Regression Analysis

The Gotham City Motor Pool

Gotham City maintains a fleet of automobiles in a special motor pool.
These cars are used by the various city agencies when special needs
arise for temporary use by personnel who do not have their own
assigned automobiles.

The manager of the pool is trying to determine what elements
contribute to the maintenance and repair costs of the cars under his
care. He surmises that components such as the mileage driven during a
year, the age of the car, and possibly even the make of the car might
help explain why annual maintenance and repair costs vary. Accordingly,
he collects data on these variables for fifteen cars selected at random
from the cars in the pool.

“Costs” refers to total maintenance and repair expenses for a car over
the past 12 months.

“Mileage” is thousands (000s) of miles driven over the past 12 months.
“Age” is the car’s age (in years) at the beginning of the past 12 months.

Conveniently, all of the cars in the fleet are either Fords or Hondas; this
is encoded as “Make” = 0 for Fords, and “Make” = 1 for Hondas.

Motor Pool Data

Costs | Mileage | Age (For d=3fa}l;:n da=1)
5643 182 0 0
3613 16.4 0 1
$673 [ 201 [ o 0
$531 [ 84 [ 1 1
ssis [ 96 [ 2 1
sso4 [ 121 [ 1 0
$722 [ 169 [ 1 1
ss6l [ 210 [ 1 0
82 [ 246 [0 0
s706 [ 191 [ 1 0
$795 143 2 1
$776 16.5 2 1
$815 182 2 0
$571 127 2 0
$673 175 0 1

Looking at One Variable ata Time ...

A B Cc D E F G
1 Univariate statistics
2 Costs Mileage Age Make
3 | mean 688.866667 16.3733333 1 0.46666667
4 standard deviation 111.678663 4.34370919 0.84515425 0.51639778
5 standard error of the mean 28 8353068 112154089 021821789 013333333
6
7 | minimum 518 84 0 0
8 median 673 16.9 1 0
9 | maximum 861 246 2 1
10 range 43 16.2 2 1
11
12 skewness 0.038 0214 0.000 0.149
13 kurtosis -1.189 -0.068 -1.615 -2.308
14
15 number of observations 15
16
17 tstatistic for computing
18 95%.confidence intervals 21448

95%-confidence interval for mean annual miles driven per car
95%-confidence interval for mean age of cars in the fleet

95%-confidence interval for fraction of fleet for which Make = Honda

estimate * margin of error

95%-confidence interval for mean annual cost per car (across the fleet) $688.87 +2.1448:528.84
16,373 + 2.1448:1,121

1.000 +2.14480.218

46.67% * 2.1448-13.33%
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Regression Analysis

(Two-Dimensional) Tables

As a first step in his analysis of these data, the manager
calculates the average maintenance and repair costs for
new, one-year-old, and two-year-old cars. The results are:

¢ Although he is somewhat surprised by the results, the
manager concludes that the age of the car does not
significantly influence the repair and maintenance costs.

As a next step, the manager calculates the average costs
for each make of car. The results are:

¢ He concludes that he should, in the future, give
preference to purchasing Hondas since he would save
$52 each per year in maintenance and repairs.

Age Number of Cars A‘:]:;gl;;f:ilfg:;?ce
0 5 $688.80
1 5 $682.80
2 5 $695.00

Make (Number of Cars Average Ma‘im?uance

| ||_and Repair Costs
Ford 8 §713.13
Honda 7 $661.14

Do you agree with the manager? How would you suggest that he analyze the data? What are your

conclusions?

(Two-Dimensional) Tables Show Only Shadows

Not surprisingly, the new cars are more i Average Maintenance|, ]
. . Age |Number of Cars N Average Mileage

popular with city employees, and get taken and Repair Costs
out more often (and consequently are 0 5 $688.80 19.200
driven further) than the older cars during 1 5 $682.80 16.780
the year. 2 5 $695.00 13.140
And, for whatever reason, the Fords are Make |Number of Cars A‘:’::gée“::i‘l'_‘g:i’:“ |Average Mileage
more popular, and end up being driven —
further than the Hondas during th Ford | 8 $713.13 18.250

urther than the Hondas during the year. — = i N

We need a way to look at all the dimensions of a relationship at the same time. This is what regression

analysis can do!

For example, we’ll see (via regression) that Fords of the same age, and driven the same distance, as
Hondas have maintenance and repair costs, on average, $47 less per year.
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Regression Analysis

The Regression “Machine”

relevant sample data

The regression model L
(no missing data)

(terminology, structure,
and assumptions)

regression results
(today’s focus)

The Regression Model

Costs =a +f3, -Mileage + B, - Age + B, -Make + €
T I \’7\\\\‘“‘:\\\\ ,,5\\ 4 A I //,ﬂ T

the explanatory-variables~, residual term
dependent : oF Tl ;o
variable |~ ~independent variables* S

RO
L e

coefficients linear
mathematical structure

What we’re talking about is sometimes explicitly called “linear regression
analysis,” since it assumes that the underlying relationship is linear (i.e., a
straight line in two dimensions, a plane in three, and so on)!
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Regression Analysis

Why Spend All This Time on Such a Limited Tool?

* Some interesting relationships are linear.
* All relationship are locally linear!

* Several of the most commonly encountered nonlinear relationships in
management can be translated into linear relationships, studied using
regression analysis, and the results then untranslated back to the
original problem!

A Few Final Assumptions Concerning €

¢ The validity of regression analysis depends on several assumptions concerning the residual term.

e E[e] =0. This is purely a cosmetic assumption. The estimate of a will include any on-average residual effects
which are different from zero.

* & varies normally across the population. While a substantive assumption, this is typically true, due to the
Central Limit Theorem, since the residual term is the total of a myriad of other, unidentified explanatory
variables. If this assumption is not correct, all statements regarding confidence intervals for individual
predictions might be invalid.

* The following additional assumptions will be discussed later in the course.

* StdDev[e] does not vary with the values of the explanatory variables. (This is called the homoskedasticity
assumption.) Again, if this assumption is not correct, all statements regarding confidence intervals for
individual predictions might be invalid.

¢ ¢gis uncorrelated with the explanatory variables of the model. The regression analysis will “attribute” as much
of the variation in the dependent variable as it can to the explanatory variables. If some unidentified factor
covaries with one of the explanatory variables, the estimate of that explanatory variable’s coefficient (i.e., the
estimate of its effect in the relationship) will suffer from “specification bias,” since the explanatory variable
will have both its own effect, and some of the effect of the unidentified variable, attributed to it. This is why,
when doing a regression for the purpose of estimating the effect of some explanatory variable on the
dependent variable, we try to work with the most “complete” model possible.
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Regression Analysis

What Can Regression
Analysis Do for You?

* Make predictions (based on available information)
» Estimate group means (for similar individuals)

* Measure effects (while controlling for other influences)

* Help evaluate/improve a model (of a relationship)

1. Make a Prediction

For an individual, predict the value of the dependent variable, given the
values of some of the explanatory variables.

* Process: “Regress” the dependent variable onto the given explanatory
variables. Then “Predict.” Fill in the values of the explanatory variables.
Hit the “Predict” button.

e Answer: (prediction) + (~2)-(standard error of prediction)

* Example: Predict the maintenance cost of a one-year-old car (in the
fleet) which will be driven 18,500 miles over the next year.
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Regression Analysis

Make a Prediction

* Predict the annual maintenance cost of a one-year-old car (in the fleet) which
will be driven 18,500 miles over the next year.

* Process: “Regress” Cost onto Mileage and Age. Then “Predict”, filling in 18.5
for Mileage and 1 for Age. Hit the “Predict” button.

¢ (prediction) + (~2)-(standard error of prediction)

e $745.60 + 2.1788:554.56 (we’re 95%-confident that the prediction is within +5118.88 of
actual Costs, i.e., actual Costs end up somewhere between $626.74 and $864.47)

Regression: Costs Prediction, using most-recent regression Make multiple predictions
constant  Mileage Age I N R |
coefficient 180.914993 26.676792 71.1309195 constant Mileage Age
std error of coef 732707488 3.7041353 19.0375739 coefficients 180.915 26.67879 71.13092
tratio 24691 7.2024 3.7363 values for prediction
significance 2.9541%  0.0011%  0.2841%
beta-weight 1.0377 0.5383 predicted value of Costs 745.6036 Predict
standard error of prediction 54 55551
standard error of regression 52.2695799 standard error of regression 52.26958
coefficient of determination 81.22% standard error of estimated mean 1562674
j coef of determinati 78.09%

fid level 95.00%!

number of observations 15 t-statistic 2.1788

residual degrees of freedom 12 residual degr. freedom 12

t-statistic for computing confidence limits lower  626.7373

95%-confidence intervals 21788 for prediction upper  864.4698
confidence limits lower  711.5558
for estimated mean upper  779.6513

2. Estimate a Group Mean

For a group of similar individuals (i.e., individuals with the same values for
several explanatory variables), estimate the mean value of the dependent
variable.

* Process: “Regress” the dependent variable onto the given explanatory
variables. Then “Predict.” Fill in the values of the explanatory variables. Hit
the “Predict” button.

* Answer: (prediction) £ (~2)-(standard error of estimated mean)

e Example: Estimate the mean annual maintenance cost of two-year-old
Fords (note the plural!) in the fleet.
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Regression Analysis

Estimate a Group Mean

* Estimate the mean annual maintenance cost of two-year-old Fords (note the
plural!) in the fleet.

* Process: “Regress” Cost onto Age and Make. Then “Predict”, filling in 2 for Age
and 0 for Make. Hit the “Predict” button.

¢ (prediction) * (~2)-(standard error of estimated mean)
e $722.72 +2.1788-559.01

Regression: Costs Prediction, using most-recent regression Make multiple predictions
constant Age Make I N . |
coefficient 705.66422 85266055 -54 266055 constant  Age Make
std error of coef 527288569 3745625058 61.2960511 coefficients 705.6642 8.526606 -54 2661
tratio 13.3829 02277  -0.8853 values for prediction
significance 0.0000% 82.3740% 39.3384%
beta-weight 0.0645 -0.2509 predicted value of Costs 722.7174 Predict
standard error of prediction 130.8925
standard error of regression 116.83827 standard error of regression 116.8383
coefficient of determination 6.18% standard error of estimated mean  59.00574
dj coef of di inati -9.45%
confidence level
number of observations 15 t-statistic 21788
residual degrees of freedom 12 residual degr. freedom 12
t-statistic for computing confidence limits lower  437.5271
95%-confidence intervals 21788 for prediction upper  1007.908
confidence limits lower 594.155
for estimated mean upper  851.2799

Sources of Prediction-Related Error
(a two-slide technical digression)

There are two ways in which our prediction (Y,,.4) for an individual might differ from reality (Y):

pred

raity | Y =0+ B, X+ B X | HE

thepredicion | Y |=(a+b,X, +...+b X, [0

equation pred
standard error of the standard error of the standard error of the
prediction estimated mean regression, StdDev(g)
this = \/ this? + this?
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Regression Analysis

The Standard Error of the Regression

Predicted values and residuals

¢ Using the prediction equation, we

i i Costs predicted’ residual* Mileage Age Make
predict for each sample observation. -osts | pradicted] residual | Miless ; a
. 613 6409970 -27.9970 16.4 0 1
¢ The difference between the 673 7032598 -30.2698 201 0 0
] 531 4777736 532264 8.4 1 1
prediction and the'actual' value of e oW T , L
the dependent variable (i.e., the B¢ |Ginoset| o6 | 121 ! ;
error) is an estimate of that 861 8039010 57.0090 210 1 0
. P ’ . 842 836.6744 5.3256 246 0 0
|nd|V|dUa| S rESIduaI' 706 7475703 -41.5703 191 1 0
. . 795 726 6534 68.3466 143 2 1
e StdDev(g) is estimated from these. 776 7918783 158783 165 2 1
815 794 8457 2015643 182 2 0
571 631.7833 -60.7833 127 2 0
673 6736095 -0.6095 175 0 1

Indeed, the regression “process” simply
finds the coefficient estimates which
minimize the standard error of the
regression (or equivalently, which minimize
the sum of the squared residuals)!

3. Measure a Pure Effect

A one-unit difference in an explanatory variable, when everything else of
relevance remains the same, is typically associated with how large a
difference in the dependent variable?

* Process: “Regress” the dependent variable onto all of the relevant
explanatory variables (i.e., use the “most complete” model available).

* Answer: (coefficient of explanatory variable)
+ (~2)-(standard error of coefficient)

e Example: Estimate the “pure” impact of 1,000 miles of driving during the
year on annual maintenance costs.
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Regression Analysis

Measure a Pure Effect

* Estimate the “pure” impact of 1,000 miles of driving during the year on
annual maintenance costs.

* Process: “Regress” Costs onto Mileage, Age, and Make (i.e., use the “most
complete” model available, so Age and Make can be held constant).

* (coefficient of explanatory variable) + (~2)-(standard error of coefficient)
¢ $29.65 +2.2010-53.92

Regression: Costs

constant  Mileage Age Make Predictions, using most-recent regression Make single prediction

coefficient 107.340945 29.6477024 73.9582688 474337242 Predict
std error of coef ~ 82.0422871 3.91510733 17.9148891 26 9836595 coefficients values for prediction
tratio 1.3084 7.5726 4.1283 1.6366 constant 107.340945
significance 21.7429%  0.0011%  0.1677% 12.9983% Mileage 29.6477024 13 14 16 17} 10 1
beta-weight 1.1631 0.5597 0.2193 Age 73.9582688 0 0 1 1 2 2]
Make 47.4337242 0 0 0 0] 1 1
standard error of regression 48.9578919
coefficient of determination 84.90% predicted value of Costs 4927611 522.4088| 655.6625 685.3102] 599.1682 628.8159
adjusted coef of determination 80.78% standard error of prediction 6062579 58 9124] 52 53636 52.10449| 54 80818 54.29203)
standard error of regression 4895789 48.95789| 4895789 48.95789| 4895789 4895789
number of observations 15 standard error of estimated mean| 3575768 32.76881| 19.05765 17.83263| 24 63861 2346605
residual degrees of freedom " new Ford 1-year-old Ford 2-year-old Honda
increase 29 6477| increase 29.6477| increase 29.6477]

t-statistic for computing
95%-confidence intervals 2.2010

4. Modelling: Why Does The Dependent Variable Vary?

What fraction of the variance in the dependent variable (from one individual
to another) can potentially be explained by the fact that the explanatory
variables in our model vary (from one individual to another)?

* Process: “Regress” the dependent variable onto the explanatory variables
currently under consideration. Then look at the “adjusted coefficient of
determination” (synonymously, “the adjusted r-squared”).

* Example: Why does annual maintenance expense vary across the cars in
the fleet?
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Regression Analysis

The Adjusted Coefficient of Determination

* Why does annual maintenance expense vary across the cars in the fleet?

* Partial Answer: Because Mileage, Age, and Make vary across the fleet.

* How much of an answer is that? Regress Costs onto those three variables.

Regression: Costs
constant  Mileage
coefficient

std error of coef
t-ratio 1.3084 75726
significance 21.7429%  0.0011%
beta-weight 1.1631
standard error of regression 48 9578919
coefficient of determination 84.90%
coef of di inati 80.78%
number of observations 15
residual degrees of freedom "
t-statistic for computing
95%-confidence intervals 22010

Make Variation in Mileage, Age, and Make

107.340945 29.6477024 73.9582688 47.4337242
82.0422871 3.91510733 17.9148891 28 9836595
41283 1.6366
0.1677% 12.9983%
0.5597 0.2193

can potentially explain 80.78% of the
variation in Costs. The other 19.22% of

the variation must be explained by
other unidentified variables still
lumped together in the residual term.

Why Does the Dependent Variable Vary?

* Why does annual maintenance expense vary across the cars in the fleet?

¢ Variation in Mileage alone can explain 56.26% of the variation in Costs.
¢ Variation in Age alone can explain nothing (read “0%” for negative values*).
¢ Variation in the two together can explain 78.09% of the variation in Costs.

Regression: Costs
constant  Mileage

coefficient 364476942 19.612076
std error of coef 76.8173302 4.54471998
t-ratio 4.7447 4.3594
significance 0.0383%  0.0774%
beta-weight 0.7706
standard error of regression 73.8638412
coefficient of determination 59.38%
d coef of d ination 56.26%
number of observations 15
residual degrees of freedom 13
t-statistic for computing
95%-confidence intervals 2.1604

Regression: Costs
constant Age

coefficient 685.766667 31
std error of coef 47.3006794 36.6389487
tratio 14.4980 0.0846
significance 0.0000% 93.3861%
beta-weight 0.0235
standard error of regression 115.862529
coefficient of determination 0.06%
djusted coef of d ination -7.63%
number of observations 15
residual degrees of freedom 13
t-statistic for computing
95%-confidence intervals 2.1604

Regression: Costs

constant
coefficient 180.914993
std error of coef 732707488
t-ratio 24691
significance 2.9541%
beta-weight

standard error of regression
coefficient of determination
dj d coef of determi

number of observations
residual degrees of freedom

t-statistic for computing
95%-confidence intervals

Mileage Age
26.676792 71.1309195
3.7041353 19.0375739
7.2024 3.7363
0.0011%  0.2841%
1.0377 0.5383

52 2695799
8122%
78.09%

15
12

21788
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Regression Analysis

The Explanatory Power of the Model

* Names can vary: The {adjusted, corrected, unbiased} {coefficient of
determination, r-squared} all refer to the same thing.

¢ Without an adjective, the {coefficient of determination, r-squared} refers to a
number slightly larger than the “correct” number, and is a throwback to pre-

computer days.

* When a new variable is added to a model, which actually contributes
nothing to that model (i.e., its true coefficient is 0), the adjusted coefficient
of determination will, on average, remain unchanged.

¢ Depending on chance, it might go up or down a bit.

* *If negative, interpret it as 0%.
¢ The thing without the adjective will always go up. That’s obviously not quite “right.”

5. Modelling: Relative Explanatory Importance

Considering a set of explanatory variables, rank them in order of importance

in helping to explain why the dependent variable varies.

* Process: “Regress” the dependent variable onto the target set of
explanatory variables. Rank the variables in order of the absolute values of
their beta-weights, from largest (most important in explaining variation in
the dependent variable) to smallest (least important in explaining
variation).

* Example: Rank Mileage, Age, and Make in order of relative importance in
helping to explain why Costs vary across the fleet.
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Regression Analysis

Variation in What Most Helps to Explain Why the Dependent Variable Varies?

* Rank Mileage, Age, and Make in order of relative importance in helping to
explain why Costs vary across the fleet.

* One standard-deviation’s-worth of variation in Mileage is associated with
1.1531 standard-deviation’s-worth of variation in Costs.

* One standard-deviation’s-worth of variation in Age is associated with
0.5567 standard-deviation’s-worth of variation in Costs.

* One standard-deviation’s-worth of variation in Make is associated with
0.2193 standard-deviation’s-worth of variation in Costs.

e i [ T T T | e Therefore, variation in Mileage is more
coefficient 107.340945 29 6477024 73.9582688 474337242 than twice as important as iS va riation in
std error of coef 82.0422871 3.91510733 17.9148891 28.9836595 . N
tratio 13084 75726 41283 16366 Age (and more than five times as
o N747% OO0ITE 0167 12.9983% important as is the fact that some cars in

: the fleet are Fords, and others are
standard error of regression  48.9576919 . . .
coefficient of determination 84.90% Hondas) in helping to explain why Costs
adjuated coof of deformination] _50.78% vary (when all three of those variables are
number of observations 15 COnS|dered together)

residual degrees of freedom 1"

t-statistic for computing
95%-confidence intervals 22010

The Beta-Weights

* You can’t compare regression coefficients directly, since they may carry
different dimensions.

* The beta-weights are dimensionless, and combine how much each
explanatory variable varies, with how much that variability leads to
variation in the dependent variable.

* Specifically, they are the product of each explanatory variable’s standard deviation
(how much it varies) and its coefficient (how much its variation affects the
dependent variable), divided by the standard deviation of the dependent variable
(just to remove all dimensionality).
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Regression Analysis

6. Modelling: Which Variables “Belong”
in the (Current) Model?

How strong is the evidence that each explanatory variable has a non-zero
coefficient (i.e., plays a predictive role) in the current model?

* Process: “Regress” the dependent variable onto the (current) set of explanatory
variables. For each explanatory variable, examine the “significance level”
(synonymously, the “p-value”) of the sample data with respect to the null
hypothesis that the true coefficient of that variable is zero.

¢ The closer the significance level is to 0%, the stronger is the evidence against that null
hypothesis (i.e., the stronger is the evidence that this variable does indeed belong in the
current model).

e Example: How strong is the evidence that Mileage, Age, and Make each “belong”
in the model which predicts Costs from all three?

Which Variables “Belong” in the (Current) Model?

* How strong is the evidence that Mileage, Age, and Make each “belong” in
the model which predicts Costs from all three?
* For Mileage and Age, “overwhelmingly strong”.
* For Make, a “little bit of supporting evidence”, but not even “moderately strong”.

Regression: Costs

e T e e * With more data, if the true coefficient of Make is

coefficient 107.340945 29.6477024 73.9582688 474337242

std error of coef 820422871 3.91510733 17.9148891 28.9836595 non-zero, the significance level will move towar
t-ratio 1.3084 75726 4.1283 1.6366 S e O,t e s,g ca Ce_ eve . ,o e towa dS
significance 217429%  0.0011%  0.1677% 12.9983% 0%, and the evidence for inclusion will be stronger.
beta.weight 11631 05597 02193

* With more data, if the true coefficient of Make is

standard error of regression | 48.9578919 really zero, the significance level will stay well above

coefficient of determination 84.90% . . . .

adjusted coef of determination  80.78% 0%, and the estimate of the coefficient will move
s towards 0 (the “truth”).

number of observations 15

residual degrees of freedom 1"

tstatistic for computing
95%-confidence intervals 2.2010
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Regression Analysis: Summary

Make a Prediction
For an individual, predict the value of the dependent variable, given the values of some of the
explanatory variables.
Process: “Regress” the dependent variable onto the given explanatory variables. Then “Predict.”
Fill in the values of the explanatory variables. Hit the “Predict” button.
Answer: (prediction) * (~2)-(standard error of prediction)

Estimate a Group Mean
For a group of similar individuals (i.e., individuals with the same values for several explanatory
variables), estimate the mean value of the dependent variable.
Process: “Regress” the dependent variable onto the given explanatory variables. Then “Predict.”
Fill in the values of the explanatory variables. Hit the “Predict” button.
Answer: (prediction) * (~2)-(standard error of estimated mean)

Measure a Pure Effect
A one-unit difference in an explanatory variable, when everything else of relevance remains the
same, is typically associated with how large a difference in the dependent variable?
Process: “Regress” the dependent variable onto all of the relevant explanatory variables (i.e., use
the “most complete” model available).
Answer: (coefficient of explanatory variable) * (~2)-(standard error of coefficient)

Modelling: Why Does the Dependent Variable Vary?
What fraction of the variance in the dependent variable (from one individual to another) can
potentially be explained by the fact that the explanatory variables in our model vary (from one
individual to another)?
Process: “Regress” the dependent variable onto the explanatory variables currently under
consideration. Then look at the “adjusted coefficient of determination” (synonymously, “the
adjusted r-squared”).

Modelling: Relative Explanatory Importance

Considering a set of explanatory variables, rank them in order of importance in helping to explain

why the dependent variable varies.
Process: “Regress” the dependent variable onto the target set of explanatory variables. Rank the
variables in order of the absolute values of their beta-weights, from largest (most important in
explaining variation in the dependent variable) to smallest (least important in explaining
variation).

Modelling: Which Variables “Belong” in the (Current) Model?

How strong is the evidence that each explanatory variable has a non-zero coefficient (i.e., plays a

predictive role) in the current model?
Process: “Regress” the dependent variable onto the (current) set of explanatory variables. For
each explanatory variable, examine the “significance level” (synonymously, the “p-value”) of the
sample data with respect to the null hypothesis that the true coefficient of that variable is zero.
The closer the significance level is to 0%, the stronger is the evidence against that null hypothesis
(i.e., the stronger is the evidence that this variable does indeed belong in the current model).
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