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Online Appendix
Technical Assumptions
Clearly, V �K��� must have an expected value; that is, it is a measurable and integrable function of �
for every K. Interchanging differentiation and integration requires conditions that bound the deriva-
tives such as requiring that all functions are Lipschitz, as in the general conditions in Appendix A
of Broadie and Glasserman (1996). In our setting all functions are concave and thus absolutely con-
tinuous on any compact subset of �n

+, where its right- and left-hand partial derivatives exist (and
thus are finite) and are monotone increasing. Let �f �K��� denote this vector of right-hand partial
derivatives of a concave function f with respect to K. An absolutely continuous function f satisfies
a Lipschitz condition if and only if ��f � is bounded. Clearly, for a concave function, �f �K��� is
bounded, and thus Lipschitz, on any compact subset in �n

+. The only technical condition is to require
finite derivatives also at 0 and � and require a Lipschitz condition on the open set �n

+:

Assumption 1. The value function V �K��� satisfies a Lipschitz condition on �n
+ almost surely: there is a

MV ��� such that �V �K1���−V �K2���� ≤MV ����K1−K2� for all K1�K2 ∈�n
+, where ƐMV ��� <�.

Assumption 2. The utility function u�x� satisfies a Lipschitz condition on �: there is a Mu such that
�u�x1�−u�x2�� ≤Mu�x1− x2� for all x1�x2 ∈�.

For newsvendor networks, � and thus also V are the solution of a linear program and have finite
partial derivatives so that Assumption 1 is always satisfied. It is not unrealistic to assume that demands
are bounded which then obviates Assumption 2.
Proof of Proposition 1. The function V �K��� is concave in K for any � as a sum of two concave

functions. Because u�·� is concave increasing, the scalar composition u�V �K���+W� is also concave
in K for any � and W . (The latter is directly shown for twice differentiable functions, but also holds
without assuming differentiability, see Boyd and Vandeberghe 2004, p. 84.) Finally, the expected utility
function is concave as a linear combination of concave functions. �

Proof of Proposition 2. Let f �K��� = u�V �K��� + W�, which is concave in K for any � and
wealth W according to the proof of Proposition 1 so that �U�K∗�= 0 is necessary and sufficient for
an interior maximum.
Because f is concave, its right-hand partial gradient �f �K��� exists for every �. Thus, for all K ∈�n

+
and m> 0, gm =m�f �K+m−1ei���− f �x����→m �if �K���, where ei is the ith unit vector. Given that
the Lipschitz property is preserved by composition, the technical assumptions guarantee the existence
of Lipschitz modulusM��� for f w.p. 1 that is integrable. Because �gm�K����<M��� with ƐM���<�,
the dominated convergence theorem shows that limm→� Ɛgm = Ɛ limm→� gm. Thus, differentiation and
integration interchange so that �U�K�= Ɛ�f = Ɛu′�V +W��V . �

Proof of Proposition 3. Applying the definition of covariance and given that integration and
differentiation can be interchanged, we have that:

��2�K� = �K�Ɛ�
2�K�D�− �Ɛ��K�D��2�= Ɛ�K�

2�K�D�−�K�Ɛ��K�D��2

= 2Ɛ���K�D���K�D��− 2�Ɛ��K�D��Ɛ��K�D�= 2Cov������

ec1
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For the second part, again applying the definition of covariance, we have that

Ɛ����Kn���− c�V �Kn���� = Cov���Kn���− c�V �Kn����+ Ɛ���Kn���− c�ƐV �Kn���

= Cov���Kn���− c���Kn���−C�Kn�� �second term= 0 by �3��

= Cov���Kn������Kn���� �constants fall out�� �

Proof of Proposition 4. According to the implicit function theorem, K��� is a continuous function
of � where �d/d��K��� is found by differentiating the first-order condition: �d/d��Ɛ����K��� − c� ·
exp�−�V �K�����= 0 or

Ɛ���K��K����exp�−�V �K����+ ���K���− c�exp�−�V �K�����−���KV �
d

d�
K���

+ Ɛ����K���− c�exp�−�V �K�����−V �K�����= 0
Recall that the Hessian H�Kn�= Ɛ���K��Kn����� and evaluate at the risk-neutral case � = 0 to get:

H�Kn�
d

d�
K�0�= Ɛ����Kn���− c�V �Kn�����

Given that � is concave, its Hessian H�Kn� is negative-definite, and invertible. �

Proof of (9). As illustrated in Figure 2, the MV-frontier function � and the maximal utility UMV���,
denoted as ����, are almost inverse functions in that they satisfy, except at possible inflection points:
�′�� ′�x��=−x and thus �′′�� ′�x��=−1/� ′′�x�. Evaluating at x= �2�Kn�, where z=� ′�x�= 0, directly
yields �′�0�=−�2�Kn� and � ′′��2�Kn��=−1/�′′�0�. It only remains to find �

′′
�0�. Twice differentiate

the defining condition of K�z�:

d

d�
����= � ′!�K����

d

d�
K− �

2
� ′�2�K����

d

d�
K− 1

2
�2�K�����

d2

d�2
����=

(
H�K����

d

d�
K
)′ d

d�
K+� ′!�K����

d2

d�2
K− 1

2
� ′�2�K����

d

d�
K

− �

2
d

d�

(
� ′�2�K����

d

d�
K
)
− 1
2
� ′�2�K����

d

d�
K�

Evaluate at � = 0 and recall that �!�K�0��= 0 and H�K�0���d/d��K�0�= ��2�K�0��:

�′′�0�=−� ′�2�K�0��′
d

d�
K�0�=−� ′�2�Kn�H−1�Kn���2�Kn�� �

Proof of Property 1. Optimal activity x =min�K�D� so that � = v1$D≥K% with the familiar risk-
neutral optimality condition Ɛ��−c�= v�1−F �K��−c= 0. Using the standard normal pdf ( and cdf ),
v�1−)�zn��= c where zn = �Kn −!1�/�1. Hence, H�Kn�= �d/dK�Ɛ�=−�v/�1�(�z

n� < 0 and

Ɛ����Kn���− c�V �Kn���� =
∫ Kn

−�
�−c��vx− cKn�dF +

∫ �

Kn
�v− c��vKn − cKn�dF

= −cv
∫ Kn

−�
x dF︸ ︷︷ ︸
A

+ c2KnF �Kn�+ �v− c�2Kn�1− F �Kn��︸ ︷︷ ︸
B

For the normal distribution, integration by parts yields A=!1)�zn�−�1(�z
n�=!1�1− c/v�−�1(�z

n�.
Moreover B= �c2�1− c/v�+ �v− c�2c/v�Kn = c�v− c�Kn. Putting this together yields

Ɛ����Kn���− c�V �Kn���� = −cv�!1�1− c/v�−�1(�+ c�v− c��!1+ z�1�

= �1cv�(�z
n�+ �1− c/v�zn��

which is nonnegative because f �z� = (�z� + z)�z� has f �−�� = 0 and is nondecreasing �f ′�z� =
)�z�≥ 0�. �
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Proof of Property 3. Using the notation of the proof of Property 2:
1
2�2�

2�Kn� = Ɛ��2�K
n���− c2�V �Kn���

= �v2− c2�Ɛ13V �Kn�D�− c2Ɛ04V �Kn�D�

≤ V1�K
n���v2− c2�P1�K

n�− c2P04�K
n��= 0�

Also H12 = �-/-K2�Ɛ�1�Kn���= �-/-K2�v1P�D1 >Kn
1 �= 0, so that

H−1�Kn�=




−1
v1f1�K

n
1 �

0

0
−1

v2f2�K
n
2 �


 �

where fi�·� is the p.d.f. of Di. �

Proof of Property 4 is similar to that of Property 2: The activity vector x�K�D� again is a sim-
ple greedy solution: x1 =min�D1�K1�K3� and x2 =min�D2�K2�K3 − x1�. The optimal risk-neutral Kn

satisfies the optimality conditions Ɛ��Ku���= c:
�v1− v2�P3�K

n�+ v1P4�K
n�= c1� v2P1�K

n�= c2� v2P2+3�K
n�= c3� (EC1)

According to Proposition 2, the (second) optimality condition for the risk-averse resource vector Ku is:

0= �v2− c2�Ɛ1u
′�V �Ku�D�+W�− c2Ɛ0234u

′�V �Ku�D�+W��

Case 1. �1 ≥ �2 as shown in Figure EC.1. Notice that it is suboptimal for the point �Ku
1 �K

u
3 −Ku

1 � to
be above the demand line because reducing Ku

3 by . would not change operating profits but reduce
investment costs. Thus there are two possible cases: moderate c3 so that �Kn

3 −Kn
2 �K

n
2 � falls above/at

the demand line; with high c3 it falls below. The property applies in the former case. The proof is
similar to that of Property 2: define the vector x1�K� and scalar k1�K� and establish that, if k1�Ku� < Ku

1 ,
then P1�Ku� ≤ c2/v2 = P1�Kn�. Note that P1�K�= P�D2 > K2� so that Ku

2 ≥ Kn
2 . The required conditions

are (1) and (2) of the proof of Property 2 and (3) the point �Kn
3 −Kn

2 �K
n
2 � falls above the demand line or

z1�K
n
3 −Kn

2 �+z2�K
n
2 � > 0. The increasing-in-risk aversion is proved similarly to the proof of Property 2.

Case 2. �1 <�2 proceeds similarly but uses the point x1�K�= �K3−K2�K2�. The required conditions
are (1) of the proof of Property 2; (2) k1�Kn� < Kn

1 or Kn
3 < Kn

1 + �1 − v2/v1�K
n
2 ; and (3) the point

�Kn
1 �K

n
3 −Kn

1 � falls above the demand line or z1�K
n
1 �+ z2�K

n
3 −Kn

1 � > 0. �

Proof of Property 5. Use the notation of the proof of Property 4.
1
2�2�

2�Kn� = Ɛ��2�K
n���− c2�V �Kn���

= �v2− c2�Ɛ1V �Kn�D�− c2Ɛ0234V �Kn�D�

≤ V1�K
n���v2− c2�P1�K

n�− c2P0234�K
n��= 0�

Figure EC.1 The Activity Vector x for the Serial Network When �1 ≥ �2 and �=−1
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Figure EC.2 The Activity Vector x for the Parallel Network When �1 = �2 and �=−1
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It is also easily verified that

H−1�Kn�= 1
�H �



· · · 0 · · ·
0 · · · 0

· · · 0 · · ·


 �

where all nonzero elements (denoted by · · · ) are positive and �H �< 0. Similarly, if v1 = v2:

1
2�3�

2�Kn� = Ɛ��3�K
n���− c�V �Kn���

= �v2− c3�Ɛ23V �Kn�D�− c3Ɛ014V �Kn�D�

≥ V3�K
n���v2− c3�P23�K

n�− c3P014�K
n��= 0�

where V3�Kn�= V �Kn�x3�Kn�� where x3�K�= �K1�K3−K1�. �

Proof of Property 6 is similar to that of Property 2: Notice that Ku
1 +Ku

2 +Ku
3 > b is suboptimal

because reducing Ku
3 by . and increasing Ku

1 by . would not change operating profits but would
decrease investment cost by �c3− c1�. > 0. Thus there are two possible cases: Ku

1 +Ku
2 +Ku

3 < b if c3 is
high and Ku

1 +Ku
2 +Ku

3 = b otherwise. The property applies in the latter boundary case which is shown
in Figure EC.2.
Let K112 = �K1�K2� be the independent variable for this boundary case where K3 = b − K1 − K2.
The associated two-dimensional shadow vector on this boundary has components �b

1�K
u
112�D� =

−v21$D∈21�Ku
112�%
and �b

2�K
u
112�D� = −v11$D∈24�Ku

112�%
with effective marginal cost cb = �c1 − c3� c2 − c3� < 0.

The risk-neutral boundary solution satisfies Ɛ�b�Kn�D�= cb so that P1�Kn�= �c3− c1�/v2 and P4�Kn�=
�c3− c1�/v2. Define the vector x1�K�= �K1�K2+K3� to partition and bound marginal utilities similar to
the proof of Property 2: The optimality conditions for Ku include

0 = Ɛ��b
1�K

u�D�− cb1�u
′�V �Ku�D�+W�

= �−v2− c1+ c3�Ɛ1u
′�V �Ku�D�+W�+ �−c1+ c3�Ɛ24u

′�V �Ku�D�+W�

≤ u′�V1�K
u���−v2P1�K

u�− c1+ c3�⇒ P1�K
u�≤ �c3− c1�/v2�

Thus, P1�Ku�≤ P1�Kn� so that Ku
1 ≤Kn

1 and Ku
2 +Ku

3 ≥Kn
2 +Kn

3 . The increase in risk aversion is proved
similarly to the proof of Property 2. The required conditions are (1) v1 > v2 and �1 = �2; (2) k1�Kn� <
Kn
1 +Kn

3 or v2K
n
2 < �v1−v2�K

n
3 ; (3) K

n
1 +Kn

2 +Kn
3 = b or conditions (c) of Proposition 7 of Van Mieghem

(1998, Proposition 7). �
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