive interaction
✓ Message space restrictions: ordinal and sometimes constrained
✓ Empirical issues
 ◊ Quantitative aspects: resolving indifferences, TTC vs. DA
 ◊ Origins of student preferences
✓ Experimental performance of mechanisms

Some progress, much remains to be done
Other issues

Enlarging scope of the design problem

- What is the point of school choice?
 - Demand-side competitive pressure on schools?
 - Better matches?
 - Prevent exit of wealthy to suburbs?
 - How does school choice factor into the production of achievement?
Other issues

Enlarging scope of the design problem

- What is the point of school choice?
 - Demand-side competitive pressure on schools?
 - Better matches?
 - Prevent exit of wealthy to suburbs?
 - How does school choice factor into the production of achievement?

Spillovers outside of matching theory

- Quasi-experimental variation from assignment provides unique opportunity to advance knowledge on education production
 - Accountability and Flexibility: Charters and Pilots (2009)
 - Achievement Effects of Elite Exam Schools (2011)
 - Small Schools Reform: The Urban Assembly Schools (2011)
New Developments in the Field
Poring over data about eighth-graders who applied to the city’s elite college preps, Chicago Public Schools officials discovered an alarming pattern. High-scoring kids were being rejected simply because of the order in which they listed their college prep preferences.

“I couldn’t believe it,” schools CEO Ron Huberman said. “It’s terrible.”
Poring over data about eighth-graders who applied to the city’s elite college preps, Chicago Public Schools officials discovered an alarming pattern. High-scoring kids were being rejected simply because of the order in which they listed their college prep preferences.

“I couldn’t believe it,” schools CEO Ron Huberman said. “It’s terrible.”

CPS officials said Wednesday they have decided to let any eighth-grader who applied to a college prep for fall 2010 admission re-rank their preferences to better conform with a new selection system.

Previously, some eighth-graders were listing the most competitive college preps as their top choice, forgoing their chances of getting into other schools that would have accepted them if they had ranked those schools higher, an official said.

Under the new policy, Huberman said, a computer will assign applicants to the highest-ranked school they qualify for on their list.

“It’s the fairest way to do it.” Huberman told Sun-Times.
Chicago Public Schools

9 selective high schools

Applicants: Any current 8th grader in Chicago

Composite test score: entrance exam + 7th grade scores

Up to Fall 2009, system worked as follows:

- Take entrance test
- Rank up to 4 schools
Chicago Selective Enrollment Mechanism

Round 1: In Round 1 only the first choices of the students are considered. For each school, consider the students who have listed it as their first choice and assign seats of the school to these students one at a time following their composite test score until either there are no seats left or there is no student left who has listed it as her first choice.
Chicago Selective Enrollment Mechanism

Round 1: In Round 1 only the first choices of the students are considered. For each school, consider the students who have listed it as their first choice and assign seats of the school to these students one at a time following their composite test score until either there are no seats left or there is no student left who has listed it as her first choice.

In general, for $k = 2, ..., 4$

Round k: Consider the remaining students. In Round k only the k^{th} choices of these students are considered. For each school with still available seats, consider the students who have listed it as their k^{th} choice and assign the remaining seats to these students one at a time following their composite test score until either there are no seats left or there is no student left who has listed it as her k^{th} choice.
New Chicago mechanism (SD^4)

- Rank up to 4 schools
- Students ordered by composite score
- The first student obtains her top choice, the second student obtains her top choice among remaining, and so on.
New Chicago mechanism (SD^4)

- Rank up to 4 schools
- Students ordered by composite score
- The first student obtains her top choice, the second student obtains her top choice among remaining, and so on.

Somewhat surprising midstream change, especially given that both mechanisms are manipulable...
New Chicago mechanism (SD^4)

- Rank up to 4 schools
- Students ordered by composite score
- The first student obtains her top choice, the second student obtains her top choice among remaining, and so on.

Somewhat surprising midstream change, especially given that both mechanisms are manipulable...

Framework

- **Players**: \(i = 1, \ldots, N \)
- **Allocations**: \(A \)
- **Preferences**: \(R_i \) over \(A \), strict version \(P_i \)
- **Problem**: \(R = (R_1, \ldots, R_N) \)
- **Direct Mechanism**: \(\psi \) map from preference profile to outcome

Mechanism \(\psi \) is **manipulable** by player \(i \) at problem \(R \) if there exists a type \(R'_i \) such that

\[
\psi(R'_i, R_{-i}) P_i \psi(R).
\]
Comparing Mechanisms

- Mechanism ψ is **at least as manipulable as** mechanism φ if for any problem where mechanism φ is manipulable, mechanism ψ is also manipulable.
Comparing Mechanisms

- Mechanism ψ is **at least as manipulable as** mechanism φ if for any problem where mechanism φ is manipulable, mechanism ψ is also manipulable.

- Mechanism ψ is **more manipulable than** mechanism φ if
 - ψ is at least as manipulable as φ,
 - there is at least one problem where ψ is manipulable though φ is not.
Comparing Mechanisms

- Mechanism ψ is **at least as manipulable as** mechanism φ if for any problem where mechanism φ is manipulable, mechanism ψ is also manipulable.

- Mechanism ψ is **more manipulable than** mechanism φ if
 - ψ is at least as manipulable as φ,
 - there is at least one problem where ψ is manipulable though φ is not.

Equivalent definition: if truth-telling is a Nash equilibrium of the game induced by mechanism ψ, it is also Nash equilibrium of the game induced by mechanism φ (even though the converse does not hold).
Admissions Reform in Chicago

Proposition 1. Suppose there are at least k schools and let $k > 1$. The old Chicago mechanism (CHI^k) is more manipulable than the truncated serial dictatorship Chicago adopted (SD^k) in Fall 2009.
Admissions Reform in Chicago

Proposition 1. Suppose there are at least \(k \) schools and let \(k > 1 \). The old Chicago mechanism (\(\text{CHI}^k \)) is more manipulable than the truncated serial dictatorship Chicago adopted (\(\text{SD}^k \)) in Fall 2009.

- Outrage expressed in quotes from Chicago Sun-Times:

 “I couldn’t believe it,” schools CEO Ron Huberman said. “It’s terrible.”

suggests that the old mechanism was quite undesirable.
Admissions Reform in Chicago

Proposition 1. Suppose there are at least \(k \) schools and let \(k > 1 \). The old Chicago mechanism \((\text{CHI}^k)\) is more manipulable than the truncated serial dictatorship Chicago adopted \((S^k_D)\) in Fall 2009.

- Outrage expressed in quotes from Chicago Sun-Times:

 “I couldn’t believe it,” schools CEO Ron Huberman said. “It’s terrible.”

 suggests that the old mechanism was quite undesirable.

- To make this precise, we need to consider a class of mechanisms:

 ◦ stable mechanisms?

 ◦ not satisfied by many school choice mechanisms, including Chicago’s old one
A matching is **strongly unstable** if a student who ranks schools as his first choice loses a seat to a student who has a lower composite score.
A matching is **strongly unstable** if a student who ranks schools as his first choice loses a seat to a student who has a lower composite score.

A **weakly stable** matching is one that is not strongly unstable.
A matching is **strongly unstable** if a student who ranks school s as his first choice loses a seat to a student who has a lower composite score.

A **weakly stable** matching is one that is not strongly unstable.

- ✓ old Chicago mechanism is weakly stable
- ✓ new mechanism is weakly stable
- ✓ variants of new mechanism where can rank more choices are weakly stable
A matching is **strongly unstable** if a student who ranks school s as his first choice loses a seat to a student who has a lower composite score.

A **weakly stable** matching is one that is not strongly unstable.

- ✓ old Chicago mechanism is weakly stable
- ✓ new mechanism is weakly stable
- ✓ variants of new mechanism where students can rank more choices are weakly stable

Theorem 1. *The old Chicago mechanism (CHI^k) is at least as manipulable as any weakly stable mechanism.*
Chicago in 2010-2011

- Based on Proposition 1 and Theorem 1, the new mechanism in Chicago is an improvement in terms of encouraging manipulation.
Chicago in 2010-2011

- Based on Proposition 1 and Theorem 1, the new mechanism in Chicago is an improvement in terms of encouraging manipulation.

- Lack of efficiency in the new mechanism in 2009 is apparent.
Chicago in 2010-2011

- Based on Proposition 1 and Theorem 1, the new mechanism in Chicago is an improvement in terms of encouraging manipulation.

- Lack of efficiency in the new mechanism in 2009 is apparent.

- Possible to have a completely non-manipulable mechanism by considering all choices.
Chicago in 2010-2011

- Based on Proposition 1 and Theorem 1, the new mechanism in Chicago is an improvement in terms of encouraging manipulation.

- Lack of efficiency in the new mechanism in 2009 is apparent.

- Possible to have a completely non-manipulable mechanism by considering all choices.

- In 2010-11 school year, Chicago decided to consider 6 out of 9 choices, so the mechanism is still manipulable.
Constrained School Choice

- We consider this issue more generally by returning to environment where students not ordered in the same way at each school.
Constrained School Choice

- We consider this issue more generally by returning to environment where students not ordered in the same way at each school.
- Vulnerability of school choice mechanisms to manipulation played a role in NYC’s adaptation of a version of the student-optimal stable mechanism in NYC, where students can rank up to 12 choices.
We consider this issue more generally by returning to environment where students not ordered in the same way at each school.

Vulnerability of school choice mechanisms to manipulation played a role in NYC’s adaptation of a version of the student-optimal stable mechanism in NYC, where students can rank up to 12 choices.

NYC DOE press release on change: “to reduce the amount of gaming families had to undertake to navigate a system with a shortage of good schools” (New York Times, 2003)
Constrained School Choice

- We consider this issue more generally by returning to environment where students not ordered in the same way at each school.

- Vulnerability of school choice mechanisms to manipulation played a role in NYC’s adaptation of a version of the student-optimal stable mechanism in NYC, where students can rank up to 12 choices.

 NYC DOE press release on change: “to reduce the amount of gaming families had to undertake to navigate a system with a shortage of good schools” (New York Times, 2003)

- Based on the strategy-proofness of the student-optimal stable mechanism, the following advice was given to students:

 You must now rank your 12 choices according to your true preferences.
Constrained School Choice

Next result formalizes the idea that the greater the number of choices students can make, the less vulnerable this mechanism is to manipulation:
Constrained School Choice

Next result formalizes the idea that the greater the number of choices students can make, the less vulnerable this mechanism is to manipulation:

Theorem 2: Let $\ell > k > 0$ and suppose there are at least ℓ schools. The student-optimal stable mechanism where students can rank k schools is more manipulable than the student-optimal stable mechanism where students can rank ℓ schools.
Constrained School Choice

Next result formalizes the idea that the greater the number of choices students can make, the less vulnerable this mechanism is to manipulation:

Theorem 2: Let $\ell > k > 0$ and suppose there are at least ℓ schools. The student-optimal stable mechanism where students can rank k schools is more manipulable than the student-optimal stable mechanism where students can rank ℓ schools.

Corollary: The 2009 Chicago mechanism (S_D^4) is more manipulable than the newly adopted 2010 Chicago mechanism (S_D^6).
Admissions Reform in England
English context

- Forms of school choice for decades
English context

- Forms of school choice for decades
- 2003 School Admissions Code
 - “National Offer Day”: coordinated admissions nationwide, under authority of Local Education Authority
English context

- Forms of school choice for decades

- 2003 School Admissions Code
 - “National Offer Day”: coordinated admissions nationwide, under authority of Local Education Authority

- 2007 School Admissions Code
 - Strengthened enforcement of admissions rules
English context

- Forms of school choice for decades

- 2003 School Admissions Code
 - “National Offer Day”: coordinated admissions nationwide, under authority of Local Education Authority

- 2007 School Admissions Code
 - Strengthened enforcement of admissions rules

Section 2.13: In setting oversubscription criteria the admission authorities for all maintained schools must not:

give priority to children according to the order of other schools named as preferences by their parents, including ‘first preference first’ arrangements.
A **first preference first system** is any “oversubscription criterion that gives priority to children according to the order of other schools named as a preference by their parents, or only considers applications stated as a first preference” (School Admissions Code, 2007, Glossary, p. 118).
A first preference first system is any “oversubscription criterion that gives priority to children according to the order of other schools named as a preference by their parents, or only considers applications stated as a first preference” (School Admissions Code, 2007, Glossary, p. 118).

Best-known first preference first system is Boston mechanism (pre-2005)
A first preference first system is any “oversubscription criterion that gives priority to children according to the order of other schools named as a preference by their parents, or only considers applications stated as a first preference” (School Admissions Code, 2007, Glossary, p. 118).

Best-known first preference first system is Boston mechanism (pre-2005)

Rationale given by DfES (2007):

“‘first preference first’ criterion made the system unnecessarily complex to parents”
A **first preference first system** is any “oversubscription criterion that gives priority to children according to the order of other schools named as a preference by their parents, or only considers applications stated as a first preference” (School Admissions Code, 2007, Glossary, p. 118).

Best-known first preference first system is **Boston mechanism** (pre-2005)

Rationale given by DfES (2007):

“‘first preference first’ criterion made the system unnecessarily complex to parents”

Great deal of public discussion throughout England
Ban of ‘Boston’ Mechanism in 2007

2007 Admissions Code outlaws use of this system at more than 150 Local Education Authorities (LEAs) across the country, and this ban continues with the 2010 Code.
Ban of ‘Boston’ Mechanism in 2007

2007 Admissions Code outlaws use of this system at more than 150 Local Education Authorities (LEAs) across the country, and this ban continues with the 2010 Code.

Some LEAs abandoned earlier:

- Pan London Admissions Authority adopted an ‘equal preference’ system in 2005

 designed to “make the admissions system fairer” and “create a simpler system for parents”
Ban of ‘Boston’ Mechanism in 2007

2007 Admissions Code outlaws use of this system at more than 150 Local Education Authorities (LEAs) across the country, and this ban continues with the 2010 Code.

Some LEAs abandoned earlier:

- Pan London Admissions Authority adopted an ‘equal preference’ system in 2005 designed to “make the admissions system fairer” and “create a simpler system for parents”

- Best-known equal preference system is student-optimal stable mechanism
Ban of ‘Boston’ Mechanism in 2007

2007 Admissions Code outlaws use of this system at more than 150 Local Education Authorities (LEAs) across the country, and this ban continues with the 2010 Code.

Some LEAs abandoned earlier:

- Pan London Admissions Authority adopted an ‘equal preference’ system in 2005 designed to “make the admissions system fairer” and “create a simpler system for parents”

- Best-known equal preference system is student-optimal stable mechanism

- In 2006, Coldron report: 101 LEAs used equal preference, 47 used first preference first
Don’t yet have rigorous documentation on all of these systems, but clear that many areas went from Boston to SOSM
Don’t yet have rigorous documentation on all of these systems, but clear that many areas went from Boston to SOSM

✓ Coldron report: in 2006, about half of EP systems allow for 3 choices, and 90% with FPF allow 3 choices
Don’t yet have rigorous documentation on all of these systems, but clear that many areas went from Boston to SOSM

✓ Coldron report: in 2006, about half of EP systems allow for 3 choices, and 90% with FPF allow 3 choices

✓ Newcastle: 2003, from Boston to SOSM, but both mechanisms can only rank 3 choices, now rank can 4 (currently, 97 schools citywide)
Don’t yet have rigorous documentation on all of these systems, but clear that many areas went from Boston to SOSM

✓ Coldron report: in 2006, about half of EP systems allow for 3 choices, and 90% with FPF allow 3 choices

✓ Newcastle: 2003, from Boston to SOSM, but both mechanisms can only rank 3 choices, now rank can 4 (currently, 97 schools citywide)

✓ Brighton and Hove (Boston-3 to SOSM-3 out of 9): change will “hopefully eliminate the need for tactical preferences”
Don’t yet have rigorous documentation on all of these systems, but clear that many areas went from Boston to SOSM

✓ Coldron report: in 2006, about half of EP systems allow for 3 choices, and 90% with FPF allow 3 choices

✓ Newcastle: 2003, from Boston to SOSM, but both mechanisms can only rank 3 choices, now rank can 4 (currently, 97 schools citywide)

✓ Brighton and Hove (Boston-3 to SOSM-3 out of 9): change will “hopefully eliminate the need for tactical preferences”

✓ Even though change in Chicago was much more abrupt, striking parallel in England
Don’t yet have rigorous documentation on all of these systems, but clear that many areas went from Boston to SOSM

✓ Coldron report: in 2006, about half of EP systems allow for 3 choices, and 90% with FPF allow 3 choices

✓ Newcastle: 2003, from Boston to SOSM, but both mechanisms can only rank 3 choices, now rank can 4 (currently, 97 schools citywide)

✓ Brighton and Hove (Boston-3 to SOSM-3 out of 9): change will “hopefully eliminate the need for tactical preferences”

✓ Even though change in Chicago was much more abrupt, striking parallel in England

✓ Interesting that participants themselves (not matching theorists) re-organized market designs, just like US medical residents did in the early 1950s
Theorem 3: Suppose there are more than k schools where $k > 1$. The Boston mechanism when participants can only rank k schools is more manipulable than the student-optimal stable mechanism where students can rank k schools.
Theorem 3: Suppose there are more than k schools where $k > 1$. The Boston mechanism when participants can only rank k schools is more manipulable than the student-optimal stable mechanism where students can rank k schools.

◊ Corollary: The old abandoned Chicago Selective Enrollment mechanism is more manipulable than the new 2009 mechanism.
Now assume both sides of the market report preferences: college admissions model (under responsive preferences)
Two-Sided Matching Markets

- Now assume both sides of the market report preferences: college admissions model (under responsive preferences)
- Roth (1982): no mechanism that is stable and strategy-proof
Two-Sided Matching Markets

- Now assume both sides of the market report preferences: college admissions model (under responsive preferences)
- Roth (1982): no mechanism that is stable and strategy-proof
 - Suggests considering incentive problem for one side of the market
Two-Sided Matching Markets

- Now assume both sides of the market report preferences: college admissions model (under responsive preferences)
- Roth (1982): no mechanism that is stable and strategy-proof
 - Suggests considering incentive problem for one side of the market
 - Student-optimal stable mechanism is strategy-proof for students
Two-Sided Matching Markets

- Now assume both sides of the market report preferences: college admissions model (under responsive preferences)

- Roth (1982): no mechanism that is stable and strategy-proof
 - Suggests considering incentive problem for one side of the market
 - Student-optimal stable mechanism is strategy-proof for students

- There is a similar **college-optimal stable mechanism** where the roles of the students and schools change
 - Roth (1985): there is no stable mechanism where truth-telling is a dominant strategy for each college (in a many-to-one matching model).
Two-sided Matching Markets
Stable mechanisms

We can make an even stronger comparison for this case:

Mechanism ψ is strongly more manipulable than mechanism φ if

1. for any problem where ψ is manipulable, φ is manipulable by any player who can manipulate ψ, and
2. there is at least one problem where ψ is manipulable, although φ is not.
Stable mechanisms

We can make an even stronger comparison for this case:

Mechanism ψ is **strongly more manipulable** than mechanism φ if

- ✓ for any problem where ψ is manipulable, φ is manipulable by any player who can manipulate ψ, and
- ✓ there is at least one problem where ψ is manipulable, although φ is not.

Theorem 4: For colleges, the student-optimal stable mechanism (GS^S) is strongly more manipulable than the college-optimal stable mechanism (GS^C).
- NRMP and other clearinghouse reforms

- Williams, Report on Committee Meetings of AMSA (1995):

 “Since it is impossible to remove all incentives for hospitals to misrepresent, it would be best to choose the student-optimal algorithm to remove incentives, at least for students. In other words, within the set of stable algorithms, you either have incentives for both the hospitals and the students to misrepresent their true preferences or only for the hospitals.”

- According to our definition, reforms made mechanism more manipulable for hospital programs
A similar argument can be used to generalize this result as follows.

Let \(\varphi \) be an arbitrary stable mechanism. Then

1) \(\varphi \) is at least as manipulable \(GS^C \) for colleges,

2) \(GS^S \) is at least as manipulable than \(\varphi \) for colleges, and

3) \(GS^C \) is at least as manipulable than \(\varphi \) for students.
A similar argument can be used to generalize this result as follows.

Let φ be an arbitrary stable mechanism. Then

1) φ is at least as manipulable GS^C for colleges,

2) GS^S is at least as manipulable than φ for colleges, and

3) GS^C is at least as manipulable than φ for students.

One can also generalize the model to allow colleges to report both their preferences and capacities, and obtain the same results
Conclusion

- Explored an approach to rank mechanisms by their incentive properties
- Other researchers have found other applications
- Results provide some justification for the recent policy changes in Chicago and England
- Many exciting problems emerging from interaction of theory and mechanisms in the field

 e.g., Why a cap in the Chicago mechanism?
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism.

Old Chicago not manipulable for P means
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism.

Old Chicago not manipulable for P means

- Any student assigned under $\text{CHI}^k(P)$ receives her top choice.
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism.

Old Chicago not manipulable for P means

- Any student assigned under $\text{CHI}^k(P)$ receives her top choice
- Set of students assigned under $\text{CHI}^k(P)$ is the set of top Q composite score students
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism

Old Chicago not manipulable for P means

- Any student assigned under $\text{CHI}^k(P)$ receives her top choice
- Set of students assigned under $\text{CHI}^k(P)$ is the set of top Q composite score students
- Matching $\text{CHI}^k(P)$ is the unique weakly stable matching
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism.

Old Chicago not manipulable for P means

- Any student assigned under $\text{CHI}^k(P)$ receives her top choice
- Set of students assigned under $\text{CHI}^k(P)$ is the set of top Q composite score students
- Matching $\text{CHI}^k(P)$ is the unique weakly stable matching

Any other mechanism that is weakly stable must also pick this matching.
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism.

Old Chicago not manipulable for P means:
- Any student assigned under $\text{CHI}^k(P)$ receives her top choice.
- Set of students assigned under $\text{CHI}^k(P)$ is the set of top Q composite score students.
- Matching $\text{CHI}^k(P)$ is the unique weakly stable matching.

Any other mechanism that is weakly stable must also pick this matching.

However, none of the top Q students has an incentive to manipulate because they all receive their top choices.
Proof (outline)
For simplicity, assume that there are more students than seats and all schools are acceptable. Let Q be the total school capacity in the economy.

Suppose the old Chicago mechanism is not manipulable; we will show neither is any other weakly stable mechanism.

Old Chicago not manipulable for P means

- Any student assigned under $\text{CHI}^k(P)$ receives her top choice
- Set of students assigned under $\text{CHI}^k(P)$ is the set of top Q composite score students
- Matching $\text{CHI}^k(P)$ is the unique weakly stable matching

Any other mechanism that is weakly stable must also pick this matching.

However, none of the top Q students has an incentive to manipulate because they all receive their top choices.

Moreover, no other student can manipulate by weak stability.
college-optimality \Rightarrow

\begin{align*}
\text{GS}_c^C(P)R_c\text{GS}_c^S(P).
\end{align*}
college-optimality \Rightarrow

\[
GS_c^C(P) R_c GS_c^S(P).
\]

Suppose c can manipulate GS^C with \hat{P}_c, and obtain $\mu(c)$.

manipulability \Rightarrow

\[
\begin{align*}
GS_c^C(\hat{P}_c, P_{-c}) P_c GS_c^C(P).
\end{align*}
\]

$\underline{=\mu(c)}$
college-optimality ⇒
$$GS^C_c(P) R_c GS^S_c(P).$$

Suppose c can manipulate GS^C with \hat{P}_c, and obtain $\mu(c)$.

manipulability ⇒
$$\begin{aligned}
&GS^C_c(\hat{P}_c, P_{-c}) P_c GS^C_c(P) \\
= &\mu(c)
\end{aligned}$$

Consider the preference Q_c where only $\mu(c)$ are acceptable. In problem (Q_c, P_{-c}),

$$GS^C_c(\hat{P}_c, P_{-c})$$ is stable.

$GS^C_c(\hat{P}_c, P_{-c})$ is stable by definition.
college-optimality \Rightarrow

$$GS^C_c(P)R_c GS^S_c(P).$$

Suppose c can manipulate GS^C with \hat{P}_c, and obtain $\mu(c)$.

manipulability \Rightarrow

$$GS^C_c(\hat{P}_c, P_{-c}) P_c GS^C_c(P).$$

Consider the preference Q_c where only $\mu(c)$ are acceptable. In problem (Q_c, P_{-c}),

$$GS^C_c(\hat{P}_c, P_{-c})$$

is stable.

Fact: Across stable matchings, the number of students assigned to a college is the same.
\textbf{college-optimality} \implies \quad \text{GS}^C_c(P) R_c \text{GS}^S_c(P).

Suppose \(c \) can manipulate \(\text{GS}^C_c \) with \(\hat{P}_c \), and obtain \(\mu(c) \).

\textbf{manipulability} \implies \\
\quad \text{GS}^C_c(\hat{P}_c, P_{-c}) P_c \text{GS}^C_c(P).
\
\quad = \mu(c)

Consider the preference \(Q_c \) where only \(\mu(c) \) are acceptable. In problem \((Q_c, P_{-c}) \),

\begin{align*}
\text{GS}^C_c(\hat{P}_c, P_{-c}) & \text{ is stable.} \\
\text{GS}^C_c(Q_c, P_{-c}) & \text{ is stable by definition.}
\end{align*}

\text{Fact: Across stable matchings, the number of students assigned to a college is the same.}

College \(c \) only ranks \(\mu(c) \) under \(Q_c \).
college-optimality \Rightarrow

$$ GS^C_c(P) R_c GS^S_c(P). $$

Suppose c can manipulate GS^C with \hat{P}_c, and obtain $\mu(c)$.

manipulability \Rightarrow

$$ GS^C_c(\hat{P}_c, P_{-c}) P_c GS^C_c(P). $$

$$ = \mu(c) $$

Consider the preference Q_c where only $\mu(c)$ are acceptable. In problem (Q_c, P_{-c}),

$$ GS^C_c(\hat{P}_c, P_{-c}) $$

is stable.

$$ GS^C_c(Q_c, P_{-c}) $$

is stable by definition.

Fact: Across stable matchings, the number of students assigned to a college is the same.

College c only ranks $\mu(c)$ under Q_c. Hence, stability under (Q_c, P_{-c}) \Rightarrow

$$ GS^C_c(Q_c, P_{-c}) = GS^C_c(\hat{P}_c, P_{-c}). $$
college-optimality \Rightarrow

$$GS^C_c(P)R_c GS^S_c(P).$$

manipulability \Rightarrow

$$GS^C_c(\hat{P}_c, P_{-c}) P_c GS^C_c(P).$$

$$= \mu(c)$$

Hence, **stability** under (Q_c, P_{-c}) \Rightarrow

$$GS^C_c(Q_c, P_{-c}) = GS^C_c(\hat{P}_c, P_{-c}).$$

Last property also implies c obtains the same allocation in any stable matching, including student-optimal one:

$$GS^S_c(Q_c, P_{-c}) = GS^C_c(Q_c, P_{-c})P_c GS^S_c(P).$$