
At times, experience or judgment will suggest that the linkage between some explanatory
variable and the dependent variable in a regression model is not linear.

Example:A company has collected data on one of its factories over the past 20
fiscal quarters. For each quarter, they've divided total operating expenses by
the number of (standardized) units of output produced, in order to determine
their per-unit cost of production. In order to try to understand why this cost
has varied, they look at two potential explanatory variables: prod lvl = the
level of scheduled output, measured in percentage points of the maximum
designed output level of the factory, and rm+lbr = a composite index tracking
the market price of raw materials and the hourly cost of direct labor. Their
sample data, and the results of an initial regression are:



However, the notion of economies of scale would lead us to expect that the
linkage between production level and per-unit manufacturing cost is nonlinear.
Combined with a bit of operational insight, we'd expect the per-unit cost to
drop, rapidly at first and then more slowly, as the production level increases,
and then to rise again as production level is pushed beyond what the factory
was designed to handle.

A graphical examination of how the residuals from a regression vary with the magnitude of an
explanatory variable can reveal a nonlinear linkage as well. In a truly linear relationship, the
residuals take both positive and negative values for every range of values of the explanatory
variables. A residual plot which shows the sign of the residuals varying systematically with
the values of some explanatory variable indicates the presence of a nonlinear relationship
between that explanatory variable and the dependent variable.

Example: Plotting the residuals against the raw-material-and-labor index
reveals nothing of interest.



However, a plot of the residuals against production levels reveals a definite
pattern:

For production levels below 70 and above 90, the residuals are almost all
positive (indicating that the model systematically underpredicts the dependent
variable in these cases). In-between, the residuals are just about all negative
(indicating that the model overpredicts in those cases). Obviously, we could
improve the model by adjusting predictions upwards when production level is
high or low, and adjusting them downwards when production level is
moderate.

When a residual plot shows a rough "U"-shaped link (either direct or inverted) between the
residuals and an explanatory variable, the fit of the model to the data can be improved by
introducing the square of that explanatory variable as a new artificial variable in the model.
(Here is a workbook which reviews some of the properties of quadratic functions and their
graphs (parabolas).

 

 

 

 

 

 



Capturing Nonlinearity 

In order to capture a curved (i.e., nonlinear) relationship, we can include the square of an 
explanatory variable (together with the original variable) in our regression model. The model now 
takes the form:  Y = … + bX + cX2 + … .      

The values of the two coefficients together determine the shape of the curve. If c > 0, the curve 
bends upwards (and the magnitude of  c  determines the "tightness" of the bend); if c < 0, the curve 
bends downwards.         

The curve will be a portion of a parabola which takes its lowest (c > 0) or highest (c < 0) value 
when X =  b/(2c). If this value of X is within the range of observed values of X, we'll actually see 
some of both "wings" of the parabola in the captured relationship. However, if this value is outside 
our observed data range, only part of one wing will actually appear. 

In the examples below, the range of observed values of X is assumed to be between 50 and 150. 

        

       

       



Example: Introducing the square of production level as a new explanatory variable in the model
yields the regression results:

(unit cst)
pred

 = 10.5223035 - 0.1744727⋅(prod lvl) + 0.0008948⋅(prod lvl)2 + 0.02016781⋅(rm+lbr)

The significance level of 0.0001% for the squared term indicates strong evidence that it has a true
non-zero coefficient, and therefore belongs in the model. The coefficient 0.0008948 is positive,
indicating that the nonlinear link between per-unit cost and production level is upward-bending.
This upward-bending relationship bottoms out when production level is -b/(2c) =
-(-0.1744727)/(2⋅0.0008948) = 97.492 (i.e., near 100, as expected from our initial intuition).



 

Other, similar approaches are available to try to capture nonlinear relationships. Introducing
the reciprocal of an existing variable as a new variable can help to capture asymmetric
“U”-shaped relationships, and introducing the square root of an existing variable can help to
capture “sideways” “U”-shapes. However, in the study of relationships encountered in business
settings, some combination of the simple interaction and “U”-shape “tricks” presented here can
capture most nonlinearities. Indeed, many commercially-available regression-analysis
packages contain specific features to facilitate the construction of new variables (i.e., new
columns of data) from products of existing variables, or the squares of existing variables.
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