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FOR BALANCED THREE-STATION
SYSTEMS
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We study a closed, three-station queueing network with general
service time distributions and balanced workloads (that is, each station
has the same relative traffic intensity). If the customer population is large,
then the queue length process of such a network can be approximated by
driftless reflected Brownian motion (RBM) in a simplex. Building on
earlier work by Harrison, Landau and Shepp, we develop explicit formulas
for various quantities associated with the stationary distribution of RBM
in a general triangle and use them to derive approximate performance
measures for the closed queueing network. In particular, we develop
approximations for the throughput rate and for moments and tail fractiles
of the throughput time distribution. Also, crude bounds on the throughput
rate and mean throughput time are proposed. Finally, we present three
examples that test the accuracy of both the Brownian approximation and
our performance estimates.

1. Introduction. Recently Dai and Harrison [2] proposed a general
scheme for approximating multiclass closed queueing networks by what they
call Brownian system models. Their scheme approximates the queue length
process of a J-station closed network by a regulated or reflected Brownian
motion (RBM) whose state space is a J-dimensional simplex. The drift vector,
covariance matrix and boundary data of the approximating RBM are deter-
mined by the routing data, service discipline and first and second moments of
the service time distributions of the original queueing network. Dai and
Harrison conjecture that their approximation can be rigorously justified by a
heavy traffic limit theorem in which the number of customers in the closed
network becomes large. Their method culminates in the numerical solution of
a partial differential equation that determines the stationary distribution of
the approximating RBM.

In this paper we consider the very special case of a three-station closed
network in which all stations have the same relative traffic intensity. We
refer to such a system as a balanced three-station closed network. For such
networks the approximating RBM proposed by Dai and Harrison is drift-
less, and its state space is the unit simplex in R3 Because the RBM is
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driftless and its state space is effectively two-dimensional, we can apply the
results of Harrison, Landau and Shepp (HLS) [7] to derive a formula for its
stationary distribution. Actually, the HLS formula is not entirely explicit, but
from it we will derive explicit formulas for the throughput rate and for
moments and tail fractiles of the throughput time distribution associated
with the Brownian system model.

Few other families of Brownian approximations of queueing models have
proved amenable to exact analysis. By offering a comprehensive analysis that
derives explicit formulas for network performance measures, we hope to
provide both insight into the mathematical content of Brownian system
theory and a benchmark for testing numerical methods. In particular, our
formulas can be used to evaluate the numerical methods developed by Dai
and Harrison [2] as part of their QNET method for the analysis of closed
networks. In addition, they offer qualitative insights into the stationary
density that cannot be obtained numerically and that might illuminate
studies of more general networks. Finally, the systems we analyze serve in
their own right as Brownian approximations for certain special classes of
manufacturing and computer systems.

A closed queueing network is one in which the number of jobs remains
constant: This is often interpreted to mean that the completion of one job
triggers the start of a new one. Solberg [23] first proposed the use of closed
queueing networks to model machine shops that are physically restricted to a
fixed number of jobs by the number of pallets available for transporting work
among stations. Spearman, Woodruff and Hopp [24] discuss the advantages
of pull-based production control systems—such as kanban and their own
CONWIP (CONstant Work In Process) system—over push systems such as
Materials Requirements Planning. They argue that push systems can be
modeled as open queueing networks where throughput is scheduled and WIP
is determined endogenously. Pull systems, however, are best modeled as
closed queueing networks where WIP is fixed and throughput is determined
endogenously. Dai and Harrison [2] discuss the general applicability of closed
queueing systems as models of manufacturing operations. Sauer and Chandy
[22] suggest modeling time-shared computer systems as closed queueing
networks. Even though the number of customers using a time-shared system
will change over time, they argue, these changes will be slow enough that the
system can be modeled as a sequence of closed systems in equilibrium.
Lazowska, Zahorjan, Graham and Sevcik [13] claim that closed queueing
networks make good models of the memory subsystems of computers with
memory constraints. If jobs impose fairly uniform demands on the memory
system, then it is reasonable to model a memory constraint as a constraint on
the number of jobs in the system.

In order to preserve analytic tractability, we restrict ourselves to balanced
three-station networks in heavy traffic. In other words, we assume that each
of the three stations in the network receives on average the same amount of
work (measured in time content) and that this amount is close to the station’s
full capacity (i.e., the utilization of each station approaches 1). Although
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manufacturing operations often try to balance capacity, this is nonetheless
a very restrictive assumption. We allow our networks to be multiclass—that
is, we allow transitions among stations to depend on jobs’ past routes—
but following Dai and Harrison, we require that all classes served at a
station share a common service distribution. This restriction ensures that the
Brownian model is well posed.

The heavy traffic theory justifying Brownian approximations to queueing
networks is still incomplete. Reiman [20] proves that the heavy traffic limit of
an open, generalized Jackson network is RBM in an orthant, and Chen and
Mandelbaum [1] prove an analogous limit theorem for closed networks of the
generalized Jackson type, obtaining RBM in a simplex as their heavy traffic
limit. Their work has not yet been fully extended to multiclass networks.
Peterson [18] proves a heavy traffic limit theorem for open feedforward
networks, and Dai and Nguyen [3] show for general open networks that if a
heavy traffic limit exists, then it is reflected Brownian motion in an orthant.
However, Dai and Wang [4] and Whitt [27] have found examples of multiclass
networks with feedback for which the approximating Brownian model is not
well posed. It is to avoid such problems that we restrict ourselves to a single
service distribution for all classes at a station. For such networks, Dai and
Harrison show that the Brownian approximation is well posed, and they
make an informal argument that it is the correct two-moment approximation
to use, even though it has yet to be justified by a heavy traffic limit theorem.

To our knowledge, this paper is the first to “solve” a Brownian model of a
non-product-form closed queueing network. The first Brownian models to be
analyzed were single-station systems with and without buffer limitations; see
Harrison [6]. In his work on open generalized Jackson networks, Reiman [21]
observes that certain of those networks have product-form stationary distri-
butions which can be written out explicitly. Harrison and Williams [11] spell
out exactly which open networks have product form solutions, and Harrison,
Williams and Chen [12] provide the analogous condition for closed networks
of the generalized Jackson type. Among networks that do not satisfy the
product-form condition, Harrison [5] computes the stationary distribution for
the Brownian model of a certain special tandem queue, and Harrison and
Shepp [10] do the same for a balanced tandem queue with one finite storage
buffer. Trefethen and Williams [25] study the same balanced tandem queue
assuming two finite buffers, using the same method of HLS that we apply in
this paper. The balanced tandem queue with two finite buffers leads to a
Brownian system model with a rectangular state space, which is more
complicated than the triangular case treated here. To handle the rectangular
case, Trefethen and Williams must first specify a Schwarz—Christoffel trans-
form appearing in the HLS formula, and they do this numerically, using a
software package called SCPACK. Specification of the Schwarz—Christoffel
transform is trivial in our triangular case, so we do not need the sophisticated
numerical methods embodied in SCPACK.

The paper is organized as follows. In Section 2, we describe the network
model and its Brownian approximation. Our notation and development follow
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Dai and Harrison [2], who in turn follow Harrison and Nguyen [8]. The
queueing network model differs from that of Dai and Harrison in two ways:
The mean service times 7, at the three stations are constrained by the
restriction to balanced networks, and we consider only Markovian routing
among classes. In Section 3, we develop explicit formulas for some steady
state quantities associated with the Brownian system model and discuss the
functional form of the stationary density. These formulas are used in Section
4 to derive performance measures for the original queueing network, and in
Section 5 we calculate the performance measures explicitly for some sample
networks.

2. A balanced three-station closed network model. Given a bal-
anced closed network with three stations and n customers, we are interested
in the evolution of its three-dimensional state vector N(¢), which records the
number of customers at each station. We will approximate this state vector
by a reflected Brownian motion in the three-dimensional simplex S = {N > 0:
e’'N = n}, where e is a 3-vector of ones. This section describes how the
network primitives determine the approximating RBM.

We specialize Dai and Harrison’s model to J = 3 single-server stations.
The network has K customer classes, each class & being served at a unique
station s(k). The many-to-one relationship between customer classes and
servers is recorded in the 3 X K constituency matrix C: namely, C;, = 1 if
s(k) = j. Customers change class in a Markovian fashion: After completing
service at station s(k), a customer of class k turns into a customer of class /
with probability P,;, independent of all previous history. This setup allows a
customer’s future route to depend not only on his current location in the
network, but also on his past processing history, insofar as past history can
be captured in the customer’s class designation. For example, the determinis-
tic routing pictured in Figure 1 can be captured by defining six customer
classes. We assume that the stochastic matrix P = (P,;) is irreducible. Dai
and Harrison consider a somewhat more general class of closed networks,

Y

Fic. 1. A closed three-station network with deterministic routing.
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arguing that such generality may be desirable when there are natural “input”
classes. Although the analysis in Sections 3-5 extends to the case covered by
Dai and Harrison (indeed, one of the examples of Section 5 exploits their
greater generality), we develop the RBM model for this simpler case in order
to keep the exposition uncluttered.

To conform to the setup of Dai and Harrison, we artificially divide the
routing history of each customer into a succession of “cycles,” each of which
begins with an entry into class 1. That is, each customer cycle begins with a
visit to class 1, and the transition structure within a cycle is given by the
K X K substochastic matrix P, where P,, = P,, if > 1 and P,, = 0. Let A,
be the expected number of visits that a customer makes to class £ during one
cycle. Then the row vector A’ = (A, ..., Ag) satisfies A'P = A’ with the auxil-
iary condition that A, = 1. In other words, A is the stationary distribution of
the original transition matrix P, except for a rescaling. For future reference,
let @ = (I — P’)"!. Because P is an irreducible transition matrix, P has
spectral radius less than 1, the fundamental matrix @ is well defined and A
is uniquely determined by the conditions previously given.

To complete a two-moment model of the network, we assume that each

service station i = 1,2,3 has an associated service time distribution with
mean 7; and squared coefficient of variation (SCV) b?2. Let v = CA so that v,
represents the expected number of visits to station i that a customer makes
in a cycle, and define p;, = y;7; for each i = 1,2,3. We call p;, the relative
traffic intensity, or relative utilization, for station i. It represents the average
amount of work that a customer delivers to station i during one cycle. A
balanced network is one in which p; = p, = p;. Assuming hereafter that the
network is balanced, we can choose our unit of time so that p; = 1 for all Z, or
equivalently
(1) 7,=1/y, fori=1,2,3.
A central objective of our analysis is to determine the throughput rate «,
defined as the long-run average number of customer cycles completed (or
begun) per unit time. The choice of time unit implicit in (1) allows a to be
interpreted alternatively as the long-run utilization rate at any of the net-
work’s three stations. Following the development of Dai and Harrison [2], a
initially will be treated as if it were an input to the model, as it would be in
the case of an open network, but eventually it will be determined through a
“closure approximation.”

To describe the approximating Brownian system model, we will need the
following notation: let B = diag(b?,b,b3), T = diag(r,),...,Tyx), A=
diag(A),

(2) R = diag(y)(CTQAC") ",
' (3) R =R — Ree'R/(e'Re),
(4) I = CTQ[diag(ﬁ'A) - P'Aﬁ](CTQ)' + CTBA(CT)',

(5) Q0 = RIR".



BROWNIAN CLOSED QUEUEING NETWORKS 453

In Dai and Harrison’s model, R is a “reflection matrix” that relates immedi-
ate workload to a long-run (“total workload”) process that in turn can be
shown to approach Brownian motion in the heavy traffic limit. The matrix R
is the projection of R into the (J — 1)-dimensional space where the process
lives. The matrices I' and () are covariance matrices derived from the
primitive routing and service processes. Thus they are positive definite. Given
a value for a > 0, Dai and Harrison show that there exists a pair of
three-dimensional processes N and I, unique in distribution, satisfying the
following five conditions:

(6) N(t) = N(0) + X(t) + RI(t),

where

) X(t) is a Brownian motion with zero drift and covariance
matrix = a(),

(8) N(t) €8,

9) I(-) is continuous and increasing with 7(0) = 0,

(10) I;(-) increases only at times ¢ when N,(¢) = 0.

In the Brownian system model, the increasing process I,(-) represents
cumulative server idleness at station j, and N(-) is the queue length process
described earlier. Conditions (6)—(10) identify N as an RBM with state space
S, zero drift, covariance matrix ) and reflection matrix R. From (6) we see
that an increase in I,(-) displaces N(-) in direction R/ (the jth column of R),
and (10) says that I; ( ) only increases when N,(-) = 0. Given these two facts,
R/ is commonly descrlbed as the “direction of reﬂectlon associated with the
boundary surface {N; = 0}, but Harrison [6] has suggested the alternative
term “direction of control.” Given the stationary density function p of this
RBM, we can calculate the throughput rate ¢ and other performance mea-
sures of interest. Hereafter N is described as driftless RBM(Q2, R) in the
simplex S.

3. Driftless RBM in a triangle. In this section we study the stationary
behavior of the Brownian system model described by (6)-(10) and present
explicit formulas that will be used in Section 4 to compute various perfor-
mance measures of the network. Although this derivation focuses on the
simplex S, the results are valid for driftless RBM in a general triangular

state space.
As a preliminary, define the differential operators
52
11 = —V QV = — —
( ) 2121121 z]o.,xi axj
and
(12) 9= (R)V = ¥ Ry

ij
i=1 Jx
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Because () is positive definite, £ is an elliptic operator associated with the
underlying Brownian motion X in (7). The operator 9; is proportional to the
directional derivative in the “direction of reflection” associated with boundary
surface

(13) Fi={xe8:x;=0}, j=1,2,3.

J

Building on earlier work on RBM, Dai and Harrison [2] eétablish that there
exist “associated boundary densities p;(j=1,2,3) on F; such that for each
bounded Borel measurable function f on F;,

(14) tim [ ['7(N () ()] = Jfpda,

where do; is surface Lebesgue measure on F,. Furthermore, the stationary
interior and boundary density functions (p, p;, p,, p3) satisfy the following
“basic adjoint relationship”:

(15) [ng-pdx+ Z/F.ij-pjdaj=0 for all £ € C%(S),
J J

where dx is Lebesgue measure on S and C%(S) is the set of functions that,
together with their first and second order derivatives, are continuous and
bounded on S.

Using (14) and (15), we can express many interesting functionals of N in
terms of the moments of the boundary densities p ;. For example, the expected
value of A(N) for a particular function A: S — R can be calculated using the
boundary densities as follows. Find a function f such that £f= /4 on S and
use (15) to obtain

(16) E(h(N)) = =¥ [ 9f-p;do; where £f = hon S.
;U

We will use this relationship in Sections 4 and 5 to calculate the moments of
the throughput time. Also, setting f = 1 in (14) yields an expression for 8
the long-run average idleness rate for station j:

1
(17) 8 = th_)rg ?E[Ij(t)] = /;‘pj dO'J-.
J

The idleness rate §; corresponds to the amount of control exerted at boundary
face F}, i.e., to the local time spent on F}. In light of the pivotal role of the line
integrals of the boundary densities, we focus on computing the moments of
the boundary densities in closed form. :

3.1. Moments of the boundary density. To facilitate the exposition we
" introduce the functions I.:
1 1[ B.(a,b)\’ bad
18) I,(a,b = - ate=1(1 —x) 97 gy,
( ) s(a’ ,C,d) B(a, b) _/;) ( B(a,b) x ( x) X
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for positive Re(a), Re(d), Re((s + 1)a + ¢) and Re((s + 1)b + d), where
B(a, b) and B,(a, b) denote the beta and incomplete beta functions of ¢ and
b. Denoting the two-dimensional restrictions

(19) a=(0

ij)lsi,js2 <2,1<j<

the moments of the boundary density can be expressed in terms of the
functions I, as follows.

PrROPOSITION 1. The moments of the boundary density of driftless
RBM(Q, R) in the simplex S = {N > 0: ¢'N = n} are

Q..
(20) f oltp;do, = cn*! R—”Ik(E)cos 0;,
F, ii

where I(F,) is an abbreviation for I,(&;, 1, &, 9, @41, ¥ 49),

1)
(21) sin w¢; = \/ )
Qii,i+1Q42,i42
Ri x Q!
(22) sin 6, = (_ _ 21 _,
Vo, li(&) o
(23) moy; = 6409 = 0;41
and )
1[RyQqy Ry3Q g5 -
24 =—— I.(F,) —I(F 0,+—I(F 0
(24) ¢ 2 Rquz( o( F1) 1( 1))‘30S 1 Ry Qs 1(F3)cos 04

Since all components of the vector product R’ X Q! are identical, any of
them could be used in (22) to define 6,.

3.2. Proof of Proposition 1. Because e’'N = n, it suffices to determine the
density of the two-dimensional projection (denoted by tildes) N = (N, Ny) in
the solid simplex S = {N > 0: ¢’N < n}. The process N is driftless RBM with
covariance matrix 0 and reflection matrix R defined in (19). First we will
transform N into standard RBM. Then we can apply the work of HLS to
calculate the density and its boundary moments. Finally, we transform the
results back into original quantities. _ ‘

3.2.1. Transformation of RBM(Q, R) into standard RBM(I, R*). Apply-
ing a nonsingular linear transform to the (2, R) RBM N in the solid simplex
S yields the RBM N*, which has a general triangular state space S*. If N*
is to be standard RBM, that is, if Q* = I, then the linear transform must be a
square root of Q1. This condition determines the transform up to a rotation.
From N* = Q12X + Q~1/2RY, it follows that the transformed reflection
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matrix is R* = O1/2R and that the idleness process Y remains unchanged.
Denote the length of the jth side (or face F}*) of the triangle S* by [|F/*||. It is
readily verified that

Q..
(25) I =y 2L

Let G* denote the triangle S* without its three vertices (the unsmooth part
of 9S*). Harrison, Williams and Chen ([12], Section 8, Lemma 8) establish
that if the stationary distribution p* € C%(G*), the associated boundary
density p; (j = 1,2,3) is a scaled restriction of the density p to the face F;:

(26) p; = ijp onF,j=1,2,3
77 2R J

We will show in Section 3.2.2 that p* is harmonic on G* and therefore in
C?(G*). Using these relations, the basic adjoint relationship in the trans-
formed domain becomes

/2
Af* -p*dz* + JJ R*Y VFf* - p*do* =0
(27) fS froprdz ? Rj; fF,*( Ve

for all f* € C2(S*).
Also, the moments of the boundary density are transformed into

O(1+k)/21-k)/2
QIR 2ad- by

28 kn. do = FVE ok d ok
(28) Jotpide T MG

123

3.2.2. Explicit solution of standard RBM(I, R*). HLS compute the sta-
tionary distribution of standard RBM in a general polygonal state space S
with angles of reflection at the faces. Figure 2 shows the transformed triangle
S* and the relevant quantities: v, and 7§, (k = 1,2, 3) represent the vertex

FiG. 2. The transformed state space S*.
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and the interior angle opposite face Fj, and 6, is the angle between the
reflection vector R} and the inward normal to face F;, measured clockwise.
It will be convenient to set 6, = 0; and &, = ¢;. We change the labeling
convention of [7] slightly (6, in this paper corresponds to 6, in [7]) in order
to highlight some of the symmetries of the triangular case.

HLS calculate the stationary distribution p*(z) by mapping the general
polygonal state space S onto the upper half-plane by means of a conformal
mapping g such that g(o,) = « for some nonsingular point o, € 4S. When
S is a polygon, g is the inverse of the Schwarz-Christoffel map. For the
triangular state space S*, they derive the stationary distribution

3
(29) p*(2) = c*Relexp(~i0;) [ [g(2) —g(vs)]™}, z€8,

where 7a;, = 6,,, — 6,,, and c* is a normalization constant ensuring that
p* integrates to 1. For a general polygonal state space the values of the
“prevertices” g(v,) are not known a priori and need to be computed numeri-
cally. Trefethen and Williams [25] discuss the numerical computation of
p*(z) for this general case. The Riemann mapping theorem ([15], page 174)
shows that one can choose three prevertices. Therefore, for the triangular
domain, the determination of the values g(v,) is trivial and it is possible to
derive analytic formulas for the moments of the boundary density.

A simpler form of the stationary density p*(z) can be derived by mapping
one vertex, say v,, to infinity. The three possible choices for v, provide three
expressions for p* as a product of two terms. Then Theorem 3.13 in reference
7 becomes (with the HLS labeling of reflection angles) the following theorem.

THEOREM 1. The stationary density is

(30) p*(z) = c*Refexp(if,_,) n [g(2) — g(ve)]™
hal

where z € 8*, 1 =1,2,3, and g is the inverse Schwarz—Christoffel mapping
with g(v;) =

The proof in [7] extends easily to this form [by redefining the HLS function
Las L=i6,_;+ logTE 1, [g(2) — g(v,)]*)]. This simplified expression
also holds for a general polygonal state space and i is in agreement with the
results of Trefethen and Williams [25].

This simplification of p* plays a crucial role in obtaining simple symmetric
results for the triangular case. The Riemann mapping theorem allows us
to choose g such that g(v,) =, g(v,,,) =0, and g(v;,,) = 1. Then the
density becomes

(31) p*(z) = c* Re{eielg(z)ﬂu-l[l _g(z)] a“z},
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where z € 8*, [ = 1,2, 3, the inverse mapping g~ (w) is given by
IE
B(&111,&142)
O Ep
 B(&1r€s)

This gives us three equivalent expressions for the density p*, each involv-
ing a different Schwarz—Christoffel map g~'. When [ = £ we say that p* is
expressed with reference to face F;'. This will be the natural representation
of p* for analyzing the behavior of N on face F;. Because g is real on the
boundary, p* restricted to face F}f reduces to

(33) p*(o) =c*g(a)™'[1 —g(a)]***cos 0,, o€<F},

where p* is expressed with reference to face F;*. The mth moment of p* on
face F}f is given by

g (w) = [rst - gy
0

(32)
Bw( §l+1’ §l+2)‘

(34) L*amp*dak = c* cos kaF*ok”‘g(o-k)a*”[l - g(a)] ™" day,
k k

where do;, is surface Lebesgue measure on Fjf. The change of variable
x = g(o) yields the boundary moments formula

(35) L*akmp* doy, = c*cos OkIIFI;l‘Ilm+IIm( Erits €raas Cpr1s Upyg)-
k
Observe that

(36) I,(a,b,c,d) = fol[Bx(a,b)]m dB.(a +c, b +d)

[B(a,b)]"""

and hence,

B(a +c,b+d) i1 5.0.0
B(a,b) and  I,(a,5,0,0) m+1

3.2.3. Transformation back into original quantities. Substituting (35) into
(28) and using (25) yields the boundary moments formula (20) in the original
domain S, where ¢ = c*n?/2, a scale independent quantity. Using the trans-
formation matrix (~'/%, one can express ¢, and 6, in terms of original
quantities, yielding the expressions (21) and (22).

The normalization constant ¢ is calculated by using f, = x2/Q;; in the
basic adjoint relationship (15) for any i. To preserve symmetry at the expense
of parsimony, one could chaose a “symmetric” function such as f=
x' diag(Q)~'x. Using f, we have that

(87) Iy(a,b,c,d) =

Rz'
(38) Z/;'szﬁz—;—pj do; = — 1.
J
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Observing that x, takes the value n — o; on F;, 0 on F, and o3 on Fy and
using the boundary moments formula (20) yields (24), which concludes the
proof of Proposition 1. O

3.3. Three different cases for the density p. Three different shapes of the
density p can arise corresponding to different combinations of poles and zeros
at the vertices. First, since p is harmonic, it cannot have maxima on the
interior of S. Singularities can occur only at the vertices, and we find that
ne,, where e, is the unit vector in the %th direction, is a pole, a positive real
number or a zero if «, is, respectively, negative, zero or positive. If the
diffusion process exists, as it does for the networks that we are considering,
then a, > —2x¢, for all k& ([7], (1.6)). Therefore, any system with a pole has
at least one zero, and vice versa. Further, because the harmonic density
p*(2) = Re{h(g(2))}, where h(x) = cexp(if)x*+1(1 — x)*+2 with [ = 1,2,8,
saddle points of p* must satisfy

dh(e(2)) _

dz
Except at vertices, we have that g'(z) # 0 for the Schwarz—Christoffel map
g. Thus, excluding the vertices, the condition for saddle points reduces to
(40) al+1(1*g(2)) + a;,,8(2) = 0.

There is no saddle point if «;,; = w,,,, and otherwise there is a unique
saddle point located on the boundary point with

(41) z=g‘1(——~a—l+—1——).

A1 — Qpyg

(39)

Using the transformation of Section 3.2.1, one can identify the corresponding
boundary point of the simplex S. In conclusion, we have three possible cases:

1. a; = a, = a3 = 0. The density p is a constant function.

2. One vertex, say ne;, has a; = 0. The density has a finite positive limit at
ne;, and one pole and one zero at the other vertices. There is no saddle
point. '

3. a; positive (negative), a,, a; negative (positive). The density has two
zeros (poles) at ne,, ne; and one pole (zero) at ne;. There is one saddle
point on the side opposite ne;.

Newell [16] reported a similar situation for a rectangular state space. In
the next section we will use these relationships to compute network perfor-
mance measures. '

4. Network performance characteristics.

4.1. Throughput rate. Let A(t) be the total number of cycles completed in
the network up to time ¢. The throughput rate a is the long-run average
number of cycles completed per unit time, so A(¢) ~ at almost surely as
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t - . In a stable open network the throughput rate equals the input rate
(given as data), whereas in a closed network it is an endogenous quantity
determined by the number of customers rn, the service time distributions and
the routing structure. Together with the throughput times for the various
customer routes, the throughput rate is one of the most important network
performance characteristics.

Balanced networks have the same utilization rate at each station and thus
the idleness rate at each station i is equal to a common constant 8. Recall
that our time scaling convention sets the throughput rate a equal to the
common utilization rate, so

(42) a+dé=1.
Equation (17) in Section 3 says that
(43) 6= [F, p;da;,

where F; = {xeS: «x = 0} and p; is the boundary density defined in
Section 3.

Dai and Harrison ([2], Section 8) develop the following iterative scheme to
determine the throughput rate. Assume an initial estimate a,, and observe
that the covariance matrix in the Brownian system model becomes a,().
Using (42) and (43), compute 8(a,;) and a new estimate a, = 1 — 6(a,). The
limiting value a of this iterative algorithm, if it exists, will be a fixed point of
the relationship a + 8(a) = 1. Dai and Harrison call a the refined QNET
estimate of the throughput rate.

They further show that for balanced networks, a time rescaling argument
shows that 8(a) = ad(1) for all a > 0. Thus the (unique) fixed point a
referred to previously can be computed without iteration via

8(1)

44 =———— andh §=1-ag=——"—.
(44) a 17500 and hence a T+ 5(1)
From the boundary moments formula,

0,
(45) 8(1) = ci;f—_lo(lv’,.)cos 6, fori=1,2,3,

l

where c is the normalization constant given in Proposition 1.

4.2. Throughput times. The throughput time (or cycle time or sojourn
time) T of a customer in an open network is the random variable measuring
the total elapsed time between that customer’s arrival at the network and
eventual departure. For closed networks, T' is the time it takes a customer to

" complete one cycle. Clearly, a given customer’s throughput time depends on
the locations of the other customers in the network. Section 3 showed how to
find the time-indexed stationary distribution of customer configurations N.
This section investigates the customer-indexed stationary distribution of T'.
In other words, it relates the discrete-time stochastic process T', which is
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evaluated at customer arrivals, to the continuous-time stochastic process N.
We restrict discussion to the stationary distribution of T' conditioned on a
customer route vector r giving the number of visits the customer makes to
each station. We follow the approach of Harrison and Nguyen [9], but we
incorporate Little’s relation between time averages and customer averages.

The Brownian approximation of throughput time as reviewed by Harrison
and Nguyen [9] relies heavily on Reiman’s [19] “snapshot principle,” stating
that the time a customer spends in a heavily loaded system is negligible
compared to the time scale on which the state evolves. One can take a
“snapshot” of the system when the customer arrives and regard the work-
loads at the various stations as relatively constant during that customer’s
entire cycle.

Let v; be the number of customers in queue j ahead of a particular
“marked” customer upon that customer’s ith arrival,” let w; be the total
workload these customers represent (measured in time content), and let s
be the “marked” customer’s own service requirement. Then

3
(46) T=)Y Z (w;; + s
Jj=1li=1

Notice that w;; is the sum of (»; — 1)* complete service times plus the
remaining time of the customer being served when the marked customer
arrives. We do not know the exact distributions of v; and w);, but Reiman’s
snapshot principle implies that they will be virtually constant over the
customer cycle, so we will drop the subscripts i. The best approximation to
E(T) is the one that Dai and Harrison [2] obtain from Little’s law and the
Brownian approximation to &, namely, E(T) = n/(1 — 8). This gives the
correct first moment for an approximating distribution for w.

For open networks, Harrison and Nguyen [9] propose approximating w; by
a random variable distributed according to the time-indexed stationary distri-
bution of the workload process. This approximation, which corresponds to the
queue length approximation »; =; N;, would be exact for an open Kelly
network, that is, for an open multiclass network of the sort that Kelly
investigated in his classic book [14]. An exact relationship between the
distribution of »; and N; is also available in the case of closed Kelly
networks, but it is not as simple as the open case. The networks in our setting
that fall into Kelly’s class are those with exponential service times at each
station. Their stationary distributions are uniform over the state space, so it
is simply a matter of counting states to calculate

n—m n+2

(47) Pr(v,=m) = —1—m Pr(N; = m),
which provides the following relationships for the first and second moments:
1 n+1
E(v;) = E(N;) - 3 Var[ v;] = Var[N;| - g

(48) n—1
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Equivalently, v is distributed like the corresponding time-indexed stationary
queue length in a Kelly network with n — 1 customers. We denote this
quantity N*~P. As n — o, the two distributions N; and N{"~V = v, become
1nd1st1ngulshable In add1t10n the residual serv1ce time of the customer in
service, being exponential, is dlstrlbuted like a full service time. Following
the spirit of the discussion in Harrison and Nguyen [9], we propose a first
raw QNET approximation for T based on the Kelly relationship »; =, N~
and relating queue length to workload by replacing the random serv1ce tlmes
U; with their means 7;:
3

(49) o TAe+ 1),

In general, the distnbutlons of v, and w; will vary depending on the
service variability parameters b?. Little’s law tells how the mean of w; differs
from E(]\Tjrj), but there is no corresponding relationship for higher moments.
In particular,

1-5;
(50) E(N;) = L-E[w; + 5],

and summing over j and canceling 7; gives

3 3w, s
EIE(NJ'):”= 1+8(1) [2}; Tj]

1 . U,
m (V 1)+1+Tj ,

where U; is the residual service time of the job in service at a customer
arrival and the last equality follows from the definition of w and s: w is the
waiting time of the (»; — 1)* customers plus the residual service time of the
customer in service. The refined QNET approximation will take (v; — 1)*+
U, /,/T; to be distributed like N{"~ " shifted deterministically to satisfy (51):

né(l) +1
3

and the possibly fractional ¢ is interpreted as the proportion of a normal
service time remaining for the customer in service. Thus, the refined QNET
approximation to 7' is

(51)

(52) (Vj—1)++ U/7 =4 NV + &—1 where &=

3 (rNTP-1
(83) Tret =4 Z ) U, +ry;

i=1

where U =; €U and %7 is the sum of all the services that the customer
requires from the network. That is, to obtain a throughput time estimate, we
add the customer’s service requirements to the service requirements of the
N@~D other customers. We take these N~ customers to be distributed
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according to the Brownian model, but we adjust the service time requirement
of the one in service according to Little’s law. Because r, N and U are
mutually independent, the mean throughput time is

3
(54) E[T.lr] = X rj(E(Nj("_l)) + 8)Tj

and the second moment of the throughput time is

T

3
BIT3r] = X B(N) + o)t
(55) .
+ L () E[(NO0 + )N + )]y

ij=1
Because N, —» «© with probability 1 as n — «, the first term of E(T ?) is
asymptotically negligible. Dropping it amounts to replacing U;; with its mean
7; in (53). We keep it in our second moment estimates because it seems to
provide significantly better results, even for fairly large customer popula-
tions. However, we will exploit the simpler representation to find estimates of
the tail of T' in Section 4.3.

Raising (53) to some power yields the corresponding moment of 7' in terms
of moments of N and network primitives. Moments of N are most easily
determined by working in the transformed domain S*. Recall that the basic
adjoint relationship (27) allows us to express the moments of N* in terms of
moments of the boundary density by using appropriate test functions f*. For
example, suppose we want to calculate E(h(N)). Letting h(N;, Ny, n — N; —
N,) = i(N), we have that E(h(N)) = E(h(N)) = [g h(2)p(2) dz. Applying
the linear transform z* = ~1/2z gives
(56) E(h(N)) = [ h*(z*)p*(2%) d2*,

where h*(z*) = A(Q'/22z*). To apply the basic adjoint relationship (27) we
need to find a function f* such that Af* = h* on S*. For example, f* =
x™ 29" /((m + 1)(m + 2)) solves Af* = x™y" for m € N, n = 0, 1, supplying
us with the first and second moments of N (we do not know whether there is
always a polynomial solution f*). The basic adjoint relationship (27) yields
Q2 .

(57) E(h(N)) = - ¥ = [ R Vf*(c*) -p*(o*) do*,

7 B m
which can be evaluated in terms of the functions I, (F;*).

4.3. Approximate tail behavior of the throughput time density. In many
applications the 95th percentile of the throughput time is another important
performance measure. Indeed, organizations often take more interest in the
quality of customer service they can guarantee with high likelihood than in
their mean performance. Although we cannot find an exact closed form
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expression for the 95th percentile, we can approximate it using the “lin-
earized” version of the QNET approximation obtained by replacing U;; with 7
in (53):

(58) Tin = Lfimy(N&V + &),
J

In particular, if the network has deterministic routing, then T'=n + n8(1) is
a constant. Thus the linearized QNET approximation predicts deterministic
throughput times for networks with deterministic routing. For more general
networks, the approximating distribution P(T < ¢) of T involves the integral
of p over the polygonal intersection of the simplex S with the half-space
T < t. This integral cannot be done in closed analytic form because the
inverse Schwarz—Christoffel map is not known in closed form. Nevertheless,
we can estimate the tail fractiles of 7'

Denote the 100(1 — m)th percentile of T' by T, P(T > Tn) = 7. Given a
specific route (i.e., given f)), the plane T' = T, maps onto a line in the triangle
S*. For small 7, this line will be close to one vertex, say v,, and can be
expressed in a coordinate system centered at this vertex as c¢;x* + ¢y ¥* =
c¢g — T. (The proposed approximation scheme does not apply to the unlikely
case where the line is parallel to a side.) Using a polar coordinate system
(r, 0) centered at v, and setting B, = (0,_, — 0,_,)/7E,, the density has
the following approximation in the vicinity of v,:

(59) p*(2) = ArPrcos( B0+ 6,_1) + o(r?),

where

(60) Az(@) M)
" (-

and all quantities are defined in Proposition 1. Using this approximation, we
estimate

(61) P(T>T,

where

f,y) ~ B(C3 _ Tn)ﬁk+2’

A - cos 0+ 6,._
(62) B = ffh (Bk .k 1)3 - de.
. Bet2/ (cycos 6+ cysinf)”*

For a given route, 7, can be solved explicitly from (61) as

B

This relationship is linear in n (because both terms are). For more general
. routing, T, can be calculated from P(T > T,) = n by unconditioning (61)
using the joint distribution of the routing structure (%7, f).

The next section shows how to use the Brownian system model together
with the relationships of this section to calculate performance measures for
some specific networks.

n 1/(By+2)
(63) Tn=C3_ (“")
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5. Examples. In this section we compute the throughput rate, the first
two moments of the throughput time distribution and the 95th percentile of
the throughput time distribution for three illustrative models and compare
them to results obtained from simulation. This allows us to test the quality of
the Brownian approximation for different sizes of the customer population
and to quantify the improvement of our refinement to the raw QNET approxi-
mation. In addition, we propose an approximate expression for the idleness
rate and expected throughput time based only on network primitives (i.e., not
requiring the Brownian calculations of Section 3) and test its accuracy.
Finally, we explore the effects of randomness in routing.

We ran each simulation experiment on SIMAN 3.5 [17] for 300,000 time
units unless noted otherwise. We used lognormal distributions at each sta-
tion. In accordance with the convention established in [21], the number
reported in parentheses after each simulation result is the half-width of the
95% confidence interval expressed as a percentage of the simulation value.
The number in parentheses after the Brownian estimate is the percentage
deviation from the simulation average. We show no percentage deviation
when the two numbers agree.

The appendix to [2] provides a condition under which a general closed
network’s queue length vector has a “product form” stationary distribution.
In this special case the distribution is a multidimensional exponential (with
exponents related to the differences between station utilizations), and the
density p is particularly easy to compute in closed form. Both our raw and
refined QNET approximations are based on intuition derived from the prod-
uct form case. Here we use the product form case to develop a cruder
approximation that does not require computing the stationary distribution of
the approximating RBM.

For three-station balanced networks, the product form condition reduces to
(64) Q1 /Ry = Q99/Ryy = Q33/Rss,
and in that case the associated interior distribution is uniform over the state
space. The throughput rate and idleness depend not on the interior density,
but on the boundary densities. They can be found for product form networks
by means of a simple comparison to conventional queueing results, as the
next paragraph explains. We define the vector B =(Q,,/R;;, Qg/R,,,
Q35 /R35) to simplify future formulas.

In the case when the service time distributions are exponential, we call the
network a “Kelly network” because it falls into the class studied in Chapter 3
of [14]. A balanced three-station Kelly network in heavy or light traffic has
b2 =b%=0b2=1 and B; = Q,;/R,; = 2. Its distribution is uniform over its
entire state space (both interior and boundary), and its throughput rate can
be shown to be

n
65 - ith & = .
(65) T nr2 ™ n+2

This result is independent of routing and is exact for any customer population
size n. If the service time SCV’s of a Brownian network are scaled in such a
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way that B* = AB; while the routing parameters remain unchanged, then
6*(1) = A8(1). Thus, for networks satisfying the product form condition, we
can compute the Brownian estimates of § and a using the result for Kelly
networks:

Bi 8(1) on

n+Bi=1+8(1)’ @ n+B’

(66) 5=

In light of this, we propose the following conjecture.
CONJECTURE 1. For a general non-product-form network,

(67) min B; < né(1) < maxg;, where B; = Eli
13 1 ..

123
and in particular,

i
and

min < 6 < max
(68) i n+pB; i n+pB;

min(n + B;) < ET < max(n + B;).

We will see in the examples in Sections 5.1 and 5.2 that the average of the
B; (denoted B) is a good first approximation for n8(1). In effect, it replaces
each station’s variability (as measured by B;) by the average variability of the
three stations when they are treated as isolated GI/G/1 queues. This
product form approximation gives idleness and throughput time estimates of

B

n +

(69) 8= and E(T) =n + B.

In fact, the examples suggest that & is often an upper bound on idleness,
which is achieved only in the case of product form networks.

5.1. Cyclic queue. The simplest three-station closed network is a cyclic
queue like the one shown in Figure 3. We use this case to illustrate the
calculations of Sections 2—-4. Because the network is balanced and because
this is a two-moment approximation, the model of a cyclic queue is deter-
mined by the squared coefficients of variation of the service time distributions
b = (b2, b2, b2). The routing and constituency matrices for the cyclic queue
are

0 1 0 1 0 O
(70) P=|0 0 1] and C=|0 1 O0].
1 0 O 0 0 1
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FiGg. 3. The cyclic queueing network.

These lead to particularly simple reflection and covariance matrices R and
Q,

1 0 -1
R=|-1 1 0| and
0 -1 1
(71) b2 +b2 b}  —b}
Q=] -b2 b2+0b2 -b3 |,
~b} b bI+b3

and to B = (b2 + b2, b2 + bZ, b2 + b?). Thus the product form condition is
b2 = b2 = b2, in which case the functions I,(F;) take the form I.(F;) =1/
(n + 1). In the product form case, Proposition 1 yields

1 Y 2nk-1
(72) c=cos¢91 and j;'ia pi(cd)do = P
from which we have that
2b2 1
(73) 5(1) = T and a = m,

in agreement with the general product form expressions for § and a given in
(66). The functions I,(F;) cannot be calculated in closed form for non-
product-form networks, so we rely on the boundary moments formula (20).

Because routing is deterministic, the raw QNET approximation predicts
that the throughput time should be constant and equal to n/a. In the
notation of Section 4.2, f, =1 and 7, = 1 for all k. The raw and refined
QNET approximations are

(75) E(Tnziw) =n2+4n + 4,
(76) E(T,) = n(1 + 8(1)),
(77 E(TZ) = n?(1 + 8(1))* + b'E(N) + ns?fl) e'd.
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Table 1 compares the two sets of Brownian estimates for the cyclic queue
to the results of simulation for some particular parameter values. In each
case, only 8 and E(T,,) are exact measures for the Brownian system;
E(T,,,), E(T?) and T,4; are approximations. As we approach the Brownian
regime, the refined estimate is clearly superior (by more than an order of
magnitude). Although the raw QNET approximation discards all service
variability data when estimating E(T) and E(T'?), it significantly outper-
forms the refined approximation in the high variability case with n = 10.
While the refined Brownian estimates of mean throughput time range from
12 to 25 for the 10-customer networks, the simulated values remain relatively
constant between 12 and 14. This can best be interpreted as compensating
errors—the approximating Brownian network is far from the original net-
work, and the raw QNET estimates are far from the Brownian network. We
conjecture that a cyclic queue with a small customer population enjoys so

TABLE 1
Simulation and Brownian estimates of performance measures of the cyclic queue

(b2,b2,b2) n 5 EIT] (ELT2D)V/2

(1,0.64,0.81) 10 SIM 0140 (1.1%) 11.65 (0.3%) 12.08 (0.3%)
RAW  0.140 12.00 (3.0%) 12.00 (0.7%)
REF  0.140 1163 (0.2%) 1203 (0.4%)

100 SIM 0.017  (10.0%) 101.7  (0.3%) 102.2  (0.3%)
RAW 0016 (5.9%) 102.0  (0.3%) 102.0 (0.2%)
REF 0016 (5.9%) 1016  (0.1%) 102.0 (0.2%)

4,2,5) 10 SIM 0.293 (1.0%) 142 (0.7%) 165 (1.3%)
RAW 0422 (44%) 120 (15.5%) 12.0 (27.3%)
REF 0422 (44%) 17.3  (21.8%) 19.1  (15.8%)

100* SIM 0.064 (2.0%) 1064 (0.2%) 108.7  (0.2%)
RAW 0.068 (6.3%) 102.0 (4.1%) 102.0 (6.2%)
REF 0068 (6.3%) 107.3  (0.8%) 109.2  (0.5%)

1000* SIM 0.0072 (12.5%) 1004 0.2%) 1007 0.2%)
RAW  0.0073 (1.4%) 1002 0.2%) 1002 0.5%)
REF  0.0073 (1.4%) 1007 0.3%) 1009 (0.2%)

(0.25,1, 25) 10 SIM 0289 (1.4%) 141  (1.3%) 20 (5.4%)
RAW 0.601 (108.0%) 120 (14.9%) 12 (40%)
REF 0601 (108.0%) 25.0 (77.3%) 30 (50%)

100* SIM 0.082 (2.6%) 108.6  (0.4%) 118 (1.4%)
RAW 0131 (59.8%) 102.0 (6.1%) 102 (13.6%)
REF 0131 (59.8%) 1150 (5.9%) 121 2.5%)

1000* SIM 0.013 (12.9%) 1011 0.6%) 1021 0.5%)
RAW 0015 (154%) 1002 0.9%) 1002 (1.9%)
REF 0015 (154%) 1015 0.4%) 1021

*Run for 3,000,000 cycles.
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much dependency between its state transitions that it is not susceptible to
much performance degradation due to worsening service SCV’s.

Table 1 shows that as the service distributions become more variable, the
network converges more slowly to its Brownian limit, both in terms of the
tightness of the confidence intervals and in terms of the number of customers
in the network. The latter phenomenon is illustrated in Figure 4, which
shows how the relative error of the Brownian approximation decreases as the
number of customers grows. It is approximately O(n~') or C/n, where the
constant C depends on the station SCV’s. Because the linearized approxima-
tion (58) for T used in the 95th percentile estimate is degenerate in the cyclic
case, expression (61) cannot be used to find an estimate for T ¢5. In fact, since
T, is a constant, its 95th percentile equals its mean. In other words, all of
the throughput time variability in a cyclic Brownian network is due to service
variability, but the estimate T o5 is based on discarding service variability in
order to explore queue length variability. Examples in Sections 5.2 and 5.3
explore the quality of the 95th percentile approximation.

Figure 5 compares the throughput time densities obtained from simulation
and from the Brownian approximation for the cyclic network with b = (4,2, 5)
and 100 customers. (The Brownian approximation is taken to be a normal
distribution with first and second moments supplied by the refined QNET
estimate.) The greater width of the simulation distribution suggests that the
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Fic. 4. Convergence to the Brownian limit as n — » for the cyclic network with case 1 [b = (1,
0.64, 0.81)], case 2 [b = (4, 2, 5)] and case 3 [b = (0.25, 1, 25)].
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Fic. 5. The throughput time density of the Brownian approximation compared to the (wider)
simulation result for the cyclic network with b = (4, 2, 5) and 100 customers.

snapshot principle does not apply at this population size: The state must be
evolving on a time scale comparable to customer throughput times.

Flg'ure 6 shows the idleness proxy (1) as a function of 52 and b2, where
0 < b2 b2 <2 and b2 = 1. We conclude from the contour plot that (for all
practlcal purposes) n8(1) is only a function of the sum of the coefficients of
variation, b7 + b3. In Figure 7, we plot n8(1) as a function of b2 for three
fixed Values of b2 with b2 = (3 b? — b2). That is, the sum Eb2 is held
constant while the relatlve var1ab111t1es of the three stations are allowed to
vary. Each of the curves in Figure 7 shows the value of n8(1) along a
diagonal of a plot like the one in Figure 6. We see that n6(1) is close to
2(b2 + bZ + b%) = 2, the “product form” approximation proposed in (69), and
is only slowly varying in the given range. For the ranges shown, approxi-
mating the network by one with identical servers introduces errors of less

than 5%.

5.2. A model of a CPU and two I/0’s. Consider a 10-customer computer
system composed of a central processing unit and two input/output (I/0)

, devices with different service variabilities as shown in Figure 8. The CPU
randomly splits messages between I/0, and I/0,, sending a proportion ¢ to
I/0;. This might represent a small office computer system, for example. (Of
course, mean service times at the two I/0 devices are adjusted in all cases to
maintain perfect balance.) The CPU, I/0, and I/0, are labeled stations 1, 2
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Fic. 6. Contour plot of the cyclic network’s n8(1) as a function of b and b2 for 0 < b?, b2 <2
and b = 1.

and 3 respectively. Routing is Markovian among stations, so this is a general-
ized Jackson network, and we can take the constituency matrix to be C = I.
Then

0 ¢ 1-¢
(78) P=|1 0 o
1 0 0
Product form networks have b% = 1, b2 = b2, with associated idleness rate
bi+1
(79) 6= n—ﬂ-—m independent of ¢.

Table 2 compares the results of simulation to the refined Brownian estimates.
A comparison to the deterministically routed cyclic network reveals that the
random splitting in this network tends to temper service SCV’s greater than
1 and to amplify service SCV’s less than 1. Thus this network converges
faster to its Brownian limit than a cyclic network with the same parameters.
From a managerial perspective, we learn that the random routing of
the computer system enhances the throughput rate of highly variable net-
. works relative to deterministically routed systems with the same service
variabilities and degrades it for less variable ones.
In addition, it is interesting to pose the question: given two I/0 technolo-
gies with known variabilities, what is the optimal allocation of capacity
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Fic. 7. Comparison of n8(1) to its product form upper bound of 2 as a function of b?, where
b2 =3.
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FiG. 8. The computer network.
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TABLE 2
Simulation, Brownian and product form (P.F.) estimates for the computer model, with n = 10
customers
(b%,b2,b2) f 8 EIT] (ELT2])'/2 To.05

(1,0.64,0.81) 0.1 SIM 0.147 (3.4%) 1174 (0.7%) 184 (25%) 36 (50%)
REF 0.147 11.73 (0.1%) 178 (3.3%) 38 (5.6%)
PF. 0149 (14%) 1175 (0.1%)

1/3 SIM 0.147 (2.7%) 1173 (04%) 135 (0.7%) 24 (14.4%)
REF 0.147 11.73 133 (1.5%) 22 (8.3%)
PF. 0148 (0.7%) 11.73

2/3 SIM 0.147 (2.0%) 1170 (04%) 13.7 (0.7%) 25 (15.6%)
REF 0.147 1173 (0.3%) 134 (22%) 23 (4.0%)
PF. 0146 (0.7%) 1172 (0.2%)

0.9 SIM 0146 (2.7%) 1170 (0.7%) 19.0 (2.7%) 38 (52.0%)
REF 0.147 (0.7%) 1173 (0.3%) 184 (32%) 40 (5.3%)
PF. 0145 (0.7%) 11.70

4,2,5) 0.1 SIM 0264 (23%) 135 (1.2%) 23 (4.6%) 39 (385%)
REF 0375 (42.0%) 160 (185%) 23 42 (1.7%)
PF. 0408 (54.5%) 169 (25.2%)

1/3 SIM 0265 (1.5%) 136 (0.9%) 17.7 (1.6%) 32 (20.5%)
REF 0375 (41.5%) 160 (17.6%) 19.1 (7.9%) 24 (25.0%)
PF. 0400 (50.9%) 16.7 (22.8%)

2/3 SIM 0268 (1.5%) 137 (1.0%) 189 (25%) 34 (25.5%)
REF 0375 (38.9%) 16.0 (16.8%) 20.2 (6.9%) 29 (14.7%)
PF. 0388 (44.8%) 163 (19.1%)

0.9 SIM 0266 (3.0%) 137 (1.9%) 28 (12.2%) 36 (56.6%)
REF 0375 (389%) 16.0 (16.8%) 28 55 (52.8%)
PF. 0379 (425%) 161 (17.5%)

between them? The approximation for § in (69) is minimized by choosing ¢
to minimize B. On the other hand, from the insights of Figure 7, we suspect
that performance will improve when the differences |8, — ;| are large. In
this CPU example, maximizing the sum of these differences amounts to
maximizing

(80) (1 — @)leg + &1l + dle; — 5l +[(20 — D) ey — &5,

where £, = b2 — 1 and &, = b2 — bZ. In the two simulation cases shown in
Table 2, &, > &; >0, and a small amount of algebra shows that S is
minimized for ¢ = 1, while the sum of the differences is maximized for ¢ = 0.
Thus we cannot predict heuristically which ¢ will provide the best perfor-
mance, and from our simulation and RBM results, we see that the two
considerations cancel: 8 and E(T) are independent of ¢. Although the

routing variability does not affect § and E(T'), it has a great impact on the
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variability of the throughput time. Both the second moment and the 95th
percentile increase for asymmetric splitting. The minimal second moment
E(T?) is achieved at some intermediate value, which the refined QNET
approximation predicts is 0.486 for [52, b2, b2] =[1,0.64,0.81] and 0.411 for
[4,2,5]. The tail approximation seems to perform very well, yielding results
that are all except one in the confidence interval. It gives the best results for
service SCV’s near 1, in which case the errors are around 5%.

We show the product form approximations for § and E(T') in Table 2 and
find that they give errors of roughly the same magnitude as those shown in
Figure 7.

5.3. A multiclass manufacturing example. As a final example, consider
Dai and Harrison’s model of a three-station manufacturing system inspired
by Solberg. Figure 9 illustrates this system. It consists of a mill, a drill and an
inspector that produce two types of products, A and B. Product A requires
milling, drilling and milling operations, in that order, plus a 50% chance of
inspection after the drilling. Product B requires one visit to the drill followed
by one visit to the mill. In contrast to the two previous examples, this one has
multiple classes at two of the nodes, so it allows us to test the quality of the
Brownian approximation for a case in which heavy traffic limits have not
been proved. In addition, because there are two natural customer types, it
provides a test of the performance approximations for more general “cycles.”
Although the route of each product satisfies the assumption of Markovian
class switching, Dai and Harrison point out the desirability of allowing the

AN\ L~ . TypeB

' Milling
Type A

N

{

0.5

0.5

Inspection

F16.9. A multiclass manufacturing network.
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replacement of completed jobs with new ones to be more regular than a
Markov process. We take advantage of the greater generality of Dai and
Harrison’s formulation to let the transition from output to input classes
alternate deterministically between types A and B. Labeling the mill, drill
and inspector as stations 1, 2 and 3, respectively, we have that

and new jobs alternate between classes 1 and 5. Dai and Harrison [2] discuss
how to compute the parameters of the approximating Brownian network in
this greater generality. (In their notation, the vector of relative input rates is
a=1(0,5,0,0,0,0.5,0) with associated covariance matrix A = 0.) We take
n = 100 customers as representative of a large manufacturing shop.

The product form condition for this network is b7 = ;b2 + ;= 2b% + 2.
The results for this network are shown in Table 3. By deriving separate
performance predictions for the two natural subpopulations, we lose some
accuracy; throughput times of type A are overestimated and those for type B
are underestimated relative to the simulation results. Nevertheless, even the
95th percentile estimates remain very accurate.
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TABLE 3
Simulation and Brownian estimates for the multiclass example, with n = 100 customers. All
simulations run for 3,000,000 cycles

(b%,b2,b2)  Type 5 EIT] (EIT?DY? Ty
(1,0.64,0.81) A SIM 0015 (9.0%) 1445 (0.9%) 167 (1.6%) 308 (8.4%)
REF 0.015 147.1 (1.8%) 170 (1.8%) 302 (1.9%)
B SIM 580 (2.0%) 62 (1.6%) 90 (4.4%)
REF 56.1 (3.3%) 60 (3.2%) 86 (4.4%)
3,59 A SIM 0024 (7.1%) 147 (09%) 171 (1.5%) 318 (8.8%)
REF 0.024 148  (0.7%) 171 300 (5.7%)
B SIM 58 (21%) 62 (15%) 94 (5.4%)
REF 57 (L7%) 61 (1.6%) 88 (6.4%)
(4,2,5) A SIM 0052 (6.3%) 152 (0.9%) 182 (1.5%) 348 (11.2%)
REF 0.058 (115%) 155 (1.9%) 183 (0.5%) 318 (8.6%)
B SIM 58 (19%) 63 (1.3%) 99 (6.6%)

REF 57 1.7%) 62 (1.6%) 88 (11.1%)
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