The Language of (Statistical) Estimation

Typically, when we’re estimating some unknown characteristic of a population, or predicting something,
we'll be able to compute (from our sample data) one standard-deviation’s-worth of “noise” (i.e.,
potential error due to the randomness of the sampling process that gave us our data) in our estimate or
prediction. And typically, the methods we’ll use will lead to normally-distributed uncertainty in our
estimate or prediction. Therefore, 95% of the time we’ll get an estimate or prediction that differs from
the truth (i.e., the true value of that population characteristic, or the actual value ultimately taken by
whatever we’re predicting) by no more than approximately two standard-deviation’s-worth of noise.

One standard-deviation’s-worth of potential error in an estimate or prediction is called the standard
error of the {quantity being estimated or predicted}. As we examine the results of a regression analysis,
we'll encounter, for example, the standard error of a mean, the standard error of a proportion, the
standard error of a prediction, the standard error of an estimated subgroup mean, the standard errors
of the estimated coefficients in our regression model, and the standard error of the regression itself.

The margin of error (at the 95%-confidence level) in our estimate or prediction will simply be
(approximately 2)-(the standard error of that estimate or prediction). Both the appropriate
“approximately 2” multiplier (which comes from something called “the t-distribution” with some
number of “degrees of freedom”) and the appropriate standard error (again, this represents one
standard-deviation’s-worth of “noise” in our estimation or prediction process) will be computed for us
by any modern statistical software.

Finally, a 95%-confidence interval for our estimate or prediction is

(the estimate or prediction itself) + (~2)-(the standard error of the estimate or prediction), or
(the estimate or prediction itself) + (the margin of error in the estimate or prediction).

Here’s an example from the first dataset we’ll analyze in class, consisting of 15 cars sampled from the
fleet owned and operated by a municipality. The variables for each car are maintenance Costs over the
previous year, Mileage (in 000s) driven over the previous year, Age (in years) at the start of the year, and
Make (all the cars were either Fords or Hondas; Make is encoded as Ford = 0, Honda = 1).

A B C D E F G
1 Univariate statistics
2 Costs Mileage Age Make
3 | mean £B85.866667 16.3733333 1 0.46666667
4 | standard deviation 111.678663 4.34370919 0.84515425 051639778
5 | standard error of the mean 28.8353068 1.12154089 021821789 0.13333333
6
7 | minimum 518 8.4 0 0
8 | median 673 16.9 1 0
9 maximum 861 246 2 1
10| range 343 16.2 2 1
11
12| skewness 0.038 -0.214 0.000 0.149
13| kurtosis -1.189 -0.068 -1.615 -2.308
14
15| number of observations 15
16
17 | tstatistic for computing
18| 95%-confidence intervals 21448 estimate + margin of error

95%-confidence interval for mean annual cost per car (across the fleet) $688.87 + 2.1448-528.84
95%-confidence interval for mean annual miles driven per car 16,373 +2.1448-1,121
95%-confidence interval for mean age of cars in the fleet 1.000 + 2.1448-0.218
95%-confidence interval for fraction of fleet for which Make = Honda  46.67% + 2.1448-13.33%



Connection with the Probability Module
If what appears below feels too technical, please feel free to skip it completely!

Every statistical study begins with a random sampling of data from a population of interest. Any number
then computed from the sample data can be thought of as one realization of a random variable which
takes different values for different samples.

For example, imagine repeatedly drawing random individuals (say, from the population of EMP alumni
who graduated between 2005 and 2010), where each draw is equally likely to yield any one of the
individuals in that population. (This is called “simple random sampling with replacement.”) We'll then
average the annual incomes of all of the sampled individuals, and use that as an estimate of the true
population mean, u (the mean annual income of EMP alumni 5 to 10 years after graduation). Call the

computed sample mean x (a number); this is a realization of the random variable )_(, which varies from
one sample to the next.

The individual random draws X3, X, ..., X, are independent, identically-distributed random variables, and

X is their average. Therefore, from your probability course:
(1) E[X]=u, (2) StdDev(X) = O'/\/;, and (3) X is approximately normally distributed

(where o is the population standard deviation, and approximate normality follows from the Central
Limit Theorem).

If X were precisely normally distributed, there would be a 95% chance that its realized value x differs

from its expected value (the true population mean u) by no more than J_r1.96-0/\/; .

We don’t know o, of course. But we can use the sample standard deviation s as an estimate of ¢, and
therefore we can be 95%-confident that the interval

X+(~2)-s/Jn

contains the true population mean u. This is called a 95%-confidence interval for u. (The
“approximately 2” multiplier is a bit larger than 1.96, to cover for our use of s instead of &)

Similarly, when estimating or predicting anything statistically, a 95%-confidence interval will be

(the estimate or prediction)
t (~ 2) - (one standard-deviation’s-worth of random variability in the estimate or prediction).

That standard-deviation’s-worth of “noise” in our estimate or prediction is called the “standard error” of
whatever we're estimating or predicting. On the previous page, note that each “standard error of the

mean” is simply the sample standard deviation, divided by /15, the square-root of the sample size.

In regression studies, computing standard errors typically requires much more work than using the

simple s/\/; formula for the standard error of the mean. That’s why we leave the calculation to the
computer.



