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Motivated by the trend towards more collaboration in team work, we study networks where some tasks

require the simultaneous processing by multiple types of multitasking human or indivisible resources. The

capacity of such networks is generally smaller than the bottleneck capacity. In Gurvich and Van Mieghem

(2015) we proved that both capacities are equal in networks with a hierarchical collaboration architecture,

which define a collaboration level for each task depending on how many types of resources it requires relative

to other network tasks. This paper studies how task prioritization impacts the capacity of such hierarchical

networks using a conceptual queuing framework that formalizes coordination and switching idleness.

To maximize the capacity of a team, highest priority should be given to the tasks that require the most

collaboration. Otherwise, a mismatch between priority levels and collaboration levels inevitably inflicts a

capacity loss. We demonstrate this essential trade-off between task prioritization and capacity in a basic

collaborative network and in parallel networks. To manage this trade-off, we present a hierarchical threshold

priority policy that balances switching and coordination idleness.
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1. Introduction and Summary of Results

Motivated by the prevalence of collaborative processing in services, we study how simultaneous

collaboration and multitasking impact system capacity and responsiveness. Simultaneous collabo-

ration means that some tasks require the synchronous processing by multiple types of resources.

Discharging a patient, for example, may require the presence of both a doctor and a nurse and

chemical distilling requires two vessels. Multitasking means that a resource performs multiple activ-

ities. Multitasking is equivalent to resource sharing and means that multiple activities require the

same resource. A doctor, for example, may be required for both patient diagnosis and for patient

discharge. Simultaneous collaboration imposes constraints on the capacity of the process because

multitasking resources have to be simultaneously at the right place. Human operators magnify the

effect of these synchronization requirements because they are indivisible and cannot be “split.”An

emergency physician may split her time among multiple activities—spending x% of her time in

one activity and the remaining (100 − x)% in another—and she may switch between activities

frequently, yet she cannot process two activities at the same time (which may, in this example,

require her physical presence in two distinct locations).
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Figure 1 (LEFT) The Basic Collaboration (BC) network with a hierarchical collaboration architecture.

(RIGHT) Adding a third resource yields the BC+ network: the prototypical non-hierarchical network.

Collaboration of indivisible multitasking resources poses significant operational and interesting

intellectual challenges. In general, the capacity of such networks is smaller than the bottleneck

capacity. Consider, for example, the basic collaboration (BC) network on the left of Figure 1 with

three activities (a0, a1 and a2) and two multitasking resources (R1 and R2). Only resource j ∈ {1,2}
is required for its individual activity ai while both resources are needed for the collaborative task

a0. Given mean arrival rate λi and mean service time mi for activity i ∈ {0,1,2}, the load on

resource j is

ρj = λ0m0 +λjmj.

Resource j is a bottleneck if j ∈ arg max{ρ1, ρ2} and the bottleneck load is

ρBN = max{ρ1, ρ2}.

Processing networks can typically ‘handle any arrival rates’ (while keeping the system stable) as

long as ρBN < 1, but that need not be true when indivisible multitasking resources collaborate. To

see what can go wrong, consider the BC+ network in the right panel of Figure 1 where we added

resource 3. With this resource we also added a collaboration dependency. The network must, at

any given time, use one of only three feasible configurations vectors that specify which activities

are “active.” As no two activities can be performed in parallel, only the unit vectors are feasible.

For an arrival rate vector to be sustainable there must exist time allocations π1, π2, π3 such that
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for some π ≥ 0 with
∑

i πi ≤ 1. The network utilization ρnet(λ) :=
∑

i πi can be interpreted as the

average time it takes the network to process an input λ. This will in general exceed the time,

ρBN, it takes the bottlenecks, working in isolation, to process that input. If mj ≡ 1 and 1/3<λ1 =

λ2 = λ3 < 1/2, then ρBN < 1 yet ρnet(λ) > 1 and the queues at each task would explode. Thus,

collaboration and multitasking can inflict a capacity loss when resources are indivisible.1

The BC and BC+ networks fundamentally differ in their underlying collaboration architecture.

A network’s architecture specifies how resources are assigned to activities and can be represented

by a collaboration graph that has a node for each activity and an edge between two nodes if they

require overlapping resource sets. Hierarchical collaboration architectures can be represented by a

graph where nodes are arranged in “collaboration levels” and resources at each node are a subset

of those used by the node above it, as Figure 1 shows for the BC network. In contrast, the BC+

collaboration architecture is not hierarchical.

In Gurvich and Van Mieghem (2015) (further abbreviated to GVM) we prove that networks

with hierarchical architectures do not feature Unavoidable Bottleneck Idleness: UBI(λ) = ρnet(λ)−
ρBN(λ) = 0 for each λ≥ 0. UBI is caused by the indivisibility of resources that prevent fractional

capacity allocations. In hierarchical networks, only integer allocations are optimal and hence indi-

visibility is costless (UBI = 0).

In this paper, we study how the theoretical network capacity is achieved through, and affected

by, task prioritization policies in the BC network and in a larger class of parallel networks with

hierarchical collaboration architecture. To conceptualize the challenges and tradeoffs we introduce

two types of collaboration idleness that impact capacity more subtly than UBI.

Task prioritization requires synchronized (joint) movements of resources between tasks. It is

useful to think of the control rule setting an alarm that signals to resources when to switch.

In the BC network, such alarm signals when resources should move from the individual tasks

to the collaborative task, and back. The network incurs coordination idleness when a resource

is idly waiting for the alarm to move to a collaborative task that has work—it is waiting for a

coordinated move. In the BC network, resource 1 might not have work in activity a1 but, depending

on the priority rule, might have to wait until the alarm sounds before moving to a0 where there

could be work. The network incurs switching idleness when a resource is idly waiting after the

alarm has sounded but before moving to the collaborative task. This happens only under non-

preemptive controls when a resource has finished its service but is waiting for the remaining required

resources to finish theirs. (These two types of idleness are formalized in §6.) In contrast to UBI,

1 If resources were divisible, allocating a fraction of each resource to each of its activities would split the network into
three independent queues and there would be no capacity loss in the BC+ network.
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Figure 2 The BC network of Fig. 1 can be relaxed by duplicating the arrivals to the collaborative task (LEFT)

to yield the benchmark (Two-class M/M/1)2 network (RIGHT).

coordination and switching idleness depend not only on the architecture but also on the control

policy. Essentially, the idleness that a control imposes on the network is:

Collaboration idleness = Coordination idleness + Switching idleness.

It is instructive to introduce the benchmark system obtained from the BC network by duplicating

the arrival stream to the collaborative task (left panel in Fig. 2). This breaks the collaboration

constraint and allows the resources to work on the collaborative jobs separately. Effectively, each

resource sees a two-class M/M/1 queue (right panel). The performance gap between the benchmark

and the BC network represents the “cost” of collaboration. The benchmark system exhibits four

fundamental phenomena (“congestion laws”) in well-operated traditional queuing networks: First,

there exists a control policy that stabilizes the system for any arrival rate for which ρBN < 1. Second,

the total workload scales like 1/(1−ρBN) as utilization ρBN ↑ 1. Indeed, under any work conserving

policy, the steady-state total number Q+(∞) in an M/M/1 system is of order O (1/(1− ρ)) because

EQ+(∞) =
ρ

1− ρ.

Third, this scaling rate can be maintained while prioritizing certain queues over others. Indeed,

whether one prioritizes queue 1 or 2 in a two-class M/M/1, the total workload follows the optimal

scaling O (1/(1− ρ)) as long as the policy is work conserving. We call this controllability: the

freedom to prioritize certain queues over others without significantly compromising the performance

of the total queue count or workload. And fourth, non-preemptive (NP) policies carry no significant

cost over preemptive (P) policies. Indeed, the impact of preemptive versus non-preemptive priority

service on queue lengths in a two-class M/M/1 system is small, as shown in Figure 3. In particular,

it is negligible relative to 1/(1− ρ): As ρ ↑ 1, the high priority queues remain finite under either

discipline—and hence, when scaled by (1 − ρ) both approach 0—while the low priority queues

hold all the work and are O (1/(1− ρ)). We will show that controllability and the near-equivalence

between preemptive and non-preemptive priority can break down in collaborative networks.



Collaboration and Control in Networks 5

1

1.5

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um
be
r  i
n  
Sy
st
em

Utilizationρ

High  and  Low  Priority  in  M/M/1:  Preemptive  =  Non-­Preemptive

High  -­ P

High  -­ NP

Low  -­ NP

Low  -­ PTotal  =  ρ/(1-­ρ)

EQ+(1) =
⇢

1 � ⇢

'

Figure 3 The two-class M/M/1 queue illustrates the four “congestion laws.” (For λ1m1 = λ2m2 = ρ/2)

The following summarizes our findings in the BC network and in parallel networks with collab-

orating, multitasking, indivisible resources:

1. Misaligned task priorities and collaboration levels or non-preemptive priority service result in

a capacity loss. Significant switching or coordination idleness destabilizes the network for values

of ρBN strictly below 1. Typically there is a strong trade-off between priority control (waiting) and

capacity. In the extreme that one does not prioritize at all, then we show that a polling policy where

servers move only after they exhaust their own queue introduces significant coordination idleness

that does not destabilize the system but leads to large queues of at least order (1− ρBN)−3/2. We

introduce a family of hierarchical threshold priority policies that can choose threshold levels to

achieve any desired balance between priority control (waiting) and capacity. We explain this in

terms of how thresholds impact switching and coordination idleness. When thresholds are large

(i.e., of order 1/(1− ρ)), full capacity is regained.

2. Aligning task priorities and collaboration levels is required to maximize capacity. This implies

that highest priority should be given to the tasks that require the most collaboration. We present

a family of hierarchical priority policies that stabilize, and achieve optimal queue scaling in, the

BC network and parallel networks with indivisible resources up to full bottleneck capacity ρBN < 1

if the collaboration architecture is hierarchical and preemption is allowed.

Our findings show that in these collaborating networks, one loses controllability (one cannot

simply choose any subset of the queues as priority queues without losing significant throughput)

and the difference between preemptive and non-preemptive service is fundamental and persists in

heavy-traffic (which is new to the best of our knowledge).

The impact of (mis)matching task priorities and collaboration levels in the BC network is cap-

tured by the 2× 2 matrix in Figure 4. In the BC network, the collaborative activity has highest
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Figure 4 How (mis)matched task prioritization affects capacity for preemptive and non-preemptive service.

collaboration level. We contrast matched priority to the collaborative task with mismatched pri-

ority to both individual tasks and also compare to the two-class M/M/1 benchmark. While the

plots use specific priority policies and parameters2, we prove that these are universal properties

(i.e., there is no control policy that can avoid these properties):

1. Matched preemptive priority to the collaborative task achieves maximal capacity and optimal

scaling. This is the only quadrant in Figure 4 where collaboration comes at no cost. It also shows

that the two-class M/M/1 benchmark is tight: it is achievable.

2. Matched non-preemptive priority to the collaborative task inflicts switching idleness and

results in a significant capacity loss. In the simulation in Figure 4, throughput cannot exceed a

bottleneck utilization of roughly 0.9. To generalize this observation we prove a tradeoff result: there

exists no control policy that makes the collaborative queue short and keeps the total expected

queue count finite as ρBN approaches 1.

2 The plots show the average queue lengths during a simulation of 10 million time units where mi = 1/2 and λi = ρ.
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divide that by the amount of resource i capacity that is available per time
unit. Thus we call ρi the load factor for resource i. (Such ratios are also
called traffic intensity parameters in queuing theory.)

In the basic network model that we have described here, the collection of
resources required to process any given job type is fixed. In the language of
communication networks, it is a model with single-path routing. In contrast,
one may consider a more general model in which several different processing
modes exist for a given job type, with each mode involving a different com-
bination of resources. In communication networks, the term multi-path rout-
ing is used to describe that more general setup. Remarkably, any resource
sharing model with multi-path routing is exactly equivalent, not just ap-
proximately equivalent or asymptotically equivalent, to another model with
only single path routing; that equivalence is explained in Section 5.5 of [14].

3. Three examples. Figures 1 through 3 portray three examples of
resource sharing networks that will be discussed later in this paper, each
of which satisfies the local traffic assumption enunciated in Section 2. The
first two examples are what Massoulié and Roberts [20] call linear networks,
involving local traffic on each of the I resources plus another job type that
uses all of the resources; to state the obvious, I = 2 and I = 3 in Figures
1 and 2, respectively. Our third example (Figure 3) is a more complicated
version of the second one, involving two additional job types that each re-
quire two of the three resources for their processing. Using Internet modeling
language, we call the first two examples the two-link linear network (2LLN)
and three-link linear network (3LLN), respectively; in parallel fashion, the
final example is called the complex three-link network (C3LN).

Figure 5 Different, but equivalent, views of the BC network: (TOP LEFT) Activity view; (TOP RIGHT)

Resource view; (BOTTOM) Bandwidth Sharing view.

3. Mismatched preemptive priority to both individual tasks inflicts coordination idleness and

results in capacity loss. We prove that the capacity in this example is only 3−
√

5 = 0.764.

4. Mismatched non-preemptive priority to both individual tasks results in significant capacity

loss. While the system now incurs both coordination and switching idleness, it performs slightly

better than the preemptive case because the switching frequency is reduced.

In summary: Collaboration introduces a stark trade-off between task prioritization (service con-

siderations) and capacity. Misaligned priority levels and collaboration levels inflict a significant

capacity loss due to excessive switching or collaboration idleness. Matching priority and collabora-

tion levels mitigates the trade-off and even eliminates it with preemptive service (top-left quadrant).

The hierarchical priority threshold policy that we introduce balances coordination and switching

idleness and traces the queue control vs capacity trade-off curve that we will show as our final

figure when we conclude in section 8.

2. Literature review

A vast literature studies performance analysis and optimization of resource sharing in networks,

often inspired by communication networks. Two strands are particularly relevant: the literature

on switch networks and bandwidth sharing networks. To emphasize the connections, Figure 5

juxtaposes the different, but equivalent, pictorial network representations used in this paper versus

typical papers on queuing networks and communication networks.

Switched networks. A network switch is a computer networking device that connects devices

together on a computer network, by using packet switching to receive, process and forward data to
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the destination device (Wikipedia 2015). An extensive literature studies switched networks from

a queuing theoretic perspective. One can distinguish a standard input-queued switch (for a recent

study, see e.g. Kang et al. (2012)) from more general switches; and single-hop switches in which

packets depart the network after service at a queue from multihop networks, where packets depart

after receiving service at one or more queues; see Shah and Wischik (2012). In a general single-hop

switch, each of the J queues has its dedicated arrival stream. Arrivals occur at beginning of each

time period with mean of λi for queue i. In the beginning of each period jobs are depleted from

the queues. Processing takes one time unit exactly and the depletion of jobs is constrained by the

so-called “schedules” which, as our configuration vectors, are binary vectors. That is,

Q(τ + 1) = [Q(τ)− dB(τ)]+ + dA(τ),

where Q(τ + 1) is the queue (vector) at the beginning of period τ + 1, dA(τ) is the number of

arrivals at the end of period τ and dB(τ)∈ S where S is the family of allowed schedules.

Within this general framework, a discrete-time version of the BC network is a switch with

schedule set S = {(1,0,0)′, (0,1,0)′, (0,0,1)′, (0,1,1)′} . In fact, the discrete-time version of any

collaborative network can be mapped to a switch and the set of schedules in the corresponding

switch is identical to the family of configuration vectors. Thus, switches and (human) collaborative

networks have in common the restriction to integral allocations (in contrast to bandwidth sharing

networks–see more below).

Our collaborative networks differ from switched networks along two dimensions: First, our study

requires continuous time for the distinction between preemptive policies and non-preemptive poli-

cies to be meaningful. Second, and perhaps more fundamental, switches are defined by their set of

schedules and have no explicit associated set of resources. A frequently studied objective of switch

control is throughput maximization and optimal growth of the total queue as both a function of

ρnet and the number of queues; see the recent Walton (2015) and Shah et al. (2014). In contrast,

the model primitive in our study is how the various types of resources collaborate and the notion of

their bottleneck capacity. The collaboration architecture results in the set of feasible configuration

vectors (schedules) that define the network capacity. This allows us to study how aligning priorities

with collaboration levels impacts the network capacity relative to the bottleneck capacity, questions

that have no meaning in the general model of a switch.

A last important remark concerning switches: The widely cited and fundamental result of Stol-

yar (2004) shows that under a complete resource pooling assumption on the family of schedules,

questions of switch controllability are in a strong sense resolved: one can minimize any strictly
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convex holding cost without any compromise to throughput.3 Importantly, however, the “switch-

model” of the BC network (the simplest of collaborative networks) does not satisfy the complete

resource pooling assumptions. This, again, illustrates the value of studying collaboration directly

rather than as a special case of switches.

Bandwidth sharing networks transmit jobs (“traffic”) over a set of capacitated, divisible

resources (“links”). Multiple types of traffic can share a link and some types of traffic may simulta-

neously require multiple links in its transmission, which coincides with our notion of collaboration.

The critical difference between our study and bandwidth sharing networks is the indivisbility

of our resources. Indeed, our first paper Gurvich and Van Mieghem (2015) starts from the simple

observation that indivisibility leads inevitably to capacity loss relative to the capacity of a divis-

ible resource sharing model (which equals the bottleneck capacity). Therefore, while the network

representations in Fig. 5 are equivalent4, the model assumptions are critically different and the

research focus is different.

Queues with collaboration also turn out to be closely related to queues with switchover times

and queues with interruptions. Borst (1996) covers performance analysis for a variety of polling

systems with switchover times; for optimization and control see, e.g., Reiman and Wein (1998);

Lan and Olsen (2006) and the references therein. While switchover times are typically exogenous

parameters in the polling literature, they arise endogenously in collaborative networks. Some of our

collaborative priority policies represent an “interruption” for the individual queue; see the survey

by Krishnamoorthy et al. (2014).

Finally, our work also connects to the emerging operations literature on managing white collar

work which involves indivisible (human) resources that often collaborate and multitask. In their

survey, Hopp et al. (2009) observe that “white-collar work is much less understood in an operations

sense than is blue-collar work. ... We do not yet have principles for guiding operations decisions.

Fundamental questions remain unanswered. For example: What is the bottleneck of a white-collar

work system?” Our paper investigates the subtlety of capacity of such systems.

3. Task Prioritization and Capacity Loss in the BC Network

In this section, we first show how a mismatch between task priority levels and collaboration levels

inevitably leads to a capacity loss in the BC network. Recall that the collaborative activity has

the highest collaboration level so a mismatch means prioritizing the individual activities. Then we

show that matching priority and collaboration levels recovers theoretical capacity but only when

service is preemptive.

3 While Stolyar’s result focuses on finite horizon optimality it is likely that his result extends to a stationary setting.

4 The two-link network in Harrison et al. (2014) is the resource-splitting version of our BC network.
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3.1. Mismatch: Prioritizing the Individual Tasks

First we consider giving static priority to both individual tasks, which means that both servers

move to their individual task as soon as queue Q1 or Q2 is positive. We shall call this I2-priority

to contrast with I1-priority which gives static priority to one specific individual task.

Proposition 1 (I2 Priority Capacity Loss) Static priority to both individual tasks reduces

capacity. With preemptive I2 priority, the BC network is unstable (not positive recurrent) if and

only if
λ0

µ0

≥
(

1− λ1

µ1

)(
1− λ2

µ2

)
. (1)

With nonpreemptive I2 priority, the BC network is unstable if

λ0

µ0

>

(
1− λ1

µ1

)(
1− λ2

µ2

) 1 +m0(λ1 +λ2)

1 +m0(λ1 +λ2)
(

1− λ1
µ1

)(
1− λ2

µ2

)
 . (2)

Both conditions imply a capacity loss: we cannot take ρBN close to 1 without making the system

explode. Recall that the two-class M/M/1 system is unstable iff λ0
µ0
≥ 1− λi

µi
, which corresponds

to a strictly larger capacity region than in the BC network with I2 priority when λ1 and λ2 are

both positive (excluding the degenerate case where one of them vanishes). Consider the numerical

example shown in Fig. 4 for the symmetric BC network with mi = 0.5: the maximal throughput

λi = λ̄ under preemptive I2 priority solves λ̄/2 = (1− λ̄/2)2 with solution λ̄= 3−
√

5' 0.764. This

maximal ρBN = (m0 +m1)λ̄= 0.764 represents a capacity loss of 23.6%. 5

Non-preemptive I2 priority regains some capacity but not all: Notice that the right hand side of

the sufficient6 condition (2) is strictly less than 1: since
(

1− λ1
µ1

)(
1− λ2

µ2

)
< 1, we have

1<

 1 +m0(λ1 +λ2)

1 +m0(λ1 +λ2)
(

1− λ1
µ1

)(
1− λ2

µ2

)
<((1− λ1

µ1

)(
1− λ2

µ2

))−1

.

These findings are explained by coordination idleness which is incurred when only one resource

works in an individual task (while the other individual queue is empty and hence its resource

idles) although the collaborative queue has work. As shown in the simulation results in Fig. 6 for

the symmetric BC network with mi = 0.5, coordination idleness increases as ρBN increases and

consumes the entire “idleness budget” 1− ρBN when ρBN = 3−
√

5' 0.764.

Nonpreemptive priority completes each collaborative service and thus has smaller coordination

idleness than preemptive priority, which explains its smaller capacity loss. Notice that neither

policy idles a non-empty individual queue and thus none incurs switching idleness.

5 With preemption and static priority, indivisibility does not make any difference, so that this result applies also to
bandwidth sharing. Indeed, Equation (1) is an instance of Example 1 in Bonald and Massoulié (2001).

6 One can derive a necessary, but complex, condition for stability using hitting times of a two-MM1-queue system.
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Figure 6 Coordination idleness under preemptive priority to both individual tasks leads to a capacity loss.

The essential insight is that misaligning priority and collaboration levels entails a capacity loss.

Alternatively, to not lose any capacity, one cannot give highest priority to both tasks at the lowest

collaboration level (the individual queues). This stark trade-off holds for any stabilizing policy and

leads to our main impossibility result:

Theorem 1 (I2 Impossibility) Consider the BC network with both resources being bottlenecks

(i.e., 1− ρi = 1− ρBN + o(1− ρBN)) . Then, any sequence of preemptive policies that does not lose

any capacity has at least one large individual queue i, meaning that

lim inf
ρBN↑1

(1− ρBN)EQρBN

i (∞)> 0. (3)

Any sequence of non-preemptive policies that does not lose any capacity has two large individual

queues, meaning that (3) holds for both individual queues.

The theorem shows that it is impossible to keep both individual queues small without losing

capacity.7 It also shows there is a difference between preemptive and non-preemptive in the abil-

ity to prioritize one individual queue (I-Priority): coordination idleness prevents the preemptive

prioritization of both individual queues without losing capacity but allows for the preemptive prior-

itization of one individual queue while retaining full capacity. In the proof of the theorem we build

a preemptive policy that does exactly that. In contrast, additional switching idleness prevents the

non-preemptive prioritization of even one individual queue.

7 The proof that at least one individual queue must be large does not rely on the indivisibility of resources.
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3.2. Match: Prioritizing the Collaborative Task

Matching priority levels with collaboration levels means giving highest priority to the collaborative

queue, called C-Priority in the BC network. Preemptive C-Priority can keep the collaborative

queue small without losing any capacity. Indeed, that policy effectively breaks any collaboration

constraints and is equivalent to the benchmark (two-class M/M/1)2 network of Fig. 2. Preemptive

C-priority incurs no switching or coordination idleness and hence no capacity loss.

Non-preemptive policies that prioritize the collaborative activity do not incur coordination idle-

ness but do suffer from excessive switching idleness incurred by minimizing the collaborative queue.

Consider, for example, an arrival to an empty collaborative queue while both resources are working

in their individual tasks. If resource 1 completes service first, the policy forces it to idle and wait for

resource 2 to complete its service before switching to the collaborative task, even though resource 1

still has work in queue 1. This switching idleness increases as ρBN increases and leads to a capacity

loss (which we will quantify in the next subsection).

The essential insight is that matching priority and collaboration levels allows a small collaborative

queue and maximal capacity under preemptive service. However, making the collaborative queue

small under non-preemption entails a capacity loss. This stark trade-off holds for any stabilizing

non-preemptive policy:

Theorem 2 (Matching = C Priority) Consider the BC network with both resources being bot-

tlenecks (i.e., 1−ρρBN

i = 1−ρBN +o(1−ρBN)). Preemptive C-priority keeps the collaborative queue

small without losing any capacity:

EQρBN

0 (∞) =
λ0

µ0−λ0

⇒ lim
ρBN↑1

(1− ρBN)EQρBN

0 (∞) = 0. (4)

In contrast, any sequence of non-preemptive policies that does not lose any capacity has a large

collaborative queue:

lim inf
ρBN↑1

(1− ρBN)EQρBN

0 (∞)> 0. (5)

Given that the capacity loss under nonpreemptive C-priority stems from excessive switching

idleness, we next discuss two policies that control the switching and hence reduce, if not eliminate,

the capacity loss.

3.3. Trading off Priority and Capacity: Collaborative Threshold Priority

To minimize switching idleness it is natural to consider a polling policy that serves the collaborative

queue until exhaustion (i.e., until Q0 = 0), after which resources switch to their individual tasks and

serve those until all individual queues are empty before moving back to the collaborative queue.
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Figure 7 Polling leads to extreme queue oscillations and hence large expected queue sizes in the BC network.

In addition to minimizing switching idleness, polling incurs no capacity loss and is a decentralized

policy that also allows a natural human discretion: people switch tasks only when their current

task is exhausted. Polling is “democratic” by not favoring any specific queue. This, however, leads

to extreme queue oscillations (Fig. 7). The expected sum of queue sizes is finite but very large and

grows much faster than in the reference M/M/1 system where queues scale at rate (1− ρBN)−1:

Proposition 2 (Polling) Non-preemptive polling incurs no capacity loss and stabilizes the BC

network for any ρBN < 1 yet has very large queues: If both resources are bottlenecks (i.e., 1−ρρBN

i =

1− ρBN + o(1− ρBN)), then queues scale super-linearly in (1− ρBN)−1:

lim inf
ρBN↑1

(1− ρBN)3/2EQρBN

+ (∞)> 0.

The culprit behind the superlinear scaling is coordination idleness stemming from the require-

ment that both individual queues be empty before moving back to the collaborative queue (Fig. 8).

The total time the individual queues are served during one cycle is the largest hitting time of zero
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Figure 8 Coordination idleness in the BC network under polling yields much larger queues than in M/M/1

queue.

among all individual queues (Fig. 7). There is no switching idleness here as moving to the collab-

orative task happens only when all individual queues are empty.8 Thus, by eliminating switching

idleness, polling incurs excess coordination idleness that retains stability yet leads to significant

queues. In essence, polling swaps priority control for capacity control.

We seek an intermediate solution that trades off priority and capacity by partially matching

priority and collaboration levels. Consider the C-priority policy with added threshold S: When

resources are serving the individual queues, an alarm sounds when the collaborative queue hits level

S. Resources move to the collaborative queue as soon as possible (those that are idle immediately,

the others upon completion of their current service) and serve the collaborative queue to exhaustion

before moving back to the individual queues.

This “collaborative threshold priority” policy retains the benefits of polling by avoiding excessive

switching yet bounds the switching idleness per cycle by the “switching time” T s, which is the

time from the alarm sounding until all resources have moved to the collaborative task. With iid

exponential service times, T s is the maximum of 2 service times. More generally, if there were J

individual queues, the expected switching time is

m1 log(1 +J)<ET s =m1

J∑
j=1

1

j
<m1(1 + logJ), (6)

8 A similar phenomenon arises in the communication network studied in Simatos et al. (2014) where a protocol that
maximizes throughput leads to super-linear growth of the queues due a similar polling behavior; notice the similarity
of their Figure 1 and our Figure 7.
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Figure 9 The collaborative threshold priority policy trades off switching and coordination idleness (symmetric

BC network with mi = 0.5 and λi = 0.95 so ρj = 0.95).

so that the expected switching idleness per cycle per resource ET s −m1 is bounded by m1 logJ .

Of course, T s depends on the policy: If we require a predetermined sequence in which resources

stop and move to the collaborative queue (e.g., cheapest resources idles first), then T s is the sum

of J service times and ET s ≤m1J .

For any sequencing rule, we can divide the switching idleness by the length of a cycle (see

companion) to yield the average switching idleness rate for resource j:

λjmj(ET s−mj)
S
λ0

+mj

. (7)

A smaller threshold S yields a smaller collaborative queue but requires more switching which

reduces capacity. This yields an explicit stability condition that quantifies the capacity loss:

Proposition 3 The BC network is stable under the non-preemptive Collaborative Threshold

Priority policy provided that for each resource j ∈ {1,2}:

ρj +
λjmj(ET s−mj)

S
λ0

+mj

< 1.

Moreover, there exists k such that with S = k(1− ρBN)−1 the policy incurs no capacity loss (max-

imizes throughput) and total queue count scales optimally: limsupρBN↑1(1− ρBN)EQρBN

+ (∞) <∞.

Remark: Note that the Collaborative Threshold Priority policy with S = 1 reduces to the (static)

C-priority policy so that Proposition 3 quantifies its capacity loss, as foreshadowed earlier.

The proposition reflects the fact that, while S determines the average collaborative queue, the

ratio λ0/S determines the switching frequency. As ρBN increases we must reduce the switching
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frequency to preserve stability. The consequent increase of S trades off switching and coordination

idleness as shown in Figure 9. For small values of S, the servers switch too frequently and hence

switching idleness dominates. For large values of S switching is less frequent but coordination

idleness dominates due to the increase in instances where one individual queue is empty but the

resources are not working on the collaborative task although it has a queue.

The proposition is consistent with the impossibility result: A lower threshold S gives higher non-

preemptive priority to the collaborative task but incurs higher switching idleness and capacity loss.

Eliminating the capacity loss requires a high threshold and yields a higher collaborative queue.

The remainder of this paper will show that the benefits of aligning task priorities and collabo-

ration levels extend to parallel networks. These more general networks also serve as a basis for a

general definition of switching and coordination idleness.

4. Parallel network model and collaboration architecture

Parallel networks generalize the BC network: they are single stage networks in which customers

arrive into a queue, are served, and then leave the system. The lack of inter-queue routing in

parallel networks facilitates the analysis of the impact of collaboration and multitasking.

There is a set K= {1, . . . ,K} of resources and a set J = {1, . . . , J} of activities. Each activity is

associated with a single buffer: there are J buffers. The average arrival rate into buffer i is λi > 0.

The average processing time of activity i is mi > 0. Arrivals follow independent Poisson processes

and service times are independent across customers and exponentially distributed The K × J
resource-activity incidence matrix A has Aki = 1 if resource k is required for activity i, and Aki = 0

otherwise. The distinguishing feature of collaborative networks is that A has at least one column

(activity) with multiple 1’s (collaborative resources). The distinguishing feature of multitasking is

that at least one row (resource) has multiple 1’s. For i ∈ J , we let R({i}) be the set of resources

required for activity i (i.e., k ∈ R({i}) if Aki = 1). More generally, R(A) is the set of resources

required for some activity in the set A ⊆ J : k ∈ R(A) if k ∈ R({i}) for some i ∈ A. To avoid

trivialities we assume that each resource is required for at least one activity so that R(J ) =K. We

let S(i, j) be the set of resources shared by activities i and j: S(i, j) =R({i})∩R({j}).
Parallel networks, as shown in Figure 10, allow us to isolate the effect of collaboration and

multitasking yet are still surprisingly subtle. The only dependence between activities is through

possibly overlapping resources and there are two extremes: If each activity i uses a dedicated

resource i, then we have J independent single-class single-server systems. In contrast, if all activities

share the same resourcesR(1) =R(2) = . . .=R(J) we recover a multiclass M/M/1 queuing system.

In general, collaboration and multitasking fall between these two extremes: some activities share

some resources (R(i) and R(j) may overlap) and some resources process multiple activities.
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a1 a2 aJ
R(J)

Figure 10 Parallel networks are single stage networks featuring collaborating and multitasking resources.

We adopt the following notation: All vectors are represented as column vectors. The vector of

all ones is denoted by e, or by ed to emphasize the dimension d. Componentwise multiplication is

denoted by ∗ so that v ∗w represents the vector with i-th component viwi. The component sum∑
k vi is denoted by v+.

Remember the traditional notions of utilization and capacity: the average workload arriving into

each queue per unit of time is m ∗λ, which we call the activity load vector ρa. Summing over the

relevant activities yields the resource utilization vector ρ:

ρa(λ) =m ∗λ and ρ(λ) =Aρa(λ). (8)

The bottleneck resources are those with the highest utilization, denoted by ρBN(λ) = maxk∈K ρk(λ).

It is useful to formulate this as a linear program, called the static planning problem (SPP):

ρBN(λ) = min
ρ∈R+

{ρ : Aρa(λ)≤ ρe} . (SPP)

If ρBN(λ) ≤ 1, then ρBN is the fraction of time the bottlenecks are busy processing. The set of

SPP-feasible activity load vectors x=m ∗λ is the polyhedron

P = {x∈RJ+ :Ax≤ e}. (9)

Traditional networks can typically handle arrival rates λ in the interior of P (i.e., with ρBN(λ)<

1): there is a control policy that makes the network stable with queues that remain finite in

expectation. With collaboration and multitasking, this is not necessarily true because resources do

not work in isolation.

Rather than merely requiring that each individual resource is not overloaded, we must require

that the network as a whole is not overloaded while preventing any processing conflicts. The

resource-activity matrix A captures these processing conflicts—activities that cannot be performed

simultaneously because they share resources. Based on these we can construct configuration vectors

which specify which activities are being executed: A feasible configuration vector v is a binary

non-zero J-vector such that vi = vj = 1 if activities i and j do not share resources (S(i, j) = ∅) and
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can thus be performed simultaneously. The number of feasible configurations is at least as large as

the number of activities J . Indeed, each activity can be performed in isolation which means that

the unit vectors in RJ are natural feasible configuration vectors. In the absence of collaboration

and multitasking, all activities can be performed simultaneously and all 2J binary J-vectors are

feasible configurations.

Notice that a binary vector v is a feasible configuration if and only if
∑

iAkivi ≤ 1 for each

resource k. In particular, the feasible configuration vectors are the integer vertices of the polyhedron

P. Let C be the matrix of these integer vertices; i.e., each column of the matrix C is a feasible

configuration vector. (Of course, AC ≤ eKe′J .) With some abuse of notation we write a ∈C when

a is a column of C.

To keep up with the average workload m ∗ λ arriving into each queue per unit of time, the

corresponding average amount of time the network must be processing per unit of time—the

network utilization— is given by the solution to the following linear program

ρnet(λ) = min
π∈RJ+

e′π

s.t. Cπ=m ∗λ,
(SPPC)

where πc is interpreted as the long-run average allocation to configuration c. Denote by π̄ the

optimal time allocation in this Static Planning Program for Collaboration (SPPC). The network

capacity is the set of throughput vectors λ≥ 0 for which ρnet(λ) = 1, which implies that the network

is fully utilized.

Notice that a feasible activity load vector m ∗ λ is a convex combination of the configuration

vectors and thus belongs to P (which also can have non-integer vertices). Hence, ρnet ≥ ρBN meaning

that the network must work longer than the bottleneck resources (which may not be able to work

in parallel because of processing conflicts). In GVM, we called this gap:

Unavoidable Bottleneck Idleness UBI(λ) = ρnet(λ)− ρBN(λ)≥ 0. (10)

Theorem 4.2. in GVM states that ρnet(λ) = ρBN(λ) and UBI(λ) = 0 for any parameters m, λ, or any

other probabilistic assumptions, if and only if the polyhedron P is integral. Indeed, only then do

the configuration vectors span the feasible region of the (SPP). Notice that the essential condition

involves matrix A and is independent of other parameters. To gain structural insight, we presented

a graph representation of the matrix A as a formal tool to characterize properties of what we call

the collaboration architecture. The graph has a node for each activity and an edge between two

nodes if their resource sets overlap. Our main result in GVM (Theorem 4.4) was that a “nested”

collaboration architecture features no UBI. We refer the reader to GVM for the formal (general)

definition of nestedness.
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Figure 11 A network with hierarchical collaboration architecture (top) and its collaboration graph (bottom).

Hierarchical architectures are a special subset of nested architectures that are most relevant to

this paper. A hierarchical architecture can be represented by a graph where nodes are arranged in

“collaboration levels” i= 1, . . . , d. Two nodes at the same level do not share resources and, similar

to priority levels, the top collaboration level 1 contains activities that require the highest number

of collaborating resources. Figure 11 shows a simple example while GVM presents an algorithm for

constructing such a leveled graph from the adjacency matrix A. Notice that in Figure 11 activities

3 and 4 do not share resources. Activities 1 and 3 share resource 1 and so does activity 2 that is

on a path from a3 to a1. Similarly, a1 and a4 share resource 2 which is also used by a2 that is on

a path from a4 to a1. Hierarchical architectures have collaboration graphs where each path from a

top node to a bottom node has at least one resource shared by all activities on that path.

5. Dynamics of network workload W net

A control rule specifies which configuration vector is active at each time t. Let T (t) be the cumu-

lative allocation (vector) process. Its component Tc(t) is the cumulative amount of time a config-

uration vector c is active during [0, t]:

Tc(t) =

∫ t

0

1

{
configuration vector c is active at time τ

}
dτ,

where 1{·} denotes the indicator function. Given that only one configuration can be active at any

point in time, the total time the network is processing during [0, t] is
∑

c Tc(t) = e′T (t) ≤ t. The

total time the network is idle (and no configuration is active) during [0, t] is Inet(t) = t− e′T (t).

To translate queue workload into network workload and activity load into network utilization

we first abstract from detailed dynamics and consider a long-run average time allocation vector π

and use the configuration matrix C. For a constant time-allocation vector π, the total amount of
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time activity i is processed equals (Cπ)i. We define the network workload W net(Q) as the minimal

expected time needed to process the work embodied in the queue length vector Q:

W net(Q) = min
π∈RJ+

e′π

s.t. Cπ≥m ∗Q.
(11)

For the BC and BC+ networks of Figure 1 this yields the intuitive expressions:

W net
BC (Q) =m1Q1 + max{m2Q2,m3Q3} and W net

BC+(Q) =m1Q1 +m2Q2 +m3Q3. (12)

It is instructive to consider the dual linear program to (11):

max
y∈RI

+

y′(m ∗Q)

s.t. y′C ≤ e′.
(13)

Letting y?(Q) denote the optimal solution, strong duality then gives us a simple decomposition of

network workload directly in terms of queue workload:

W net(Q) =
∑
j

y?j (Q)mjQj. (14)

There are two extreme deconstructions depending on A or C: When A is the identity matrix

(networks without collaboration or multitasking), then W net(Q) = maxj(mjQj) and y? is a piece-

wise linear function of Q. When C is the identity matrix (as in the BC+ networks), then W net(Q) =∑
j(mjQj) and y? = e is the constant vector of ones, indicating that resources perform as a single

resource. In general, the dual variables of the instantaneous network workload depend on Q.

A long run average view simplifies these dual variables. Consider a network with initial queue

vector Q(0) and arrival and service processes A(t) and S(t), which denote the number of arrivals

and service completions, respectively, during [0, t]. Recall that Tc(t) is the cumulative amount of

time configuration vector c is active during [0, t] so that:

Q(t) =Q(0) +A(t)−S ◦CT (t), (15)

where S ◦ CT (t) is the vector with components Sj((CT )j(t)). Dividing both sides by t, letting

t→∞ and recalling the strong law that Aj(t)/t→ λj and Sj(t)/t→ 1/mj, then in a stable network,

we must have

Cπ=m ∗λ and π= lim
t→∞

T (t)

t
. (16)

As shown earlier, the optimal time-allocation rates π̄ satisfy (SPPC). If π̄k > 0, we say that config-

uration vector k is optimal; otherwise it is a suboptimal configuration. We label the configurations

to allow the following block partitioning

π̄= [π?,0] and C = [C?,C0], (17)
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where π? > 0 and C? contains all optimal configuration vectors.

Let ȳ= y?(λ) denote the solution to (13) when Q= λ (this is the dual of SPP). By strong duality∑
j ȳjmjλj = ρnet and complementary slackness further yields that ȳ′C·,k = 1 if the kth column is

an optimal configuration, meaning π̄k > 0. In matrix notation, recalling (17), we have

ȳ′C? = e′. (18)

Let the 0 configuration mean that no resource is processing (the network idles). Then,

ȳ′Cπ̄= ȳ′C?π? = e′π? = 1− π̄0, (19)

where π̄0 is the optimal idleness rate (the fraction of time the zero configuration is used). The dual

variables ȳ provide us with a simplification: it can be shown that in heavy traffic as ρnet ↑ 1, then

W net(Qρnet(t)) =
∑
j

y?j (Q
ρnet(t))mjQ

ρnet

j (t)≈
∑
j

ȳjmjQ
ρnet

j (t).

Henceforth, the network workload process refers to

W net(t) =
∑
j

ȳjmjQj(t). (20)

Essentially, W net(t) is the expected time the network needs to process the queue vector Q(t)

while using the steady-state optimal time-allocations π̄. Combining (15) and (20) we have that

W net(t) =W net(0) +
∑
j

ȳjmjAj(t)−
∑
j

ȳjmjSj((CT )j(t))

=W net(0) +
∑
j

ȳjmjλjt− ȳ′CT (t) +M(t),

where M is the deviation from the fluid (first moment) processes:

M(t) =
∑
j

ȳjmj

(
Aj(t)−λjt

)
+
∑
j

ȳjmj

(
µj(CT )j(t)−Sj((CT )j(t)

)
.

Similar to (17), block partition the control vector as

T (t) = [T ?(t);T 0(t)] (21)

where T ? denotes the allocation to all optimal configurations and T 0 to the suboptimal configura-

tions. Complementary slackness then yields

ȳ′CT (t) = e′T ?(t) + ȳ′C0T 0(t).

Recall that e′T (t) = t− Inet(t) so that

ȳ′CT (t) = t− Inet(t)− (e′− ȳ′C0)T 0(t).
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Strong duality yields that
∑

j ȳjmjλj = ρnet so that we arrive at

W net(t) =W net(0)− (1− ρnet)t+ (e′− ȳ′C0)T 0(t) +M(t) + Inet(t). (22)

This is the first indication that usage of suboptimal configurations increases the network workload,

which will be further analyzed in the next section. Conversely, for networks that have no suboptimal

configurations (as in the BC+ network where C =C? is the identity matrix) the “damaging term”

(e′− ȳ′C0)T 0(t) = 0 and equation (22) reduces to the single server equation. In general, equation

(22), together with the fact that e′− ȳ′C0 ≥ 0, allows us to state the following result.

Theorem 3 If ρnet = ρBN+ UBI > 1 then the network is transient under any policy, i.e.,

lim inf
t→∞

W net(t)

t
> 0.

6. Formal Definitions of Coordination and Switching Idleness

We have just established that “inefficiency” is captured by the suboptimal-configurations term

(e′− ȳ′C0)T 0(t). Suboptimal configurations may be used for several reasons: when resources have

conflicting priorities (coordination idleness), when we cannot preempt service to switch to an

optimal configuration (switching idleness) or when the only available work is in suboptimal con-

figurations (availability idleness).

Switching idleness is incurred when activating a resource—putting an idle resource to work in

an optimal configuration—does not necessitate the movement of any other resource. This happens

when there is an available optimal configuration that is a superset of the currently used config-

uration. Consider, for example, the BC network (Fig. 1) with a non-preemptive priority to the

collaborative task. Suppose that Q0 = 0,Q1 > 0,Q2 > 0 and we witness an arrival to the empty

collaborative queue while both resources are working in their individual tasks (the configuration

is (0,1,1)). If resource 1 completes service first, it must wait for resource 2 to complete its service

before switching to the collaborative task, even though resource 1 still has work in queue 1: we use

suboptimal configuration (0,0,1) while the optimal configuration (0,1,1) is still available. Hence,

the term switching idleness.

In what follows, given q ∈ RJ+ and a configuration vector b, we write qb for the sub-vector that

has qi for i such that bi = 1. Thus, Qb(t) is the vector of queues corresponding to activities that

are active under configuration b.
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Definition 1 (Switching Idleness) For suboptimal configuration ak =C0
·k let

Isk(t) =

∫ t

0

1{S∗(a,Q(t)) 6= ∅}dT 0
k (t),

where S∗(a, q) := {b ∈ C∗ : b > a, qb > 0}. The network’s switching idleness is given by Is+(t) =

(e′− ȳ′C0)Is(t).

Coordination idleness is incurred when putting an idle resource to work necessitates moving other

resources. When we use a suboptimal configuration a while there exists an optimal configuration

b that would utilize more resources but would require moving a resource from an activity it is

currently processing. Consider, for example, the BC network (Fig. 1) at a time when Q0 > 0,Q1 =

0,Q2 > 0. If we prioritize the individual activities, then we would use suboptimal configuration

a= (0,0,1) where only resource 2 is processing while the optimal configuration b= (1,0,0) would

utilize both resources. Yet that configuration would require moving resource 2 from activity 2 that

it is currently processing. In that case, resource 1 is incurring coordination idleness. Using the

exclusive-or9 operator ⊗, this means that for these two configurations a and b, b⊗a 6= 0 and neither

b > a nor a> b. We can now define:

Definition 2 (Coordination Idleness) For suboptimal configuration ak =C0
·k, let

Ick(t) =

∫ t

0

1{S∗(ak,Q(t)) = ∅ and X∗(ak,Q(t)) 6= ∅}dT 0
k (s), (23)

where

X∗(ak, q) := {b∈C∗ : b⊗ ak 6= 0, qb > 0 and neither b > ak nor ak > b}.

The network’s coordination idleness is given by Ic+(t) = (e′− ȳ′C0)Ic(t).

The indicator sets for coordination and switching idleness are disjoint so that Ick(t)+Isk(t)≤ T 0
k (t).

Availability idleness refers to the remaining time that the suboptimal configuration k is used while

not incurring coordination or switching idleness:

Definition 3 (Availability Idleness) For suboptimal configuration ak =C0
·k let

Iak (t) := T 0
k (t)− Ick(t)− Isk(t). (24)

The network’s availability idleness is given by Ia+(t) = (e′− ȳ′C0)Ia(t).

9 For two binary vectors a and b, a⊗ b= a+ b modulo 2.
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Availability idleness is the cumulative time that suboptimal configuration ak is used while there

is no optimal configuration available that is not a subset of ak. In the symmetric BC network,

Iak (t) increases when only one individual queue has work but the other two queues are empty. Such

events are sufficiently rare that availability idleness does not amount to a capacity loss in the BC

network or more generally:

Theorem 4 Consider a parallel network with a hierarchical10 collaboration architecture and

a policy that, when the only configurations available are sub-optimal, prefers a configuration that

utilizes a bottleneck resource. Then, given ȳ ∈Y, it holds that, almost surely,

limsup
t→∞

1

t
Ia+(t)≤ 1− ρBN.

In contrast to availability idleness, coordination and switching idleness do lead to capacity losses

as we have shown for the BC network. Theorem 4 is easy to verify in the symmetric BC network:

λ1m1 = λ2m2 and (1,1/2,1/2) is an optimal ȳ. The time that the suboptimal configuration (0,1,0)

is used while no other optimal configuration ((1,0,0) or (0,1,1)) is available is bounded from above

by the amount of time that resource 2 has no work anywhere in the network. This is bounded

by the time that the resource would have no work if it could work in isolation, which in turn is

bounded by 1− ρBN.

Denoting IUBI(t) = (ρnet− ρBN)t, we can capture all four types of collaboration idleness in (22):

W net(t) = W net(0)− (1− ρBN)t+M(t)

+IUBI (t) + Is+(t) + Ic+(t) + Ia+(t)

+Inet(t). (25)

7. Possibilities for Parallel Networks

This section extends the main results of the BC network to parallel networks.

We introduce hierarchical priority policies that match priority levels to collaboration levels as

follows: At any time t, resource k is assigned, amongst its activities with positive queues, to the

activity at the highest collaboration level. In particular, a resource will work in level l only if the

queues of all its activities at higher levels 1, . . . , l−1 are empty. In the BC network, for example, the

hierarchical priority policy reduces to static priority to the collaborative activity and its preemptive

version has all desirable properties (Theorem 2) that extend to parallel networks:

10 The proof applies to the larger class of “nested” collaboration architectures.
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Theorem 5 (Matching–Hierarchical Preemptive Priorities) Consider a parallel network

with hierarchical collaboration architecture. A preemptive hierarchical priority policy that matches

task priorities with collaboration levels keeps the asymptotic workload only at the activities at the

lowest collaboration level l and achieves optimal scaling without losing any capacity:

limsup
ρBN↑1

(1− ρBN)EQρBN

+ (∞)<∞ and limsup
ρBN↑1

(1− ρBN)EQρBN

i<l (∞) = 0.

Non-preemptive service performs fundamentally differently from preemptive service in networks

where indivisible resources collaborate, even in heavy-traffic. Non-preemptive hierarchical policies

incur excessive switching idleness that entails a capacity loss. To reduce the switching idleness and

capacity loss, we introduce Collaborative Hierarchical Threshold Priority policies which generalize

the collaborative threshold priority policy of the BC network to parallel networks with hierarchical

collaboration architectures. We write i . j if there is a path in the collaboration graph between

i and j and i is at a lower level than j. Then define the collaborative hierarchical priority policy

with vector of thresholds S as:

(i) Upon completing service in queue i, a resource moves to the highest collaboration level

activity j for which i. j and Qj ≥ Sj, and serves that queue.

(ii) If no queue is found in (i), continue serving the current queue i if it is non-empty.

(iii) If both (i) and (ii) fail, serve the highest-level activity j . i that has a nonempty queue.

(iv) If all (i)-(iii) fail, the resource waits until one of the above conditions holds.

For example, resource R2 in Fig. 11 prioritizes a1 over a2 and a2 over a4.

Of course, whether or not the resource can work in a queue to which it moves depends on other

resources as well. Notice that this policy prescribes actions to resources rather than to the network

as a whole. This “local policy” does not introduce conflicts due to the hierarchical collaboration

architecture which guarantees that when a resource k moves to an activity j so does, upon service

completion, any other resource i required for that activity.

One may worry that too much switching is being introduced because some collaborative queues

may be left before they are exhausted. Yet that worry is unsubstantiated because we can bound

the switching idleness. Effectively, the highest level queues will be served to exhaustion before

moving to lower level queues. That means that for thresholds that grow as (1 − ρBN)−1 it will

take roughly the same amount of time O((1− ρBN)−1) until switching. That guarantees that the

switching idleness is at most O(1− ρBN), which is the foundation of our last theorem on matching

hierarchical priority levels with collaboration levels. An activity j is said to be a leaf node if there

is no activity i 6= j such that i. j. Activities a3, a4 and a5 in Figure 11 are leaf nodes.
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Theorem 6 (Matching–Hierarchical Threshold Priorities) Consider a parallel network

with a hierarchical collaboration architecture. A hierarchical threshold priority policy that matches

task priorities with collaboration levels and has sufficiently high thresholds controls all non-leaf

queues and achieves optimal scaling without losing any capacity: There exist kj such that with

Sj = kj(1− ρBN)−1 the policy maximizes throughput and achieves optimal queue scaling:

limsup
ρBN↑1

(1− ρBN)EQρBN

+ (∞)<∞, (26)

while controlling the queue at each non-leaf node j,

limsup
ρBN↑1

(1− ρBN)EQρBN

j (∞)≤ kj. (27)

8. Concluding Remarks

Networks with simultaneous collaboration by multiple types of multitasking human or indivisi-

ble resources present challenges to capacity management and task prioritization. We introduced

and formally defined two types of idleness—coordination and switching—to explain and quantify

these challenges. Different task priority policies introduce different combinations and magnitudes

of coordination and switching idleness; recall Fig. 4. Both coordination and switching idleness can

destabilize the network and lead to capacity losses but can also have more subtle impact (e.g., as

under polling).

Our key advice is to match task priorities with the collaboration levels defined by the net-

work’s collaboration architecture. Preemptive matched priorities allow collaborative queue control

in parallel networks without capacity losses. Non-preemptive policies, however, must trade-off pri-

oritization and capacity, which can be achieved with a hierarchical threshold priority policy. This

decentralized policy balances switching and coordination idleness: higher thresholds reduce switch-

ing idleness and capacity losses but increase coordination idleness and queue sizes. This explicitly

captures the stark tradeoff between capacity and queue control shown in Fig. 12.

Hierarchical architectures are central to our results: They facilitate the decentralized coordina-

tion of resources to keep collaborative queues under control (through thresholds) without signif-

icantly compromising the total network performance. Aligning task priorities with collaboration

levels has consequences for organizational and network design. Our results suggest that only in

suitably defined hierarchical organizational structures, collaboration and multitasking can happen

without capacity losses. (This may be one benefit of the strong hierarchy in hospitals or com-

plex organizations like the military that require lots of collaboration.) If the desired priorities do
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Figure 12 The Capacity-Controllability Tradeoff for the BC network with a threshold priority policy.

not match collaboration levels there are two options: one either must install extra buffer capac-

ity or redesign the process (e.g., perhaps by duplicating highly-collaborative activities into more

individual activities if possible).

The optimal control of networks with collaboration and multitasking indivisible resources remains

an interesting open challenge. One would want to characterize the structure of optimal policies

that minimize specific delay costs. Our results contribute to this future pursuit by highlighting the

new limitations that these intriguing networks add relative to traditional queuing networks. Of

importance for dynamic control in heavy-traffic are the facts that:

(1) Preemption and non-preemption are fundamentally different, even in heavy traffic. Certain

prioritizations are impossible under either. But what is achievable under preemptive policies may

not be achievable, not even asymptotically, under non-preemptive policies.

(2) Non-negligible thresholds of order O(1/(1− ρBN)) are necessary to limit the switching idle-

ness. This is similar to the work on queues with exogenous switchover times (Reiman and Wein

(1998)). Switchover times here are, however, endogenous which makes control more difficult.

(3) Hierarchical architectures simplify resource coordination and give simple answers when the

costs are aligned with the hierarchy defined by the levels in the collaboration tree. For example,

the preemptive hierarchical threshold priority policy may minimize linear holding costs if activities

at higher levels in the tree incur higher cost.
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