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Abstract

Consider a ®rm that markets multiple products, each manufactured using several resources representing various

types of capital and labor, and a linear production technology. The ®rm faces uncertain product demand and has the

option to dynamically readjust its resource investment levels, thereby changing the capacities of its linear manufacturing

process. The cost to adjust a resource level either up or down is assumed to be linear. The model developed here ex-

plicitly incorporates both capacity investment decisions and production decisions, and is general enough to include

reversible and irreversible investment. The product demand vectors for successive periods are assumed to be inde-

pendent and identically distributed. The optimal investment strategy is determined with a multi-dimensional news-

vendor model using demand distributions, a technology matrix, prices (product contribution margins), and marginal

investment costs. Our analysis highlights an important conceptual distinction between deterministic and stochastic

environments: the optimal investment strategy in our stochastic model typically involves some degree of capacity

imbalance which can never be optimal when demand is known. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider a ®rm that markets n products that
are jointly manufactured using m resources.
Facing uncertain product demand, the ®rm has
the option to change its investment in the m re-
sources, thereby changing the capacity of its

manufacturing process. Resources may be
thought of as several types of labor and capital,
and their increase usually comes at a certain cost,
while a decrease may generate a revenue (e.g., in
the case of capital resources with resale value) or
an expense (if the factor is costly to retire,
e.g., labor).

Although multi-resource investment problems
may seem natural, they have received little atten-
tion in the literature. Economists traditionally
identify two factors of production, capital and
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labor, and focus on single resource investment,
viewing capital investment as mostly ®xed ± and
thus irreversible ± and labor investments as vari-
able and costlessly reversible. Operations re-
searchers, inspired by the seminal work of Manne
[1], have focused on capacity expansion and typi-
cally study irreversible investment in a single re-
source [2±4]. This emphasis on investment in a
single capital good does not remain justi®ed when
employment changes are costly (the ``Eurosclero-
sis'' phenomenon). In addition, ®rms usually in-
vest in a variety of resources with di�erent
®nancial and operational characteristics. There-
fore, it is desirable to consider simultaneous in-
vestment in multiple resources, preferably under
the uncertainty that is crucial to most investment
problems.

The operations research literature has studied
multi-resource models to solve production and
capacity planning problems, typically by invoking
mathematical programming techniques [5±7]. Re-
cently an initial e�ort has been made to analyze
true multi-resource investment dynamics: Dixit [8]
studies the optimal investment dynamics in two
resources, capital and labor. Eberly and Van
Mieghem [9] present a general framework to study
multi-resource investment under uncertainty in a
dynamic, non-stationary environment. They show
that under rather general conditions the optimal
investment strategy follows a control limit policy,
and they provide closed-form solutions for an
investment model where uncertainty is modeled
by a geometric Brownian motion in continuous
time.

This article studies multi-resource investment
under demand uncertainty, adding detail and
special structure to the general framework devel-
oped in [9] in order to make connection with the
control levers available to operations managers.
While economics papers such as [8,9] take an
operating pro®t function as a primitive, we in-
crease the level of detail by modeling explicitly
both manufacturing capacity and production de-
cisions, which means that the operating pro®t
function is endogenous in our model. The for-
mulation remains general enough to include
problems of reversible and irreversible invest-
ment. Having specialized the general structure

proposed in [9], we are able to sharpen the
characterization of optimal investment strategies
developed in that earlier article. We present a
graphical interpretation of the optimal strategy,
de®ned directly in terms of the manufacturing
process yet simple enough to be easily taught and
remembered.

The decision problems we solve are known in
the operations research literature as stochastic
programs with recourse. Traditional solutions for
such problems use discrete stochastic mathemati-
cal programming methods that can capture many
practical details, but often at the expense of ana-
lytical tractability, so that one must resort to nu-
merical methods. Our approach on the other hand,
yields a parsimonious descriptive model that is a
multi-dimensional generalization of the familiar
``newsvendor model''. Like the traditional news-
vendor model, our model is amenable to analytic
solution and graphical interpretation (but may be
too stylized for practical decision support sys-
tems). Multi-dimensionality enriches the news-
vendor model by incorporating product, demand
and resource di�erentiation through price and cost
vectors, a technology matrix and a multivariate
demand distribution. In follow-up work, we apply
the multi-dimensional newsvendor model that we
introduce here to study ¯exible technology [10]
and subcontracting and outsourcing [11]. Both
models show how the capacity investment decision
not only depends on correlation and risk in
product demands, but also on price and cost dif-
ferentials.

A ®nal contribution of this article is to give
qualitative insight into real-world capacity plan-
ning and capital budgeting practices, which typi-
cally involve two levels of decision making.
Initially, lower-level production planners propose
least-cost capacity adjustments necessary to en-
able execution of forecasted production and sales
plans, which are treated as deterministic. Ulti-
mately, however, senior-level managers approve
an investment plan that is a ``perturbed'' version
of the one recommended on the basis of such
deterministic reasoning, seeking to minimize risk
exposure due to demand uncertainties. Our model
con®rms and quanti®es the optimal ``operational
hedge'': capacity levels should be set so as to

18 J.M. Harrison, J.A. Van Mieghem / European Journal of Operational Research 113 (1999) 17±29



balance ``underage costs'' and ``overage costs'',
properly de®ned. The optimal hedging strategy
often leads to unbalanced capacities, in the sense
that no single demand scenario may exist that
implies full utilization of all resources. This ob-
servation, that optimal multi-resource investment
decisions typically involve some degree of capac-
ity imbalance when demand is uncertain, is not
new. On the other hand, it does not seem to be
sharply etched in the minds of either academics or
practitioners, and our exposition of the unbal-
ancing phenomenon in the context of a stylized
model is intended to help remedy that situation.
Under certain conditions common in high-tech
industries, near-optimal hedging can be achieved
by using a suitably de®ned one-dimensional
newsvendor model to plan the capacity of the
critical resource, and then investing in ample ca-
pacity for the remaining resources. The latter
approximation may be helpful to guide out-
sourcing decisions.

The article is organized as follows. Section 2
brie¯y reviews the dynamics of multi-resource
investment under uncertainty and specializes the
general model developed in [9] to linear joint
production of n products on m resources. Sec-
tion 3 presents the multi-dimensional newsven-
dor solution for the optimal investment levels,
which is illustrated with a comprehensive
example in Section 4. Section 5 shows how the
optimal investment can be interpreted as a
hedging strategy against demand uncertainty and
relates this to capital budgeting practice and
outsourcing decisions. Section 6 summarizes the
analysis.

We conclude this introduction with some
notational conventions. We will not distinguish
in notation between scalars and vectors. All
vectors are assumed to be column vectors, and
primes denote transposes, so u0v is the inner
product of u and v. Vector inequalities should
be interpreted component-wise, as well as
max�0; u� and max�0;ÿu� which are denoted
by u� and uÿ, respectively. As usual, P���
denotes a probability measure and E is
the associated expectation operator. Finally,
rg��� denotes the gradient of a di�erentiable
function g���.

2. Linear manufacturing with demand uncertainty

Consider a ®rm that deploys m resources to
manufacture n products in periods t 2 f1; . . . ; T g.
At the beginning of each period t, the ®rm must
decide on a non-negative m-vector of resource
levels Kt 2 Rm

� for period t production, before the
product demand vector Dt 2 Rn

� for that period is
observed. After demand is observed, the ®rm
chooses an n-vector xt 2 Rn

� of production quan-
tities for the various products, constrained by its
earlier resource investment. This multi-stage deci-
sion problem is characteristic of real option models
[6,12]: ®rst invest in capabilities, then receive some
additional information, and ®nally exploit capa-
bilities optimally, contingent on the revealed in-
formation. This decision problem also is known as
a stochastic program with recourse. As in Dixit's
work [8] on investment dynamics, successive peri-
ods are linked by resource investment decisions,
but not by inventories (which would make the
problem much more complicated). These as-
sumptions are consistent with what is observed in
practice where ``each time period is of su�cient
length (e.g. one year) so that production levels can
be altered within the time period in order to satisfy
as closely as possible the demand that is actually
experienced'' ([5], p. 519).

We model the ®rm's manufacturing process and
production decisions as follows. In each period t,
having chosen a resource vector Kt and observed a
demand vector Dt, the ®rm chooses its production
vector xt so as to maximize pro®t in the following
linear program (often called a product mix prob-
lem):

max
xt2Rn

�
p0xt �1�

s:t: Axt6Kt �capacity constraints�; �2�
xt6Dt �demand constraints�; �3�

where p 2 Rn
� is an n-vector whose jth component

represents the unit contribution margin for product
j (that is, sales price minus variable cost of pro-
duction), and A is an m� n technology matrix
whose �i; j� component represents the amount of
resource i required to produce one unit of product
j. In accordance with standard terminology
in linear programming, Kt often will be called a
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capacity vector. Note that the contribution mar-
gins and technology matrix are assumed for sim-
plicity to be time invariant (not depending on t).
Also, contribution margins do not depend on the
production quantities chosen, so the ®rm implicitly
is assumed to be a price taker in both the output
and input market. The optimal objective value of
the product mix problem (1)±(3) is the maximal
operating pro®t function, and is denoted by
p�Kt;Dt� � p0x�Kt;Dt�, where x�Kt;Dt� is an asso-
ciated optimal production vector. From linear
programming theory we know that p��;Dt� is
concave, a fact that is important for the develop-
ment to follow.

It is straightforward to incorporate demand
shortage penalties into the model as follows. As-
sume product j carries a shortage penalty cost
cP;j P 0 for each unit of demand that is not satis-
®ed so that the total shortage cost is c0P�Dt ÿ xt��.
Using Eq. (3), it follows that all results presented
in this article remain valid if we in¯ate unit con-
tribution margins p to p � cP and decrease the
operating pro®t p�K;D� by c0PD. Similarly, re-
source operating costs that depend on the installed
capacity Kt, rather than on actual production xt,
can be included if they are convex as a function of
Kt.

What connects successive periods in our model
is that resource or capacity levels carry over
without change unless explicit action is taken.
Thus, resources are neither created, depleted, nor
destroyed by production activity. If the ®rm de-
cides to adjust resource vector Ktÿ1 to Kt at the
beginning of period t, it incurs an adjustment cost
C�Kt ÿ Ktÿ1�, where C�z� � c0z� ÿ r0zÿ and c and r
are m-vectors. Thus, by assumption, the cost of
adjusting any one resource level either up or down
is linear in the size of the adjustment, and total
adjustment cost is additive over resources. It is
perhaps simplest to think of both c and r as pos-
itive, but disinvestment in some resources (for ex-
ample, labor) may be costly, or even prohibitively
expensive (which means that investment is irre-
versible), and investment in other resources may be
so heavily subsidized as to generate a positive cash
¯ow. In general, then, we allow components of
both c and r to be either positive or negative, but
we focus on resources that are costly to adjust,

such that c and r are non-zero, subject to the ad-
ditional requirement that c P dr, where dP 0 is
the one-period discount factor (see below). If
c < dr, then used capacity would be worth more
than new capacity, and the ®rm could generate a
cash stream with arbitrarily large present value by
just making a large investment in one resource and
reversing it in the following period. Readers
should note that resource adjustment costs are
assumed to be time invariant.

Because the ®rm's investment problem is as-
sumed to end after T time periods, we must further
specify the salvage value f �KT � associated with the
®nal vector of resource levels KT . In the interest of
tractability, we assume that f �KT � � r0KT , which
means that disinvestment in all resources is man-
datory and the associated marginal revenues are
exactly the same as in earlier periods. The ®rm
seeks a multi-period strategy of investment and
production that maximizes the expected present
value of operating pro®ts minus resource adjust-
ment costs over T time periods, given an initial m-
vector of resource levels K0 and a single period
discount factor dP 0. (One naturally thinks in
terms of the case where 0 < d < 1.)

The problem formulated above is a special case
of the multi-period investment problem analyzed
in [9]. The general model in [9] takes as primitive
an operating pro®t function pt�Kt;x� for each
period t, where x is the ``state of the world'' and
pt�Kt;x� is measurable with respect to information
available in period t. In the current context, pt is
assumed to depend on x only through the period t
demand Dt. Furthermore, we have added detail to
the model by explicitly recognizing production
quantities xt as decision variables, and then de®n-
ing pt�Kt;Dt� as the maximal operating pro®t
achievable in the linear programming problem (1)±
(3). Because the vector p of contribution margins
and the technology matrix A appearing in
Eqs. (1)±(3) do not depend on t, the operating
pro®t function p��; �� is itself independent of t, and
we have further assumed that the marginal in-
vestment cost vector c and the marginal disin-
vestment revenue vector r are time invariant.

As a last and crucial element of the problem
formulation in this article, let us further assume
the following special structure: the demand vectors
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D1;D2; . . . ;DT are independent and identically
distributed (IID), and there is no other relevant
source of uncertainty in the problem environment.
Under these assumptions, the ``state'' of our
dynamic investment problem at the beginning of
period t is fully summarized by the incoming ca-
pacity vector Ktÿ1. Because capacities are non-
negative by de®nition, our ``state space'' is the
orthant Rm

�. In [9] it was shown that there exists an
optimal policy having an ISD (Invest/Stay put/
Disinvest) structure. Roughly speaking, this means
that in each period t, the state space is partitioned
into various domains, including a ``continuation
region'' St (see Fig. 1) where no adjustment need
be made in the vector of current resource levels.
From any one of the domains outside this con-
tinuation region, the optimal investment action is
to adjust the vector of resource levels to a new
speci®ed point on the boundary of the continua-
tion region. In the special case treated here
(problem data are time invariant, the salvage
function is f �KT � � r0KT , demands are IID, and no
other sources of relevant uncertainty exist), the

optimal ISD policy is shown in [9] to have the
following additional special structure. Denote the
expected operating pro®t by P, where

P�Kt� � Ep�Kt;Dt�
for all Kt 2 R�, which also is concave and is as-
sumed to be smooth. 1 According to [7], Proposi-
tion 1, where the function P was taken as a
primitive, we have:

Proposition 1. Starting from any initial capacity
vector K0 2 Rm

�, the optimal investment strategy
makes no capacity adjustments after the beginning
of period 1 (that is, K1 � K2 � � � � � KT under the
optimal strategy). Moreover, the \stay-put region",

Fig. 1. Structure of the optimal ISD investment policy for m � 2 resources.

1 This is the case if Dt is a continuous random variable (see

Proposition 2). In general, there may be a set of Lebesgue

measure zero where the concave function P is not di�erentiable.

However, its left and right partial derivatives always exist and

all following di�erential statements should be interpreted in

subdi�erential form.
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or continuation region, characterizing the optimal
ISD policy for period 1 is given by

S1 �

K 2 Rm
�: �1ÿ d�r6rP�K�6 1ÿ d

1ÿ dT �cÿ dT r�
� �

:

�4�
E�ectively, the multi-period solution in our case

can be found by solving a model with a single
period of length T with equivalent discount rate
de � dT and equivalent marginal adjustment costs:

re � 1ÿ d

1ÿ dT r and ce � 1ÿ d

1ÿ dT c; �5�

which represent the total marginal cost of (dis)in-
vesting in real terms. Because we have shown how
to map this multi-period problem into an equiva-
lent single period formulation, we will focus for
the remainder of the article on the single period
model and its continuation region S.

The fact that our multi-period problem e�ec-
tively collapses to an equivalent single period
problem is of course a result of our highly stylized
model. In general, the form of an optimal invest-
ment strategy is not this simple (e.g., see the
Brownian dynamic investment model in [9]).
However, the qualitative insights regarding oper-
ational hedging that we will derive from our styl-
ized model can be extended to more complex
settings with non-stationary problem data, de-
pendent demands, and additional sources of un-
certainty, but no attempt will be made to prove
that assertion in this article.

For ease of notation, we will suppress all time-
subscripts and we will denote the components of a
vector v by vx; vy ; . . . to prevent confusion.

3. The multi-dimensional newsvendor solution

Continuing with the equivalent single period
formulation, the continuation region S of the opti-
mal policy for linear production according to
Eqs. (1)±(3), can be expressed in terms of the shad-
ow values or dual prices of the capacity constraints:

Proposition 2. Let D be a continuous random
variable that is ®nite with probability 1. Then, the

expected operating pro®t function P��� � Ep��;D�
is di�erentiable and for each capacity choice
K 2 Rm

� and realized demand D 2 Rn
�, the capacity

constraints of the linear program (1)±(3) have
optimal shadow values k�K;D� 2 Rm

� and
rP��� � Ek��;D�. The continuation region of the
optimal ISD investment policy can be described in
terms of these shadow values:

S � K 2 Rm
�: �1ÿ de�re6Ek�K;D�6 ce ÿ dere

� 	
:

�6�
(The proof is relegated to the appendix.) The

optimal investment solution is thus reduced to a
fundamental quantity of a linear program, a
shadow value vector of the capacity constraints
(2), which can be calculated explicitly for su�-
ciently simple examples (see below). We interpret
this result as the multi-dimensional generalization
of the solution to the familiar newsvendor problem
that considers a newsvendor who must purchase K
newspapers at a cost ce in anticipation of an un-
certain demand D. Given that newspapers sell at
p � ce (thus, p is the unit contribution margin) and
have no resale value (re � 0), the newsvendor's
problem is to determine how many newspapers
should be purchased in advance. This is the single
product, single resource, single period case of our
linear manufacturing model where A � 1. The LP
can be solved by inspection: k�K;D� � 0 for D < K
and k�K;D� � p for D P K, and the optimal pur-
chase quantity KI is the well-known critical fractile
solution:

Ek�KI;D� � pP�D P KI� � ce:

The critical fractile is found by balancing the
expected ``underage cost'' (e.g., the weighted
probability of the area fD P KIg) with the ``over-
age'' or adjustment cost (ce). Proposition 2 greatly
enhances the intuitive content of the model by
providing a similar solution technique with a
graphical interpretation to the multidimensional
case: calculate the shadow values k�K;D� by solving
the linear program parametrically in terms of K and
D. There are a ®nite number of di�erent values for
the shadow values. Thus, one can draw polygonal
convex domains in the demand space in which
k�K;D� is constant and the expected shadow values
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can easily be calculated by summing weighted
probabilities of areas. The optimal investment level
is found by adjusting the capacity vector K such
that the sum of the areas equals the marginal ad-
justment costs. One can think of this result as saying
that it is optimal to invest up to a critical ``fractile''
of the multidimensional demand distribution.

The following generalizations of the one-di-
mensional newsvendor problem are obtained.
First, one will never invest so as to cover the
maximum demand (``never go to the 100th per-
centile''). Indeed, if all resources are costly to in-
vest in (ce > 0), the expected shadow values Ek
must be positive. Because a shadow value is posi-
tive only when the corresponding capacity con-
straint is binding, all constraints must be binding
with positive probability at the optimal investment
level. In addition, if marginal investment costs ce

decrease, expected dual prices Ek should decrease,
lowering the probability that constraints are bind-
ing, and one will invest so as to cover more de-
mand (``go to a higher fractile''). Second, the
optimal investment level is increasing in the ratio
of the scale of unit contribution margins to the
scale of marginal adjustment costs. Indeed, the
shadow values k are linear in p and if all margins
increase proportionally without changing the
price-mix, i.e., there is a scalar h > 1 so that mar-
gins p become hp, the shadow values Ek increase
likewise to hEk. Finally, we have the following
economic interpretation of the ISD policy: adjust
investment levels only if the expected marginal
bene®t of doing so, as measured by the shadow
values, outweighs the marginal adjustment cost.

4. An example with two products and three resources

To illustrate the multi-dimensional newsvendor
solution and to set the stage for the next section,
consider a ®rm that produces two products on two
dedicated assembly lines with a joint ®nal test. This
situation arises in the computer and disk drive in-
dustries and in the back-end of semiconductor
manufacturing (packaging and ®nal test). Many
original equipment manufacturers in these high
technology industries engage mainly in ®nal as-
sembly and test operations, purchasing most sub-

assemblies and components from a network of
suppliers. Their ®nal assembly processes often are
characterized by relatively inexpensive assembly
steps followed by an expensive test step. Moreover,
assembly capacity often is speci®c to a product
model whereas test equipment is generic (test re-
sources are typically computers with a changeable
test bed) and therefore shared by multiple products.

Denoting the capacity of the two dedicated
lines by Kx and Ky and the test capacity by Kz, the
®rm's linear manufacturing process can be mod-
eled by a technology matrix:

A �
1 0

0 1

c 1

0B@
1CA;

where we assume that the ratio of test capacity
requirement rates of product 1 to product 2 is
c > 0. The demand forecast for both products is
modeled by a probability measure P on the de-
mand (or sample) space R2

�, so formally,
P : R2

� ! �0; 1�: We also assume that the unit
contribution margins p are su�ciently high to
justify production of both products and that
products are labeled such that px P py . It is clear
that one should not have more capacity in either
assembly line than total test capacity and that
there should not be more test capacity than
total assembly capacity. We therefore have that
cKx6Kz, Ky 6Kz and cKx� Ky P Kz.

We want to determine the optimal investment
strategy which follows an ISD policy whose con-
tinuation region S is calculated with our multi-di-
mensional newsvendor solution. The ®rst step is to
determine the optimal production decisions x
contingent on the demand vector D. To actually
write out the ®rm's optimal strategy in terms of the
problem parameters, it is useful to partition the
demand space R2

� for a given a capacity vector
K 2 R3

� as follows:

X0�K� � fD 2 R2
�: AD6Kg;

X1�K� � fD 2 R2
�: cDx6Kz ÿ Ky and Dy > Kyg;

X2�K� � fD 2 R2
�: cÿ1�Kz ÿ Ky� < Dx6Kx

and cDx � Dy > Kzg;
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X3�K� � fD 2 R2
�: Dx > Kx and Dy > Kz ÿ cKxg;

X4�K� � fD 2 R2
�: Dx > Kx and Dy 6Kz ÿ cKxg:

This partitioning is the direct result of the para-
metric analysis of the product mix problem (1)±(3).
Indeed, by applying the Simplex method to that
linear program where K and D are parameters, the
linear inequalities that de®ne the domains Xi are
automatically manifested. Within each domain,
there is an optimal basic solution with a corre-
sponding optimal dual variable k�K;D�. It directly
follows that the dual variables k�K;D�; represent-
ing shadow prices for the three kinds of capacity if
the state of the world D obtains, are constant over
each of the ®ve domains identi®ed above. Assum-
ing px > py to insure a unique solution, the optimal
values of the primal and dual variables are:

The optimal production decisions are displayed
in demand space in Fig. 2. The second step of the
multi-dimensional newsvendor solution calls on
the demand distribution to calculate the expected
shadow value vector Ek. Because the shadow value
vector is constant in each of the ®ve domains, its
expectation is easily calculated and, using Eq. (6),
the continuation region S of the optimal invest-
ment strategy becomes

S � K 2 R3
�: �1ÿ de�re6

0

py

0

0B@
1CAP �X1�K��

8><>:
�

0

0

py

0B@
1CAP �X2�K���

px ÿ cpy

0

py

0B@
1CAP �X3�K��

�
px

0

0

0B@
1CAP �X4�K��6 ce ÿ dere

9>=>;:
The continuation region S, a three-dimensional

volume whose exact shape depends on the demand
probability measure P , partitions the state space

x�K;D� k�K;D�
if D 2 X0�K� D �0; 0; 0�
if D 2 X1�K� �Dx;Ky� �0; py ; 0�
if D 2 X2�K� �Dx;Kz ÿ cDx� �0; 0; py�
if D 2 X3�K� �Kx;Kz ÿ cKx� �px ÿ cpy ; 0; py�
if D 2 X4�K� �Kx;Dy� �px; 0; 0�:

Fig. 2. Production decisions x and shadow values k depend on the capacity K and demand D.
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into nine domains. The optimal investment strat-
egy makes no adjustment to an initial capacity
vector that is contained in S. If the initial capacity
vector is in any of the domains outside S, it is
optimal to adjust capacity to a point on the
boundary of S with a domain-speci®c action,
similarly to the actions shown in the two-dimen-
sional example in Fig. 1. If we focus on the in-
vestment decision starting with zero initial
capacity the optimal investment level KI is the
lower left corner of the continuation region:

0

py

0

0B@
1CAP �X1�KI�� �

0

0

py

0B@
1CAP �X2�KI��

�
px ÿ cpy

0

py

0B@
1CAP �X3�KI�� �

px

0

0

0B@
1CAP�X4�KI��

� ce ÿ dere: �7�

Thus, the optimal investment level KI can be
interpreted graphically as in Fig. 3 where we
have superimposed the joint correlated demand

distribution (represented by the elliptical area that
obtains as a level curve of the multivariate normal
distribution) onto the state space partitioning of
Fig. 2: one has to adjust the thick lines of the
feasible region X0 (by adjusting K) such that the
probabilities of domains X1; . . . ;X4 o�set the total
marginal investment cost ce ÿ dere as in the opti-
mality equation (7).

In general, the optimal solution requires solving
the characteristic equations simultaneously using
the multivariate demand distribution. However, if
there exists a critical resource like the expensive
test resource, a near optimal solution can be found
with a one-dimensional newsvendor model as fol-
lows. If test capacity is much more expensive than
assembly capacity (co

z ?co
x ; c

o
y ), optimality equation

(7) yields that P�X2� � P �X3�?P �X1�; P �X4�. Thus
P�X1� and P �X4� should be very small in which
case the graphical interpretation shown in Fig. 3
yields P �X2� � P �X3� ' P �cDx � Dy P Kz�. Then
the third optimality equation in (7) becomes a
traditional one-dimensional newsvendor equation

pyP �cDx � Dy P Kz� ' co
z : �8�

Fig. 3. Optimal investment KI is found by balancing ``underage costs'' with investment costs.
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Thus the optimal operational hedging strategy
can be decomposed: the capacity Kz of the expen-
sive resource (testers) is determined with a one-
dimensional newsvendor model (8) using the
(univariate) total demand for test capacity cDx � Dy

(e�ectively assuming in®nite capacity at the up-
stream assemblies) and the smaller contribution
margin py . Second, the optimal capacity of the
inexpensive dedicated resources (assemblies) is the
minimal capacity that does not decrease the ex-
pensive test capacity (i.e., make P �X1� and P �X4�
positive, but small, solving Eq. (7)).

5. Operational hedging versus coordinated planning

In many ®rms, incremental capacity invest-
ments are decided upon through a two-stage de-
cision process that can be roughly described as
follows using the language and notation intro-
duced in Sections 2±4. First, lower-level produc-
tion planners propose least-cost required capacity
adjustments based on a deterministic master
production schedule. To arrive at these require-
ments, the ®rm's operations division calculates the
technology matrix A and current capacity vector K
using product routing, resource consumption and
resource availability information, all of which (in
the best case) reside in various engineering data-
bases. Marketing and sales representatives develop
forecasts of the demand vector D and contribution
margins p for the coming period. Then, as dis-
cussed in [13,14], sales managers and production
managers collaborate in the choice of a single
vector x of production quantities for the coming
period, a choice which they deem to be the best
response to estimated market demand. The vector
x of production quantities is usually known as the
production plan or Master Production Schedule
(MPS), and production planners then choose a
least-cost capacity adjustment to enable execution
of that plan. That is, using ®nancial information
captured in the capacity adjustment cost function
C, they choose a new capacity vector Kc which
minimizes adjustment costs subject to the re-
quirement that the production plan x be feasible
under Kc (Ax6Kc). We call this least-cost program
of required capacity adjustments a coordinated

plan because it typically implies full utilization of
resources under the production plan x. (In the
example of the previous section, a coordinated
plan corresponds to a rectangular feasible region
X0�Kc�.) By basing incremental capacity invest-
ments on a speci®c production plan x, coordinated
planning e�ectively makes a bet on a particular
future demand. Ultimately, however, senior-level
management ®nalizes a capital budget and ap-
proves an investment plan which may be quite
di�erent from the coordinated plan. Acknowledg-
ing intrinsic demand uncertainty (or, similarly,
price uncertainty), senior executives ``perturb'' the
capacity requirements given by production plan-
ning in order to minimize risk exposure (thus im-
proving expected pro®t). The perturbation is based
on experience and individual appraisal of future
uncertainties and risks and yields a hedging 2

position by a counterbalancing investment in var-
ious production factors. Following Huchzermeier
and Cohen [16], we call this operational hedging to
distinguish from ®nancial hedging, which uses ®-
nancial instruments and capital markets to mini-
mize a ®rm's risk exposure. A major US disk drive
manufacturer, facing an investment problem sim-
ilar to the one described in the previous section
almost every year, reduces the investment adjust-
ment for expensive test capacity compared to the
level speci®ed by the coordinated plan while in-
creasing less expensive ®nal assembly capacities. In
our stylized example, this ``cuts o� the corner'' of
the rectangular feasible region that results from
coordinated planning and yields a feasible region
as shown in Fig. 3. Similar practice is found in the
automobile industry where car manufacturers of-
ten set the capacity of a body assembly line to less
than the sum of the assembly line capacities of the
V6 and V8 engines that will power the body.

Our model con®rms the soundness of opera-
tional hedging: the optimal strategy minimizes the
risk exposure of the investment by not committing
to a single production scenario/plan. The model

2 The Oxford Dictionary [15] describes hedging as ``protec-

ting oneself against loss or error by not committing oneself to a

single course of action.''
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also quanti®es the optimal hedge as the one that
obtains from setting investment levels so as to
balance the dual prices or ``underage costs'' of
resources against the investment or ``overage
costs'' of resource adjustment. (In our example of
Section 4, the optimal balance is given by Eq. (7).)
Two conclusions 3 follows from this interpretation:
First, one should expect the required capacity ad-
justments as proposed in the coordinated plan to
be di�erent from the optimally hedged investments
that senior management tries to attain, no matter
how sophisticated the ®rm is in picking the pro-
duction plan x. Second, it is optimal not to balance
capacities: the optimal operational hedging posi-
tion may be unbalanced in the sense that there
does not exist a single demand scenario that will
keep all resources fully 4 utilized. This implies that
the performance of capacity planning software
that starts with a single deterministic demand
scenario may be improved.

As shown in Section 4, near-optimal hedging
can be achieved when there exists a critical re-
source by using a suitably de®ned one-dimensional
newsvendor model to plan the capacity of the
critical resource, and then investing in ample ca-
pacity for the remaining resources. Then the opti-
mal hedging solution can be applied successfully in
a market mechanism where a ®rm can subcontract
or outsource parts of its manufacturing process.
Consider for example the high-tech example in the
previous section where the ®rm has the option to
outsource the assembly of product 2. The ®rm has
to commit to (and pay for) subcontracting capacity
Ky at a market 5 price of ce

y per unit before product

demand is realized. This is equivalent to capacity
adjustment and this model gives the optimal
quantity (or capacity) that the ®rm should out-
source. Although optimally made simultaneously,
this decision can be made sequentially after the
®rm has decided on its crucial (test) capacity ac-
cording to the above decomposition scheme.

Finally, it may be interesting to estimate by
how much senior management's operational
hedging improves the net value of the ®rm as
compared to the coordinated plan that derives
from simple least-cost adjustment calculations. A
general answer obviously depends on all parame-
ters of the problem. To get a feeling for the mag-
nitude of the improvement that may be obtained,
we can compare operational hedging to coordi-
nated planning in the simple example of the pre-
vious section when starting with no initial
capacity. For simplicity, assume that both prod-
ucts are substitutes (e.g., laptop and desktop disk-
drives or V6 and V8 engines) and their total de-
mand of volume is reasonably well know while the
product mix is uncertain. Thus we can approxi-
mate the demand distribution to be uniform on the
line Dx � Dy � 1, and we will assume that both
products require equal amounts of test capacity
(c � 1). Let �ce

z � py�1ÿ �ce
x=px� ÿ �ce

y=py��. If
06 ce

z 6 �ce
z , the optimal hedging strategy 6 sets

Kx � 1ÿ �ce
x=px�, Ky � 1ÿ �ce

y=py�, and Kz � 1 (see
Fig. 4). The corresponding expected value of the
®rm under optimal hedging is

V � px

2
1ÿ ce

x

px

� �2

� py

2
1ÿ ce

y

py

� �2

ÿ ce
z :

The best coordinated plan Kc has Kc
z � Kc

x � Kc
y

with constrained optimality equations Eki�Kc;D��
Ekz�Kc;D� � ce

i � ce
z for i � x; y or, because

P�X2�Kc�� � 0, piP �Di P Kc
i � � ce

i � ce
z and thus

Kc
i � 1ÿ �ce

i � ce
z�=pi. The ®rm's expected value

under the best coordinated plan is

V c � px

2
1ÿ ce

x � ce
z

px

� �2

� py

2
1ÿ ce

y � ce
z

py

� �2

:

3 These conclusions hold almost always (i.e., whenever the

solution K to the optimal investment equations yields capacity

constraints that do not cross in a single point, that is there exist

no x such that Ax � K).
4 The optimal contingent production vector is either inside

the feasible region, in which case no resource is fully utilized, or

on the boundary of the feasible region, in which case not all

resources are fully utilized because the capacity constraints do

not intersect.
5 If no e�cient market for capacity exists, the capacity

investment decision with subcontracting becomes ``relationship

speci®c'' and will depend on the capacity decisions of the

subcontractor as shown in [11].

6 Under this assumption on ce
z , the optimality equations (7)

do not have a solution if Kz > 1 (and thus P�X2� � P �X3� � 0)

or if Kz < 1 (and thus P �X1� � P �X2� � P �X3� � P�X4� � 1).
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Therefore, the improvement of operational
hedging compared to all other coordinated plans is
at least

V ÿ V c � ce
z 1ÿ ce

x � 0:5ce
z

px
ÿ ce

y � 0:5ce
z

py

� �
> 0;

and even compared to the best coordinated plan,
the improvement may be signi®cant:

06 V ÿ V c

V c 6
pxpy�px � py� 1ÿ ce

x
px
ÿ ce

y

py

� �2

p3
x 1ÿ ce

xÿce
y

px

� �2

� p3
y 1ÿ ce

yÿce
x

py

� �2

6 1

2 1� �pxÿpy�2
pxpy

� � 6 50%;

where all bounds are tight (lower and upper
bounds are attained when ce

z � 0; ce
z � �ce

z ;
ce

x � ce
y � 0; ce

z � �ce
z ; and ce

x � ce
y � 0; ce

z � �ce
z ;

px � py , respectively).

6. Conclusion

This paper has presented a model to determine
the optimal investment strategies for a manufac-

turing ®rm that employs multiple resources to
market several products to an uncertain demand.
The model incorporates explicitly the production
process and the production decisions and is able
to consider reversible and irreversible investment.
The optimal investment is determined with our
multi-dimensional newsvendor solution using
a demand distribution, a technology matrix,
prices (product contribution margins), and mar-
ginal investment costs, and can be represented
graphically.

The optimal investment position can be inter-
preted as a hedge against demand uncertainty.
This has led us to four managerially relevant
conclusions: First, the model explains current
practice and quanti®es the optimal operational
hedge. Second, one should expect the required
capacity adjustments as proposed in the coordi-
nated plan by lower-level capacity planners to be
di�erent from the optimal hedged investments
that senior management tries to attain. Third, it is
optimal not to balance capacities. Finally, near-
optimal hedging can be obtained by planning
capacity of the critical resource with a suitably
de®ned one-dimensional newsvendor model and

Fig. 4. Comparing the optimal hedge K with the best coordinated plan Kc.
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by investing in ample capacity for the remaining
resources.

Appendix A. Proof of Proposition 2

Consider the (single period) dual of the linear
program (1)±(3):

min
k2Rm

�;l2Rn
�

K 0k� D0l;

s:t: A0k� lP p:

If D is ®nite, the primal program has a ®nite op-
timal solution and its corresponding objective
function is equal to the optimal objective function
of the dual according to the Duality Theorem of
linear programming. Let k�K;D� and l�K;D�
denote an optimal solution of the dual. Fix
a Ko 2 Rm

�. Then, for any K 2 Rm
�, it follows

directly that p�K;D�6K 0k�Ko;D� � D0l�Ko;D�:
Combining this with p�Ko;D� � Ko0k�Ko;D��
D0l�Ko;D�, directly yields the familiar result that
k�Ko;D� is a subgradient of p��;D� at K � Ko:

p�K;D�6p�Ko;D� � k�Ko;D�0�K ÿ Ko�; �9�

or, interpreting r as a subgradient, rp��;D� �
k��;D�. In essence, we now must show that we
can interchange di�erentiation and integration
(a.k.a. Leibniz's rule) to yield rEp��;D� �
Ek��;D�. Use the arguments in [17], pp. 97±98 as
follows: Because D is ®nite w.p. 1, taking expec-
tations in Eq. (9) yields that Ek�Ko;D� is a sub-
gradient of P��� � Ep��;D� at K � Ko. Also,
because p��;D� is concave, it is di�erentiable ev-
erywhere except on a possible set L of Lebesgue
measure zero. Thus, k is single valued except on
L. If D is a continuous random variable, L has P -
measure zero. Thus the subgradient Ek�K;D� is
unique for all K 2 Rm

� so that P��� is di�erentia-
ble everywhere.
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