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We provide an empirical and theoretical assessment of the value of information sharing in a two-stage supply

chain. The value of downstream sales information to the upstream firm stems from improving upstream order

fulfillment forecast accuracy. Such an improvement can lead to lower safety stock and better service. Based on

the data collected from a CPG company, we empirically show that, if the company includes the downstream

sales data to forecast orders, the improvement in the mean squared forecast error ranges from 7.1% to 81.1%

across all studied products. Theoretical models in the literature, however, suggest that the value of informa-

tion sharing should be zero for over half of our studied products. To reconcile the gap between the literature

and the empirical observations, we develop a new theoretical model. While the literature assumes that the

decision maker strictly adheres to a given inventory policy, our model allows him to deviate, accounting for

private information held by the decision maker, yet unobservable to the econometrician. This turns out to

reconcile our empirical findings with the literature. These “decision deviations” lead to information losses in

the order process, resulting in a strictly positive value of downstream information sharing. Furthermore, we

empirically quantify and show the significance of the value of operations knowledge—the value of knowing

the downstream replenishment policy.

Key words : supply chain, information sharing, signal propagation, decision deviation, time series,

empirical forecasting, ARIMA process.

1. Introduction

The abundance of information technology has had a massive impact on supply chain coordina-

tion. Sharing downstream demand information with upstream suppliers has improved supply chain

performance in practice. Costco and 7-Eleven share warehouse-specific, daily, item-level point of

sale data with their suppliers via SymphonyIRI platform, a company offering business advice to

retailers (see Costco collaboration 2006). In addition to this uni-directional information sharing,

Collaborative Planning, Forecasting and Replenishment (CPFR) programs advocate joint visibility

and joint replenishment. According to Terwiesch et al. (2005), the benefit of CPFR programs can

be significant: the GlobalNetXchange, a consortium consisting of more than 30 trade partners,

have reported a 5% to 20% reduction in inventory costs and an increase in off-the-shelf availability

of 2% to 12% following the launch of their CPFR programs.
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Companies spend billions of dollars on demand forecasting software and other supply chain

solutions (Ledesma 2004). Given the implementation cost of collaboration technology and the

limited theoretical benefits, it is not clear in practice whether a firm should invest in information

sharing systems. The decision to implement an information sharing system thus hinges on the

following question: how much would sharing downstream sales information improve the supplier’s

order forecast accuracy? We were approached with this question by the statistical forecasting team

of a leading global consumer packaged goods (CPG) company that manufactures and sells beverages

and snack foods to wholesalers and retail chains. Forecasting is necessary for the company due to

the lead time to adjust manufacturing runs and deploy inventory. In the absence of downstream

sales information, the upstream supplier uses its own sales history (i.e., its retailer’s order history),

to forecast how much to manufacture. Not satisfied with its current forecasting performance, the

firm sought solutions in information sharing by collecting downstream operations data (e.g., point

of sale) from its customers. Using this data set, we directly measure the supplier’s forecast accuracy

improvement.

Our empirical results indicate a substantial value of information sharing: statistically significant

improvements (7.1% to 81.1% MSE percentage improvements) across almost all studied products.

To put this in perspective, the company views forecast accuracy improvement opportunities of 10%

as important and 30% as very significant.

The benefits of information sharing have been theoretically quantified in the literature. The

works of Gaur et al. (2005) and Giloni et al. (2014) are important antecedents of our paper. The

authors find that the value of sharing downstream sales to improve upstream forecasting is limited.

(We will also refer to customer sales as customer demand or demand.) In their setting, the decision

maker strictly follows an order-up-to policy, via which the demand process propagates upstream

and becomes the order process. If, for example, the retailer follows a demand replacement policy

(the retailer orders the demand in the current week), orders equal demand. It is as if demand

propagates fully upstream and orders carry full demand information. In such settings, there is

no value of information sharing. The insights in the literature show that the value of information

sharing is zero when the upstream order is a sufficient statistic of demand.

While our empirical observations show that there is value of information sharing, the theory

(that follows the same spirit as Gaur et al. 2005 and Giloni et al. 2014) would suggest zero value of

information sharing for 10 out of 14 studied products. These different results suggest that we need

a better theoretical understanding of the missing component in the theoretical literature, which

makes the results in the literature no longer apply.

The key underlying assumption in the theoretical literature is that decision makers consistently

and strictly follow a given replenishment policy. In practice, however, we learned that decision
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makers deviate from their target inventory policy based on private information that we cannot

observe. From an econometric perspective, we model the agent’s deviation from the exact policy,

in the spirit of Rust (1994), by an “error term” that accounts for a state variable which is observed

by the agent but not by the statistician. Taking into account the potential decision deviations

from classical ordering policies significantly increases the theoretical value of information sharing,

in agreement with the empirical findings.

In the presence of decision deviations, we prove that the value of information sharing is strictly

positive for any forecast lead time (regardless of the demand structure and the ordering policy). At

first glance, the decision uncertainty seems to diminish the attractiveness of analyzing a retailer’s

replenishment process due to the unpredictability of the order decision. Such uncertainty, however,

opens the door to information loss as signals propagate upstream. As demand signals and decision

deviations propagate upstream to produce the order process, they follow distinct evolution pat-

terns: the evolution of inventory governs the translation of decision deviations into replenishment

decisions while the evolution of inventory and current demand together govern the translation

of demand. This difference prevents orders from carrying both full information of demand and

decision deviations. Information sharing then becomes valuable to recover the order’s elaborate

information structure and to improve forecast accuracy. This intuition continues to remain for any

linear demand and order structure, and thus, our conclusion is robust under more general settings.

Our new theory is supported by the empirical observations of significant forecast improvements.

We conduct comparative statics and numerical studies to examine the impact of product demand

characteristics, such as the degree of seasonality, on the value of information sharing. These insights

can help managers rank the potential gains from information sharing depending on the demand

characteristics for different products such as sport drinks or orange juice.

Our estimation procedure uses the fact that the supplier not only knows the retailer’s point of

sales data, but also knows the retailer’s replenishment policy. We refer to knowing the replenishment

policy as “operational knowledge” (in contrast to “sales knowledge”). We are able to disentangle the

value of sales and the value of operational knowledge. By using an analogous estimation procedure

that only uses sales data (and no operational knowledge), we empirically quantify the value of

sales and operational knowledge. In fact we show that operational knowledge brings the same order

of magnitude of forecast improvements as only sales data. This suggests that companies should

always keep operations in mind to achieve the maximum value from downstream sales information.

Our study is grounded in both empirical evidence and theory, and attempts to understand the

cause of the positive value of information sharing. We analyze a data set containing weekly down-

stream demand, upstream order fulfillment, and the point of sales price over a period of two and a
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half years. This allows us to make the following four main contributions. First, this paper comple-

ments the emerging area of research in information sharing with empirical evidence. Specifically,

we directly measure the value of information sharing at a leading CPG company and demonstrate

a statistically significantly positive value of information sharing, and we empirically quantify the

value of operational knowledge. Second, we allow for decision deviations in our theoretical model to

explicitly capture the decision maker’s private information that is unobservable to us. This model

extends the existing literature and recovers the results from the literature as a special case with-

out decision deviation. We demonstrate that the decision deviation distorts the normal demand

propagation in a way that obscures the detailed information of the two processes. The resulting

less informative order signals induce larger forecast uncertainty, which suggests that it is strictly

beneficial for the supplier to use downstream demand to recover the order’s original elaborate infor-

mation structure. Third, we provide guidelines on how the value of information sharing depends

on the demand characteristics.

2. Literature Review

Our paper is related to two streams of literature: (1) theoretical work on information sharing and

demand propagation through supply chains and (2) empirical work that bridges the above theory

and operational data.

There is a vast theoretical literature on the subject of demand propagation and information

sharing in supply chains. A company’s demand propagates through the supply chain and becomes

its order to the supplier. The properties of orders can help answer important questions in supply

chains, e.g. is sharing retailer’s demand information beneficial for the supplier to forecast its own

order and manage its inventory; is there incentive for the agents to share their own information; is

there a bullwhip effect and what is the driver? The demand propagation relies on two basic char-

acteristics of the supply chain: demand structure and replenishment policy. We focus on the work

that assumes truthful and complete information disclosure. We begin by introducing the various

demand and policy structures studied in the literature. Next, we discuss our paper’s contribution

relative to the two most related studies: Gaur et al. (2005) and Giloni et al. (2014).

Theoretical Work. The demand propagation and information sharing have been well studied and

quantified under various modeling assumptions. Lee et al. (2000) adopt an autoregressive AR(p)

process, Miyaoka and Hausman (2004) and Graves (1999) assume an integrated moving average

IMA(d, q) process, Gaur et al. (2005) and Giloni et al. (2014) consider an autoregressive and moving

average ARMA(p, q) process, and Aviv (2003) uses the linear state space framework. Another body

of literature applies the Martingale Model of Forecast Evolution (MMFE) structure. It uses the

incremental signal, generated from the minimum mean squared error, to model the evolution of a
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process. Heath and Jackson (1994), Graves et al. (1998), Aviv (2001) and Chen and Lee (2009)

apply such demand structure to study production and forecasting. Mixed results have been derived

based on different demand structures. For example, Lee et al. (2000) find the value of demand can

be quite high with an AR(1) demand; Gaur et al. (2005) find that there is no value of information

sharing under 75% of demand parameters when demand follows an autoregressive moving average

ARMA(1,1) process.

Gaur et al. (2005) point out that the ARMA model closely resembles the real-life demand

structure and find it valuable from the manager perspective to study such demand process. Our

study models and empirically fits an ARIMA demand, because it is the most general structure to

describe our data set.

In the information sharing literature, the most commonly studied replenishment policy is the

myopic order-up-to policy. The following papers investigate other ordering policies. Caplin (1985)

studies a periodically reviewed (s,S) policy and proves the existence of the bullwhip effect. Cachon

and Fisher (2000) quantify the value of information sharing with a batching allocation rule between

one supplier and multiple retailers. These two papers model batching in replenishment, which is not

amenable to mathematically-tractable analysis. The following papers adopt a “linear replenishment

rule,” in which orders are linear in historical observations. Balakrishnan et al. (2004) propose an

“order smoothing” inventory policy where the order is a convex combination of historical demands.

Miyaoka and Hausman (2004) use the old demand forecasts to set the base stock level and show

this can reduce the bullwhip effect. Graves et al. (1998) and Chen and Lee (2009) study the general-

order-up-to policy (GOUTP), which smoothes forecast revisions to produce a desirable order-up-to

level. According to the replenishment policy that the retailer adopts, our paper introduces a linear

order rule that keeps the days of inventory constant and uses some order smoothing. This policy

equals the optimal order-up-to policy in an i.i.d. demand setting, and is a special case of GOUTP.

Our key intuitions and conclusions regarding information losses are not restricted by our specific

inventory policy structure, they preserve under any affine and stationary ordering policies.

Gaur et al. (2005) and Giloni et al. (2014) study the general ARMA model and conclude that

there is no value of information sharing when retailers’ demand can be inferred from the order

history. We test this condition on our data set and find that our empirical findings contradict

with the theoretical predictions in the literature. We recognize a key component absent in the

literature: decision makers may deviate from the target policy, whereas the literature assumes

that decision makers strictly and consistently follow a replenishment policy. We relax the strict

adherence assumption by allowing decision shocks, which successfully explains our substantial

empirically evaluated value of information sharing, thus fills the gap between the theoretical and

empirical observations.
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Empirical Work. A growing body of empirical literature analyzes the bullwhip effect and infor-

mation sharing. In a game-theoretic environment, agents have incentives to partially rely on the

data or share untruthful information. Cohen et al. (2003) and Terwiesch et al. (2005) empirically

show the low efficiency of forecast sharing. Cachon et al. (2007) investigate a wide range of indus-

tries and show insignificant variance amplification for some industries. Bray and Mendelson (2012)

decompose the bullwhip by information transmission lead time and show a significant amplification

generated from last-minute shocks. Using an econometric model, Dong et al. (2014) find that the

inventory decision-making transfer between firms, which means the supplier manages the retailer’s

inventory, benefit both upstream and downstream firms. They show a negative relation between

the decision transfer and distributor’s average inventory. In our paper, the retailer’s demand infor-

mation is an additional indicator included to help forecast supplier orders. Similarly, one can use

other potential indicators to predict customer demand, e.g. financial market index or accounting

variables (see Osadchiy et al. 2013 and Kesavan et al. 2009, among others).

3. Model

We consider a two-echelon supply chain with a supplier and a retailer. The retailer faces demand Dt

and places an order Ot to the supplier in each week t. In each week, the supplier predicts the future

order, e.g. the 1-step prediction for week t given the history through week t− 1, which we denote

as Ôt−1,t (throughout the paper, hats denote forecasted quantities). The supplier aims to improve

the forecast accuracy of future orders by including downstream sales data. Without information

sharing, the supplier only observes the retailer’s order history. With information sharing, in addition

to orders, the supplier also observes the retailer’s sales history.

Within each week, the following sequence of events occur: (1) the retailer’s demand is realized

and the retailer places an order to the supplier; (2) after receiving the order, the supplier releases

the shipment; (3) the supplier collects the latest information and predicts the future h-step ahead

orders; and (4) based on the updated prediction, the supplier makes production decisions.

3.1. Demand Process

We study a similar demand structure as that of Gaur et al. (2005) and Giloni et al. (2014).

During each week t, the retailer faces external demand, Dt, for a single item. Let Dt follow an

ARIMA(p, d, q) process, where p, d and q are non-negative integers that represent the degree of

the autoregressive, integrated and moving average parts of the model, respectively. The ARIMA

structure assumes a linear combination of historical observations and historical shocks. When d= 0,

the ARIMA(p,0, q) process is reduced to an ARMA(p, q) process,

Dt = µ+ ρ1Dt−1 + ρ2Dt−2 + · · ·+ ρpDt−p + εt−λ1εt−1−λ2εt−2− · · ·−λqεt−q, (1)



7

where µ is the process mean, εt is an i.i.d. normal demand shock with zero mean and variance σ2
ε ,

ρi is the autoregressive coefficient and λi is the moving average coefficient.

To derive the abbreviated expression for d ≥ 0, we introduce the backward shift operator B,

which shifts variables backward in time; e.g., BdDt shifts demand back by d times BdDt =Dt−d,

and (1− B)Dt differences demand once (1− B)Dt = Dt −Dt−1. Differencing the demand twice

means differencing Dt−Dt−1 one more time, (1−B)2Dt =Dt−2Dt−1 +Dt−2. Similarly, (1−B)dDt

differences the demand d times, and we refer to it as the dth-order differenced demand.

Let the AR coefficient be denoted as φAR(B) = 1 − ρ1B − ρ2B2 − · · · − ρpBp, the integration

coefficient as π(B) = (1−B)d, and the MA coefficient as ϕMA(B) = 1− λ1B− λ2B
2− · · · − λqBq.

When d≥ 0, π(B)Dt follows an ARMA(p, q) process, and we rewrite the demand process (1) as

φAR(B)π(B)Dt = µ+ϕMA(B)εt.

We can further rewrite π(B)Dt as an MA representation with ϕ(B) = φ−1AR(B)ϕMA(B),

π(B)Dt = µ+ϕ(B)εt. (2)

We will work with this MA representation because it is mathematically equivalent to an ARMA

model but has a more concise expression. We assume that the mean of demand is constant. Under

this assumption, E[(1−B)dDt] = 0 for d > 0, and thus, the differenced demand has zero process

mean for d> 0.

We review a basic, yet important, property of an MA process from the time series literature:

covariance stationarity. For details, we refer readers to Hamilton (1994) and Brockwell and Davis

(2002). We assume the dth differenced demand is covariance stationary; that is, the differenced

demand has a finite and constant mean, finite variance and time invariant covariance of π(B)Dt

and π(B)Dt+h for any t and h. One might think that the MA model is restricted to a convenient

class of models. However, representation (2) is fundamental for any covariance stationary time

series. That is, any covariance stationary process is equivalent to an MA process in terms of the

same covariance matrix (Wold 1938). Therefore, assuming the ARIMA model is not restrictive. We

adopt Hamilton (1994, p. 109)’s description of the equivalence between the stationarity and MA

representation, which is known as the Wold Decomposition property.

Property 1 (Wold Decomposition) Any zero-mean covariance stationary process Xt can be

represented in the MA form Xt =
∑∞

i=0αiεt−i, where αo = 1 and
∑∞

i=0iα
2 <∞. The term εt is

white noise and represents the error in forecasting: εt ≡Xt− Ê(Xt|Xt−1,Xt−2, . . .).
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3.2. Replenishment Policy

This section presents the replenishment policy the retailer adopts in practice. We interviewed the

planner who places orders to understand the policy. We learned that the supplier is the retailer’s

only source, and that it requires a transportation lead time LR to ship products to the retailer.

According to the planner, the retailer aims at keeping a constant DOI (days of inventory) amount

of the total on-hand inventory and in-transit inventory. In addition, the decision maker smoothes

orders (we find this in the data and confirm this with the planner). We refer to such policy as the

“ConDOI policy with order smoothing”, where “Con” represents constant and “DOI” represents

days of inventory. We first define the ConDOI policy and then extend it with order smoothing.

If a retailer follows the ConDOI policy, she places an order at the end of week t to bring the

inventory level up to the target days of inventory multiplied by the retailer’s total future demand

forecast within the transportation lead time LR. For example, if the retailer targets the inventory at

14 days and the lead time LR is 3 weeks, the retailer follows an order-up-to policy with order-up-to

level equal to 2 (weeks) × the retailer’s demand forecast of the next three weeks. When the demand

is i.i.d. distributed, the retailer’s demand forecast is constant. Thus, both the optimal order-up-

to policy and the ConDOI policy generate constant orders, and they are equivalent under i.i.d.

demand. When demands are correlated, the optimal order-up-to level changes every week, which is

not convenient from a practical perspective. The ConDOI policy, on the other hand, requires only

one parameter, the DOI level, to manage inventory, and thus, is easy to implement and free from

heavy computational burdens, which explains its use in practice.

Since a week has 7 days, the target weeks of inventory equals 7−1× target DOI level. We denote

it as Γ, where Γ is positive and constant.1 Let D̂R
t,t+k denote the retailer’s future demand forecast

for week t+ k made in week t. According to the interview with the retailer, we learned that the

retailer adopts a weighted moving average demand forecast, which uses recent demands in H weeks

(see Chen et al. 2000a for the moving average forecast and Chen et al. 2000b for the exponential

smoothing forecast). Chen et al. 2000a point out that the moving average is one of the most

commonly used forecasting techniques in practice. Let m̂t denote the retailer’s forecast of future

LR week demands given demand history prior to week t,

m̂t ≡
LR∑
k=1

D̂R
t,t+k =

H∑
j=0

βjDt−j, (3)

where βj is the coefficient of demand in the past jth weeks, the sum of which equals the transporta-

tion lead time,
∑H

j=0 βj = LR. At the end of week t, the retailer orders up to Γm̂t. Note that the

1 In the following empirical analysis, we allow Γ to vary across the summer and the winter. Γ remains constant across
seasons. Therefore, assuming a constant ConDOI for our theoretical analysis is not restrictive.
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retailer that we study adopts a suboptimal demand forecast2 (the optimal demand forecast should

follow the ARIMA structure). We will argue that this assumption does not have a qualitative

impact on the theoretical results in Section 6.

According to the planner, the ending inventory in each week might not reach the target days of

inventory because the order decision might fail to adjust the end inventory changes completely. In

order to address this, we extend the ConDOI policy by allowing a fixed proportion of last week’s

inventory to become the current week’s inventory. In other words, the order-up-to level is a convex

combination of that of the ConDOI policy and that of the demand replacement policy,

It = γΓm̂t + (1− γ)It−1,

where γ is the order smoothing level, and it is between [0,1]. Irvine (1981) introduces a similar

notion and empirically confirms that firms attempt a partial adjustment towards the optimum

level.

Given the fundamental law of material conservation, Ot =Dt + It− It−1, we write the order as

Ot =Dt + γ(Γm̂t− It−1). (4)

The order in week t is the current week’s demand plus γ fraction of the net inventory under the

ConDOI policy. The larger γ, the faster the order adjusts to the target ConDOI inventory level.

The order smoothing component enables the extension of the ConDOI policy to a rich family

of linear policies. The ordering rule is reduced to a ConDOI policy when γ = 1, and becomes a

demand replacement policy when γ = 0. The order expression of the myopic order-up-to policy

is a special case when γ = 1. Graves et al. (1998) and Chen and Lee (2009) derive a general

production-smoothing policies by imposing weight on forecast revisions, which bear an affine and

time-invariant structure on historical signals. Our smoothing level γ smoothes the net inventory

to produce the desired order-up-to level, which is a special case of the above general class. Ot may

be negative, in which case we assume that this excess inventory is returned without cost (see Chen

et al. 2000a, Gaur et al. 2005 and Chen and Lee 2009 for the same assumption).

We can iteratively replace It−i with γΓm̂t−i+(1−γ)It−i−1 for any i≥ 1 in the order process (4),

which becomes

Ot =Dt + γ
H∑
i=0

ΓβiDt−i− γ2

∞∑
i=1

(1− γ)i−1
H∑
j=0

ΓβjDt−i−j.

We define ψ(B) ≡ 1 + γ
∑H

i=0 ΓβiB
i − γ2

∑∞
i=1

∑H

j=0(1 − γ)i−1ΓβjB
i+j as the policy parameter.

Using ψ(B), we abbreviate the order as Ot =ψ(B)Dt. Since demand satisfies π(B)Dt = µ+ϕ(B)εt

2 In order to empirically recover the replenishment policy parameters later in the paper, one has to use the same
policy that generated the data.
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and the order satisfies π(B)Ot = π(B)ψ(B)Dt, we can represent the order process as an ARIMA

model with the white noise series {εt}:

π(B)Ot = µ+ϕ(B)ψ(B)εt, (5)

which has the same expression as (7) in Gaur et al. (2005): orders are linear in demand shocks.

The coefficient of εt in (5) is c0 ≡ 1 + γa0. Since this coefficient is rarely zero according to our

data set, we assume that c0 6= 0 and normalize it to one (see Giloni et al. 2014 for discussion on

c0 = 0). Then the centered order follows an MA process with the white noise series {c0εt},

π(B)Ot−µ= c−10 ϕ(B)ψ(B)c0εt. (6)

We next empirically test the theoretical model and evaluate the forecast accuracy improvement

when there is information sharing.

4. Empirical Estimation

This section sets up the forecasting procedure, explains the data set and presents the empirical

models.

We compare the forecast accuracy under two settings: NoInfoSharing and InfoSharing. The

supplier observes the retailer’s order history under the NoInfoSharing setting and observes the

additional retailer’s sales history under the InfoSharing setting.

We choose the last 26 weeks in our data as the out-of-sample test period. This out-of-sample

comparison is made in two stages. First, we forecast the 1-step-ahead order over the out-of-sample

test period. To be specific, the forecast begins 26 weeks before the end of the data. Given infor-

mation history through the end of week t−1, we predict the order for week t. We then update the

information history from the beginning of the data through the end of week t to predict for week

t+ 1. We update the available information history on a rolling basis to obtain the order forecast

and calculate the forecast error by comparing the actual observation and predicted value. Second,

we conduct tests of equal forecast accuracy on the two sequences of forecast errors generated from

two candidate forecasting methods.

4.1. Data

We obtain the data from a CPG company, which is a leading manufacturer and supplier in the

US beverage and snack food industry. We study two brands of products: sports drinks and orange

juice.

Our data set consists of three elements of a specific retail customer: (1) the retailer’s sales from its

distribution centers to local stores, (2) the retailer’s orders from the retailer’s distribution centers

to the supplier’s distribution center and (3) the products’ retail price. This retail customer is one
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Table 1 Summary statistics of sales and orders.

Sales Orders

Brand Product Mean S.D. C.V. Mean S.D. C.V.

Orange 128 OR 1387.41 395.32 0.28 1383.64 802.82 0.58
Juice 128 ORCA 1019.71 290.39 0.28 1028.06 582.27 0.57

12 OR 457.83 129.67 0.28 456.59 263.77 0.58
12 ORCA 227.47 84.79 0.37 233.24 164.90 0.71
59 ORST 593.18 161.12 0.27 601.90 281.29 0.47
59 ORPC 724.95 188.55 0.26 727.02 346.00 0.48

Sports 500 BR 870.48 391.70 0.45 889.03 726.24 0.82
Drinks 500 GP 1145.93 474.19 0.41 1171.95 851.16 0.73

PD LL 75.33 42.28 0.56 78.10 74.87 0.96
PD OR 86.74 51.74 0.60 90.74 82.20 0.91
PD FRZ 97.84 53.96 0.55 100.91 83.25 0.82
1GAL GLC 511.20 95.10 0.19 517.38 199.86 0.39
1GAL FRT 336.57 83.80 0.25 340.76 141.59 0.42
1GAL OR 522.55 95.43 0.18 531.03 201.29 0.38

Figure 1 Summary of sales, orders and point-of-sale price for product PD OR.

of the CPG company’s major accounts. The data spans 126 weeks between 2009 and 2011. We

calculate the retailer’s inventory using the fundamental law of material conservation, given sales

and orders. The retailer’s inventory level stays positive over all weeks, indicating that stockouts

are very rare in our data set. In addition, we find in a numerical study that the value of demand

and the value of sales are statistically indistinguishable under parameters that are representative

of our data set. Thus, we approximate sales as actual demand in our study.

We eliminate untrustworthy data, such as new-entering products that have incomplete data

points or obsolete products that are existing the market. After cleaning the data, we have 51

product lines in total: 19 orange juice products and 32 sports drink products. We summarize the

sales, orders and price of a specific product (orange flavor powder product) over 126 weeks in

Figure 1. It shows the bullwhip effect: the upstream order has larger volatility than the downstream

sales. Further, when there is a price promotion, demand and orders experience a spike during the

discount activity and suffer a slump when price returns to normal.

The two major concerns regarding high-promotional products are (1) the violation of the station-

ary assumption of both demand and orders, and (2) the complicated ordering rules that preclude
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us from completely removing the promotional lift and correctly estimating the policy parameters.3

Further, the orders might be moved from peak to nonpeak periods according to certain rules, such

as shipping certain percentage of orders in advance prior to the promotional week, if planners

anticipate a spike in future demand (Van Donselaar et al. 2010 also point out that advancing orders

are an important consideration of decision makers). Price variations across weeks generate non-

stationary spikes, which further complicates the replenishment policy and results in a time-variant

covariance matrix of orders.

For the purpose of our study, we shall classify the products into low-promotional and high-

promotional products and focus on the former. This classification is based on the price discount

and frequency of discount being offered on the product.4 Based on the data set, 14 products have

low promotional activities. The 14 low-promotional items occupy 20% of the total ordering volume

of the retailer. For completeness, we empirically study the rest of the high-promotional products

(see the online companion, available on the authors’ websites), and we briefly show and discuss the

results in Section 9.

To summarize, we utilize the retailer’s (1) sales to the end customers and (2) order fulfillment

to the supplier. The summary statistics over the 126 weeks are presented in Table 1. Sales have

approximately the same mean as orders because inflows balance outflows. As a side, we also observe

the bullwhip effect: products have higher variations in upstream orders.5

4.2. The Empirical Model With Information Sharing: Decision Deviations

We next address the key difference between a theoretical model in the literature and what happens

in practice, and explain the InfoSharing forecasting method.

The key underlying assumption in the theoretical model described above as well as in the litera-

ture is that the decision maker strictly and consistently follows a specific replenishment rule. This

is rarely the case in practice, because decision makers only use the replenishment policy as a mere

guide from which they rationally deviate. Van Donselaar et al. 2010 point out that retail store

3 To be specific, when retailers forecast future demand of promotional products in practice, they first generate the
baseline (non-promotional) forecast as in equation (3) and then add back the promotional lift by multiplying the
price reduction rate.

4 Negotiated at the beginning of each year, the supplier has a fixed price plan throughout the year. Thus, the
future price can help predict demand changes for promotional products. A promotional activity can last for several
weeks. We define a promotional depth metric to capture price discount and frequency. Promotional depth sums every
promotional activity’s price discount measured as a percentage within the test periods,

∑
idiscount ratei, where i is

the total number of activities in the test periods. We define the low-promotional products as those with promotional
depth ≤ 0.15 (zero or one promotional activity), and we define the high-promotional product as those with higher
promotional depth.

5 The literature discusses the potential factors of the bullwhip effect, such as the inventory policy and forecasting
technique (Lee et al. 1997, Chen et al. 2000a and Chen et al. 2000b), order batching (Lee et al. 1997) and order
smoothing (Chen and Lee 2009).
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managers may not follow order advices by the replenishment system because their incentives may

differ from the the system or they perceive the system to be suboptimal. We interviewed planners

that place orders to the CPG company, and we observed how they place orders. The observations

confirm the literature that the planners’ orders indeed deviate from the suggested policy. Devia-

tions could stem from several operational causes. For example, to increase transportation efficiency

and reduce transportation cost, the retailer tries to fill up a full truck, and thus she may place a

rounded order quantity or more (or less) orders than the policy suggests. Products with inventory

above the target DOI level might still be replenished because as the week approaches Friday, the

decision makers over-replenish to guarantee enough inventory during the weekends. In practice, the

retailer might place orders daily. However, for this study, we have access only to the weekly level

instead of daily information. Looking through the lens of the aggregate data, we lose the detail on

the replenishment decision, which is reflected by the actual orders’ deviations from the theory.

Among the above different operational drivers, a common characteristic is that they can be

observed by decision makers, but not by statisticians. Henceforth, we rationalize the retailer’s

departure from the exact policy following the same spirit as Rust (1994): it is due to a state variable

which is observed by the downstream retailers but not by the upstream suppliers. It is interesting

to note that deviations from the prescribed order quantity might further reduce system cost since

they are based on more detailed information.

We extend the theoretical framework by explicitly including such idiosyncratic shocks in decision

making. We refer to such idiosyncratic shocks as decision deviations. We assume the decision

deviation δt is normally distributed with zero mean and variance σ2
δ , and independent with historical

demand shock εs, s < t. However, contemporaneous demand signals and decision deviation signals

can be correlated. A common approach in the empirical literature is to model this error term as

additively separable in the decision. Using this approach, we obtain

Ot =Dt + γ(Γm̂t− It−1) + δt. (7)

We shall show that the inclusion of this zero-mean shock in the theoretical model has important

consequences on the value of information sharing in Section 6.

As before, we iteratively replace It−i with γΓm̂t−i + (1− γ)It−i−1 + δt−i in the order process (7)

and obtain Ot =Dt + γ
∑H

i=0 aiDt−i− γ2
∑∞

i=1(1− γ)i−1
∑H

j=0 ajDt−i−j + δt−
∑∞

i=1 γ(1− γ)i−1δt−i.

We define κ(B) = 1−γ
∑∞

i=1(1−γ)i−1Bi as the order smoothing parameter. Applying the backshift

operators κ(B) and π(B), the order process can be abbreviated as

π(B)Ot−µ=ϕ(B)ψ(B)εt +π(B)κ(B)δt. (8)

Remark. Note that decision deviations focus on how much real order decisions depart from the

replenishment policy that the firm is expected to follow. Although decision deviations and the
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bullwhip effect share similar operational factors, these two concepts are different. For instance,

decision deviations can be present in the absence of the bullwhip effect: if a firm orders a fixed

amount (truck load effect) each week but is expected to follow the ConDOI policy, the order variance

is zero (no bullwhip effect), but the firm deviates from the target inventory policy (positive decision

deviations). On the contrary, the bullwhip effect can be present in the absence of decision deviations.

For example, when a firm strictly follows a general-order-up-to policy, decision deviations are zero,

whereas the order smoothing level still amplifies the order variability (Chen and Lee 2009). They

may also coincide: under the demand replacement policy with Ot = Dt + δt, decision shocks are

reflected in δt, which also directly drives a higher upstream variance.

InfoSharing Method. In practice, the retailer’s forecast is a weighted summation of last month’s

demands. Thus, we let H = 3 and the order in (7) becomes Ot = (1 + γΓβ0)Dt + γΓβ1Dt−1 +

γΓβ2Dt−2 +γΓβ3Dt−3−γIt−1 + δ. We estimate the replenishment policy parameters for each week

in the test period by

Ot = c0Dt + c1Dt−1 + c2Dt−2 + c3Dt−3− γIt−1 + δt, (9)

where c0 ≡ 1 + γΓβ0 and ci ≡ γΓβi for i= 1,2,3. The idiosyncratic shock δt captures the decision

maker’s deviation from the deterministic replenishment policy.6 If δt is positive, the retailer orders

more than what our policy predicts and vice versa. As we will show later, δt is the key element in

bridging the empirical and theoretical results.

To forecast the supplier’s order in t+ 1, we first forecast future demands. We fit the ARIMA

model on the historical demand series to forecast D̂t,t+1. We obtain the best estimator with the

step-wise variable selection method which chooses the model with the lowest Bayesian information

criterion (BIC).7 The order prediction for t+ 1 uses the parameters estimated from (9), D̂t,t+1, Ds

where s≤ t and It, Ôt,t+1 = c0D̂t,t+1 + c1Dt + c2Dt−1 + c3Dt−2−γIt. Note that D̂t,t+1 is an optimal

demand forecast, which differs from the retailer’s weighted average demand forecast D̂R
t,t+1.

4.3. The Empirical Model Without Information Sharing

For the NoInfoSharing benchmark, we use only the order history to predict future orders. We

replicate the CPG company’s current practice: using the ARIMA process to model orders and

make future predictions. We next show that this method is also theoretically grounded.

ARMA-in-ARMA-out property. The order process with decision deviations has a stationary

covariance. According to property 1, the order process (8) follows an ARIMA model. This is

6 The estimating equation (9) does not have an intercept, which might result in a nonzero average of δt in the
estimation. Note that we empirically test that for most products, δt has a zero mean (p < 0.05).

7 BIC is a criterion for model section for time series analysis and model regression. It selects the set of parameters
that maximizes the likelihood function with the least number of parameters in the model.
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consistent with the “ARMA-in-ARMA-out” (AIAO) property discussed in the literature (Gilbert

2005 and Gaur et al. 2005), where AIAO means that the retailer’s order process is also an ARMA

process with respect to the demand shock.8 If the replenishment policy is an affine and time

invariant function of the historical demand, inventory, demand shock and decision deviations, the

order process has a stationary covariance. Henceforth, the upstream order series also follows an

ARIMA process under such policies.

NoInfoSharing Method. Based on the above AIAO property, we fit an ARIMA(p, d, q) model

to the order history,

(1−B)dOt = µ+ ρ̃1(1−B)dOt−1 + · · ·+ ρ̃p(1−B)dOt−p + ηt + λ̃1ηt−1 + · · ·+ λ̃qηt−q, (10)

where ηt is the order shock, and µ, ρ̃i and λ̃i are the time series coefficients of the order process. As

before, we predict future orders by applying the estimated ARIMA model. For example, if d= 1

and we have the available information history until week t− 1, then the order forecast for week

t uses estimated coefficients µ, ρ̃i and λ̃i, and estimated historical order shocks ηt−1, ηt−2, ... ,

Ôt−1,t =Ot−1 +µ+ ρ̃1(Ot−1−Ot−2) + ρ̃2(Ot−2−Ot−3) + · · ·+ ρ̃p(Ot−p−Ot−p−1) + λ̃1ηt−1 + λ̃2ηt−2 +

· · ·+ λ̃qηt−q. This method is a reliable representation of the CPG company’s current practice.9

5. Empirical Results

This section provides empirical evidence that incorporating downstream sales data improves order

forecast accuracy, compared to the benchmark where sales information is not shared. We display

the estimated demand and replenishment policy parameters and the empirical findings.

5.1. Parameter Results

We present the demand and replenishment policy parameters in Table 2. The first column records

the (p, d, q) value of the ARIMA demand, and the next three columns are the corresponding

demand parameters; i.e., the 128 OR product follows an ARIMA(0,1,1) demand process, Dt =

Dt−1 + εt − 0.93εt−1. For all products, demand is best estimated by d= 1, which implies that the

first-order differenced demand is an ARMA process. The estimated demand parameters are used to

generate the optimal demand forecast D̂t,t+1 for the InfoSharing forecast. In the policy parameter

sector, orders are determined by a linear combination of historical demands10 and the last week’s

8 Giloni et al. 2014 show a more general QUARMA-in-QUARMA-out property that includes the special case c0 = 0.

9 It is important to ensure that the information environment and methods used for our paper and the company are
similar, so that the comparison of forecast accuracy is fair. We conduct comparisons between the company’s historical
forecasts and our derived forecasts for promotional and non-promotional products, at the SKU and Pack level, and
across winter periods and summer periods. The forecast accuracy turns out to be very close (around an average 2%
difference) and the company confirmed it as insignificant.

10 For some products, the estimated weight of the current week’s demand is zero, which is unlikely to occur in practice.
Our estimation shows a zero coefficient because the retailer may replenish inventory during the week, but our data
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inventory. The order smoothing level γ is statistically significantly different from one, providing

strong support for retailers’ order smoothing.11

In practice, it takes one week to ship products from the CPG company to the retailer. Thus, the

transportation lead time is one, LR = 1, and we have
∑H

i=0 Γβi = 1 and Γ = γ−1(
∑H

i=0 ci− 1). The

DOI column displays the estimated days of inventory level. For example, the retailer aims to keep

6.36 days (0.91 weeks) of inventory for product 128 OR, which is equivalent to 0.91× 1387.41 =

1262.54 cases of inventory on average. According to the planner, the retailer targets at a lower

DOI level for the orange juice brand and a higher DOI for the sports drink brand, because the

sports drink products have higher demand variations. Our estimated DOI level is consistent with

the actual target level claimed by the decision maker. Decision deviations are the residuals when

estimating (9). They satisfy the white noise assumption according to the Bartlett test. We define

σ2
δ/(σ

2
ε + σ2

δ) as the decision deviation weight, which measures the relative weight of the decision

uncertainty over the demand uncertainty. We display the weight in the last column. The weight

of δ over demand signals ranges from 0.6 to 0.9 across products, providing strong evidence that

decision deviations are prevalent in our data set.12

5.2. Including Downstream Demand Improves Order Forecasting

We measure the accuracy with three forecast error metrics widely used in the literature (cf. Osad-

chiy et al. 2013, Kesavan et al. 2009): mean absolute percentage error (MAPE), mean squared

error (MSE) and relative root mean error over the mean of orders (relative RMSE). Let N be

the number of weeks in the test period. The MAPE metrics over the test period is MAPE =

1
N

∑N

i=1

∣∣∣Ot+i− Ôt+i−1,t+i∣∣∣/Ot+i. MAPE measures the absolute error relative to the mean, which

is closely related to the metric used by the company from which we received the data. MSE is

a frequently adopted accuracy metric in the theoretical literature because of its mathematical

tractability. We also use this metric for our theoretical analysis. We display the RMSE value

because it is more intuitive to understand.

Table 3 presents the forecast accuracy for each product in MAPE and RMSE separately.

The first sector displays the MAPE metrics of each method and the MAPE percentage

set consists of system’s snapshots at the end of the each week. If the retailer replenishes certain products always on
Monday, the current week’s order should be a linear combination of past weeks’ demand, not including the current
week (since the current week’s demand has not been realized yet). Therefore, we adjusted for products with zero c0
in Table 2 by shifting c1, c2 and c3 forward.

11 γ is necessary in improving forecasts. We test a setting without allowing order smoothing (setting γ = 1). When
γ = 1 (this corresponds to the retailer following the strict ConDOI policy) in the estimating equation, the in-sample
fit (R2, AIC and BIC) is low, and we do not observe a significant out-of-sample forecast accuracy improvement.

12 δ is important in improving forecasts. We conduct an empirical forecast study excluding decision deviations, which
only uses demand parameters and demand signals in equation (5) to make predictions. The InfoSharing forecasts
become very inaccurate for all products, which even perform worse than the NoInfoSharing forecasts.
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Table 2 Estimated demand and policy parameters.

Demand parameters Policy parameters
Brand Product (p, d, q) λ1 λ2 λ3 c0 c1 c2 c3 γ DOI Weight

Orange 128 OR (0,1,1) 0.93 1.30 0.27 0.63 6.36 0.62
Juice (0.04) (0.18) (0.16) (0.12)

128 ORCA (0,1,1) 0.93 1.33 0.30 0.53 8.48 0.57
(0.04) (0.18) (0.17) (0.12)

12 OR (0,1,2) 0.48 0.33 1.46 0.60 0.87 8.56 0.86
(0.10) (0.10) (0.17) (0.18) (0.12)

12 ORCA (0,1,2) 0.28 0.25 0.97 1.09 0.36 0.86 11.54 0.85
(0.10) (0.10) (0.21) (0.23) (0.19) (0.12)

59 ORST (0,1,1) 0.72 1.55 0.39 9.76 0.68
(0.07) (0.10) (0.07)

59 ORPC (0,1,1) 0.8 1.84 -0.46 0.28 9.58 0.73
(0.07) (0.18) (0.22) (0.08)

Sports 500 BR (0,1,3) 0.12 0.16 0.49 1.17 0.55 0.35 14.50 0.93
Drink (0.09) (0.09) (0.09) (0.29) (0.33) (0.07)

500 GP (0,1,0) 0.39 0.67 0.63 0.36 13.43 0.88
(0.25) (0.38) (0.29) (0.07)

PD LL (0,1,0) 0.61 1.11 0.24 21.06 0.85
(0.40) (0.44) (0.06)

PD OR (0,1,1) 0.30 1.37 0.39 0.29 18.35 0.84
(0.10) (0.16) (0.23) (0.07)

PD FRZ (0,1,1) 0.32 1.27 0.47 0.32 16.22 0.83
(0.09) (0.16) (0.22) (0.07)

1GAL GLC (0,1,2) 0.2 0.43 0.76 1.17 -0.54 0.22 12.38 0.87
(0.09) (0.09) (0.25) (0.28) (0.21) (0.08)

1GAL FRT (0,1,2) 0.37 0.36 1.49 0.25 13.38 0.78
(0.10) (0.10) (0.13) (0.07)

1GAL OR (0,1,2) 0.29 0.34 1.52 0.30 12.33 0.77
(0.10) (0.10) (0.12) (0.07)

Note. The number in parentheses denotes the standard error of the estimate. For the policy parameters, we apply the
step-wise variable selection method to only include variables with p < 0.05 in the regression.

Table 3 NoInfoSharing and InfoSharing forecast accuracy comparison in MAPE and RMSE. InfoSharing

forecasts outperform NoInfoSharing forecasts for almost all products.

MAPE Relative RMSE
NoInfo Info MAPE % NoInfo Info MSE %

Brand Index Product Sharing Sharing Improve Sharing Sharing Improve

Orange 1 128 OR 39.0% 21.5% 45.0%** 47.9% 43.3% 18.1%**

Juice 2 128 ORCA 42.7% 29.8% 30.3%* 45.4% 38.9% 26.5%**

3 12 OR 198.7% 82.2% 58.6%* 77.8% 53.2% 53.4%**

4 12 ORCA 106.7% 53.1% 50.2%** 59.3% 40.6% 53.1%**

5 59 ORST 40.0% 32.5% 18.8%* 48.3% 46.6% 7.1%

6 59 ORPC 26.3% 19.0% 27.7%** 33.6% 28.2% 29.4%**

Sports 7 500 BR 40.0% 24.1% 39.8%** 47.5% 29.1% 62.5%**

Drink 8 500 GP 32.6% 20.9% 36.0%** 34.9% 19.6% 68.4%**

9 PD LL 25.2% 23.9% 4.7% 43.8% 30.6% 51.3%

10 PD OR 68.3% 38.1% 44.2%** 81.6% 35.5% 81.1%*

11 PD FRZ 37.9% 22.9% 39.5%* 41.3% 27.1% 56.9%**

12 1GAL GLC 37.6% 23.3% 38.0%** 43.1% 29.2% 54.2%**

13 1GAL FRT 50.9% 35.7% 29.9%** 52.5% 35.6% 54.0%**

14 1GAL OR 34.4% 23.9% 30.4%* 36.6% 27.2% 44.8%**

** At level p < 0.05, the accuracy improvement over NoInfoSharing method is significant.
* At level p < 0.1, the accuracy improvement over NoInfoSharing method is significant.

improvement of the InfoSharing method over the NoInfoSharing method, which is defined by

(MAPENoInfo−MAPEInfo)/MAPENoInfo. The larger the percentage improvement, the more accu-

rate the forecast with information sharing. We conduct the pairwise t-test to determine the statis-
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tical significance of forecast improvement. A major drawback of MAPE is that zero or small real

observations might distort the measure. For example, 12 OR and 12 OR CA have low ordering

quantity in three weeks, which leads to a high MAPE even on the average level. The Relative RMSE

sector reports the RMSE value over the mean of orders. We test the significant level by MSE and

display the MSE percentage improvement in the last column, (MSENoInfo−MSEInfo)/MSENoInfo.

Table 3 shows that adding downstream demand leads to statistically significant forecast accuracy

improvement. For all products (except for PD LL13), the InfoSharing method generates statisti-

cally significant improvements over the NoInfoSharing method for at least one error metrics. If

measuring at the overall level across products, the NoInfoSharing forecasts have a 56.45% MAPE,

the number of which is representative of the typical number we observe at the CPG company. At

the overall level, the InfoSharing forecasts have a statistically significantly lower MAPE of 33.36%.

To summarize, we have empirically showed that the value of downstream demand is statistically

significantly positive, and the effect is very large.

So far, we have empirically tested the value of downstream demand. We next revisit the theo-

retical conditions in literature on our products, and compare the theoretical predictions with our

empirical observations.

6. Theoretical Results

In this section, we first revisit the main results from Gaur et al. (2005) and Giloni et al. (2014)

on the value of sharing information in our settings. We then show the inconsistency between our

empirical findings and the corresponding theoretical results suggested in the literature. Finally, we

point out the impact of decision deviations on the value of information sharing, and we prove that

by incorporating decision deviations, the value of information sharing is always positive if there is

uncertainty in both decision deviations and demand.

6.1. Revisit the Literature

When revisiting the literature, we focus on the 1-step ahead forecast and use it as a theoretical

foundation to compare with the empirical results. In our new model, we will study the general

h-step-ahead forecast.

Besides the covariance stationarity property discussed in Section 3, we review another important

property of a time series process called invertibility. An MA process is determined by a unique

covariance matrix. A covariance stationary process may have multiple MA representations in terms

of different sets of coefficients αi relative to their corresponding white noise series. Among the

13 We also test forecast accuracy using the mean absolute error (MAE) metrics. MAE is defined as∑N
i=1

∣∣∣Ot+i− Ôt+i−1,t+i

∣∣∣/∑N
i=1Ot+i. For the product PD LL, the MAE metrics shows that the InfoSharing method

is statistically significantly (p < 0.1) better than the NoInfoSharing method.
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alternative representations, there is always an invertible representation with respect to some set

of shocks, and we are only interested in this invertible one. An MA process Xt = µ+ ϕ(B)εt is

invertible relative to {εt} if the shock can be written as an absolutely summable sequence of past

demands. A sequence {αt} is said to be absolutely summable if limn→∞
∑n

i=0 |αi| is finite.

Property 2 (Invertibility) Define ϕ(z) = 1−λ1z
1−λ2z

2−· · ·−λqzq. Then εt can be written as

an absolutely summable series of {Xs} with s≤ t, if and only if all roots of ϕ(z) = 0 lie outside of

the unit circle, {z ∈C, |z|> 1}. We say that Xt is invertible relative to {εt}.

Invertibility guarantees future-independence: Xt is only correlated with past value of εt. Non-

invertibility would allow for correlation with future values, which is undesirable. Invertibility is

a property of the MA coefficients relative to the corresponding white noise series. According to

Brockwell and Davis (2002, p. 54), for any noninvertible process Xt = ϕ(B)εt, we can find a new

white noise sequence {wt} and a new coefficient ϕ′(B) such that Xt =ϕ′(B)wt and Xt is invertible

relative to {wt}. We say that the coefficient ϕ′(B) is in the invertible representation. Since empirical

estimation identifies parameters based on history, estimators should have invertible representations.

Henceforth, we assume the differenced demand process, (1−B)dDt, satisfies invertibility.

As Hamilton (1994, p. 68) points out, an MA process has at most one invertible representation,

which has a larger white noise variance than any other noninvertible representations. Later, we will

illustrate that the enlarged white noise caused by converting from the noninvertible to invertible

representation is the trigger to the positive value of information sharing in the literature.

In our theoretical analysis, we measure the forecast accuracy by the mean squared forecast error.

We denote the information set that contains the historical orders until week t as ΩO
t and the

information set that contains the historical demand until week t as ΩD
t . The 1-step mean squared

forecast error without information sharing is Var(Ot+1− Ôt,t+1|ΩO
t ), and with information sharing

is Var(Ot+1− Ôt,t+1|ΩO
t ∪ΩD

t ). The value of information sharing is positive if and only if including

downstream information reduces the forecast error

Var(Ot+1− Ôt,t+1|ΩO
t ∪ΩD

t )<Var(Ot+1− Ôt,t+1|ΩO
t ). (11)

Recall the centered order is an MA process c−10 ϕ(B)ψ(B)c0εt. With downstream demand infor-

mation, the demand and policy parameters can be estimated and thus are known to the supplier.

The only uncertainty stems from the demand shock occurring in t+ 1. Thus, we have Var(Ot+1−

Ôt,t+1|ΩO
t ∪ΩD

t ) = Var(c0εt).

Without information sharing, the supplier analyzes the order history as an MA process. If the

order has a noninvertible MA representation with respect to demand shocks, i.e., c−10 ϕ(B)ψ(B)

is not invertible, the supplier will not be able to recover demand shocks using the order history.
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Yet, the supplier will always be able to express the order as an invertible MA representation

with respect to some set of shocks. Recall that the shocks in the invertible representation has the

largest variance. Therefore, when c−10 ϕ(B)ψ(B) is not invertible, the variance of the shocks that are

invertible is larger than Var(c0εt). Then inequality (11) holds, and hence the value of information

sharing is positive. The positive value of information sharing is equivalent to the noninvertibility

property. Gaur et al. (2005) and Giloni et al. (2014) show the same intuitions for the positive value

of information sharing. The following proposition gives a formal statement of the sufficient and

necessary conditions that sharing downstream demand benefits the supplier’s order forecast.

Proposition 1 If the decision maker strictly adheres to a replenishment policy, the value of

information sharing under the one step forecast lead time is positive if and only if at least one root

of ψ(z) = 0 lies inside the unit circle.

The value of information sharing is positive if and only if ϕ(B)ψ(B) is in the noninvertible

representation, which in turn is equivalent to the existence of at least one root of ϕ(z)ψ(z) = 0 that

lies inside the unit circle. Since all roots of ϕ(z) = 0 lie outside the unit circle due to the invertible

assumption, the order is noninvertible relative to εt if and only if there exists at least one root of

the policy parameter polynomial ψ(z) = 0 that lies inside the unit circle.

Comparison with results in the literature. Recall that we introduce decision deviations when

conducting empirical forecasts, which capture idiosyncratic shocks in ordering decisions due to

private information observed by retailers. Decision deviations allow us to relax the strict adherence

to replenishment policies assumption, and they are the major difference between the model in the

literature and our empirical model. We use the following analysis to illustrate that when decision

deviations are absent, the theoretical results are different from empirical observations.

We check the invertibility condition in Proposition 1 on the estimated replenishment policy

parameters in Table 2. The replenishment policy parameters14 are invertible for over half of the

products. Consider, for example, product 128 ORCA with c0 = 1.33, c1 = 0.3 and γ = 0.53. Its

policy parameter is ψ(z) = c0 + (c1− γ(c0− 1))z− γ(c1 + (1− γ)(c0− 1))
∑∞

i=2(1− γ)i−2zi = 1.33 +

0.13z− 0.24
∑∞

i=2 0.47i−2zi. We have ψ(1) = 1.33 + 0.13− 0.24/(1− 0.47)> 0. Since ψ(z) = 1.33 +

z(0.13− 0.24/(1/z − 0.47)), we have ψ(z)> 0 for 0< z < 1. No root of ψ(z) = 0 lies inside of the

unit circle. This means that orders are a sufficient statistic of demand for this product, which

allows us to recover the exact demand series from the order history. Thus, the theory shows zero

value of information sharing for product 128 ORCA. We find that 10 out of 14 products have

invertible policy coefficients, suggesting that these 10 products can gain nothing from information

14 Note that the replenishment policy parameters are estimated using both orders and demand. Measuring the invert-
ibility of the policy parameters is equivalent to measuring whether orders are invertible to demand signals.
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sharing. This is contrary to the empirical observations that show significant improvements from

incorporating downstream demand for almost all products. Such different results call for a better

theoretical understanding of how decision deviations can alter the result on the value of information.

6.2. Preliminary Results

Recall that when decision deviations are present, the order process, after being integrated, consists

of two MA processes with demand signals and decision deviations as their corresponding white

noise series in (8). Before we delve into the analysis of our specific model, we first study a more

general setting: forecasting the aggregation of multiple MA processes. We then apply the results

to our model.

Consider N processes X i
t = χi(B)εit, each of which follow a MA structure with respect to i.i.d.

random shock εit. The coefficient is χi(B) = 1 + λi1B + λi2B
2 + · · ·+ λiqiB

qi with degree qi (where

qi can be infinite). χi(B) can be either invertible or noninvertible. When predicting future value

beyond qi periods, the forecast is constant and uncertainty cannot be resolved. We allow contem-

poraneous signals to be correlated, but require signals to be independent across periods. That is,

εit is independent of εjs for any s < t. We also require that the contemporaneous signals are linear

independent in Assumption A1. To be specific, the signal of any process is not linear in that of

other processes.

Assumption A1: εit is not a linear combination of ε−it for any i, where −i represents other processes

except i.

The summation of N processes is St =
∑N

i=1X
i
t =

∑N

i=1χi(B)εit. According to Brockwell and

Davis (2002, p.54), St has a unique invertible MA representation, which we denote as χS(B)ηt with

respect to shocks ηt. The coefficient is χS(B) = 1 + θ1B+ θ2B
2 + · · ·+ θqSB

qS , and qS is the largest

k that guarantees nonzero covariance Cov(St, St+k) 6= 0. We impose a technical assumption that

χS(B) is not a common factor of all χi(B) in Assumption A2. Then, there exists a process k such

that χS(B) is not a factor of χk(B), which guarantees that χ−1S (B)χk(B) is of infinite degree.

Assumption A2: There exists a process k such that χ−1S (B)χk(B) is of infinite degree.

With full information, we not only observe each process but also know each process’s coefficient

χi(B) and white noise series εit. Specifically, in our setting, with full information, the supplier

knows both demand history and knowledge of the retailer’s replenishment policy. The coefficients

χi(B) consist of demand parameters and replenishment policy parameters, which can be estimated

out using historical demand and the replenishment policy. With aggregate information, we only

observe the aggregate process St. The value is positive for the h-step-ahead forecast if and only

if Var(
∑h

l=1(St+l − Ŝt,t+l)| ∪i ΩXi

t )< Var(
∑h

l=1(St+l − Ŝt,t+l)|ΩS
t ), where Ŝt,t+l| ∪i ΩXi

t denotes the
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best linear forecast under information sharing where the supplier uses both the knowledge of the

replenishment policy and the historical demand to obtain demand shocks and decision deviations,

and Ŝt,t+l|ΩS
t denotes the best linear forecast under no information sharing where the supplier uses

the historical orders to obtain order shocks. The following theorem states the sufficient condition

for the positive value of information sharing.

Theorem 2 Under A1 and A2, if there exist two processes with different coefficients, χi(B) 6=

χj(B) for some i, j, then Var(
∑h

l=1(St+l − Ŝt,t+l)| ∪i ΩXi

t ) < Var(
∑h

l=1(St+l − Ŝt,t+l)|ΩS
t ) for any

finite forecast lead time h, where h≤maxi{qi}.

Among N processes, if the coefficients of any two processes differ, the aggregate process has a

strictly larger mean squared forecast error as long as the forecast is within the effective forecast

range.15 Intuitively, the error variance is different for h if the h-step-ahead forecasts with and

without information sharing are different. This theorem indicates that if signals do not evolve in

the same manner over aggregation, we can forecast better by distinguishing the signal series and

analyzing them separately.

Remark. When the coefficients are the same, the aggregate process becomes χ1(B)
∑N

i=1 ε
i
t. We

can apply the result of Proposition 1 that the value of information sharing is determined by the

invertibility of χ1(B). When Assumption A1 is violated, there could be no value of information

sharing even when the coefficients are different.16 When Assumption A2 is violated, there could

be no value of information sharing even when the coefficients are different.17 Note that we relax

Assumption A2 and show the extension of Theorem 2 in the online companion.

6.3. Strictly Positive Value of Information Sharing

Let us apply this general result to the order process in (8) in our setting. The two MA series that

constitute the order process are demand shock series and decision deviation series,

X1
t = c−10 ϕ(B)ψ(B)c0εt and X2

t = π(B)κ(B)δt. (12)

Based on the Pearson correlation test on demand and decision deviations in our data set, we find low

and insignificant correlations when the signals are from the same period or across different periods,

15 If h ≥maxi{qi}, the order forecast becomes the mean of orders with and without downstream information, and
thus, there is no value of information sharing. If qi = 0 for all i, all processes become an i.i.d. normal process. The
order forecast is the mean of orders, and thus the value of information sharing is zero.

16 For example, consider two processes with the same signals, X1
t = εt−0.5εt−1 and X2

t = εt−0.7εt−1. The summation
is St = (2εt)− 0.6(2εt−1) with signal 2εt. Since χS(B) = 1− 0.6B is invertible and Var(εt + εt) = Var(2εt), the value
of information sharing is zero even though 1− 0.5B 6= 1− 0.7B.

17 Specifically, consider X1
t = (1 − B + B3)(1 − 0.5B)εt and X2

t = (1 − B + B3)(1 + 0.5B)δt, where εt and δt are
independent, and Var(εt) = Var(δt). The aggregate process becomes St = (1−B +B3)ηt, where ηt = (1− 0.5B)εt +
(1 + 0.5B)δt. Since θ̃1 = 0, the 2-step-ahead forecast Ŝt,t+2 is −(1− 0.5B)εt − (1 + 0.5B)δt + (1− 0.5B)εt−1 + (1 +
0.5B)δt−1 + (1− 0.5B)εt−2 + (1 + 0.5B)δt−2 for both cases.
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which suggests that Assumption A1 holds for our data set and the independence assumption across

non-contemporaneous signals holds. Assumption A2 also holds for (12)18. Sharing demand informa-

tion corresponds to full information defined in the preliminary analysis, since we can estimate out

all the coefficients, demand signals and decision deviations. No information sharing corresponds to

aggregate information, since we only observe the order history. The following proposition illustrates

the result of the positive value of information sharing.

Proposition 3 Given that demand signals and decision deviations are nonzero, the value of infor-

mation sharing is strictly positive if (a) demand follows ARMA(p, q) for any h-step-ahead forecast,

where h≤max{qε, qδ}, or (b) demand follows ARIMA(p, d, q) for the one-step-ahead forecast.

Recall that Theorem 2 is based on stationary processes. Under condition (a), demand is sta-

tionary (i.e., d= 0), and we can directly apply Theorem 2 to show that the value of information

sharing is positive for any h-step-ahead forecast. Under condition (b), demand is nonstationary

(i.e., d ≥ 1), which stems from the integrated inclusion of the past observations. Note that the

forecast error of the one-step-ahead forecast includes only shocks (not the historical observations).

Since the shocks of an ARIMA process are stationary, the arguments used for condition (a) will

hold, and we can apply Theorem 2 to the case where the forecast lead time h= 1.

When qε = qδ = 0, both X1
t and X2

t are i.i.d. processes, and thus, St is also an i.i.d. process. Any

forecast is a constant, and thus there is no value from sharing the downstream sales information.

This situation can only occur when ϕ(B) = π(B) = ψ(B) = κ(B) = 1, which means the retailer

faces an i.i.d. demand and employs a demand replacement policy. In the rest of the paper, we will

exclude this situation from the discussion, because, with i.i.d. demand, using historical observations

cannot reduce any uncertainty of the future forecast.

If not both processes are i.i.d. models, or equivalently, if qε = qδ = 0 is not true, then the two sets

of parameters c−10 ϕ(B)ψ(B) and π(B)κ(B) can never be the same. The key ingredient in the proof

is to show that the polynomial (1−B) is a factor in π(B)κ(B) but not a factor in c−10 ϕ(B)ψ(B),

which leads to a positive value of information for any forecast lead time.

Compared with the invertibility conditions posted on the policy parameter ψ(B) that induces

positive value of information sharing in Proposition 1, Proposition 3 establishes a qualitatively

different conclusion and intuition. Under a strict adherence to the inventory policy, the planner

places orders based on the same information set that statisticians observe, which leads to a classical

demand signal propagation studied in the literature. Our interview with the planner and our data

18 Recall that ψ(B) = 1 + γκ(B)(α0 +α1B+α2B
2 +α3B

3). X1
t and X2

t have a common factor if and only if ϕ(B) =
κ(B)(1−B)−1. If this is the case, the degree of ψ(B) is larger than the degree of (1−B)π(B), suggesting that the
coefficient of the aggregate process is not their common factor. Thus, Assumption A2 holds.
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suggests decision departures from the ideal policy, because retailers observe private information

that is not observed by statisticians. Thus, unlike before, the demand now propagates together with

decision deviations. Besides demand information, all decision deviation information should also be

carried by the order process to produce a zero value of information sharing. Decision deviations,

however, turn out to distort the normal demand propagation. The different propagation patterns of

the demand process and decision deviation process drive the loss of information as they propagate

upstream. To be specific, the ending inventory level carries the current week’s decision deviation

and rolls it over to the next week’s replenishment decision that further determines the next week’s

ending inventory. Thus, the evolution of inventory governs the translation of exogenous decision

deviation signals into orders. Demand signals, on the other hand, are governed by the evolution of

both inventory and current demand. As both signals propagate together to become orders in such

innately different patterns, the detailed information of the two processes is lost and is replaced with

the less informative (larger uncertainty) order signals. Consequently, information sharing becomes

valuable to recover the order’s elaborate information structure and to forecast more accurately.

We conclude that when decision deviations and demand signals are both present, demand infor-

mation is lost during propagation and orders are not a sufficient statistics of demand. Thus, it

is impossible to infer demand from orders, or equivalently, demand cannot be written as a linear

combination of historical orders (Gaur et al. 2005 and Giloni et al. 2014 define this property as

inferability).

Generalization of Proposition 3. Our model assumes that the retailer has a weighted moving

average demand forecast. We prove the same theoretical result when the demand forecast is optimal

(shown in the Technical Companion). Furthermore, we prove that the value of information sharing

is strictly positive under a more general setting where the retailer faces the martingale model of

forecast evolution (MMFE) demand and the general-order-up-to policy (GOUTP) (shown in the

Technical Companion). Most time-series demand models can be interpreted as a special case of

the MMFE demand, such as the AR model, IMA model, the general ARMA model and the linear

state-space demand model (Chen and Lee 2009). The GOUTP covers a class of stationary and

affine order-up-to policies, i.e., the myopic order-up-to policy, the production smoothing policy

(Graves et al. 1998), and the ConDOI policy with ordering smoothing. It’s worth noting that for

any demand structure and replenishment policy that are an affine time-invariant combination of

historical observations and signals, the key intuition that drives the positive value of information

sharing remains: the evolution patterns of demand signals and decision deviation signals follow

innately different evolution patterns. The distinct propagation patterns obscure the detailed infor-

mation structure, which leads to a strictly positive value of information sharing for any linear
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Figure 2 The MSE percentage improvement against the decision deviation weight for an ARIMA(0,1,1)

demand with λ= 0.5 and a ConDOI policy with order smoothing with γ = 0.8 and Γ = 2.
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demand model and inventory policy. We further strengthen the key result under more general

demand and ordering policy settings.

Proposition 3 illustrates the value of information sharing when both demand and decision uncer-

tainties are nonzero. If there is no decision deviation, Proposition 1 demonstrates the sufficient

and necessary condition of positive value of information sharing. The following proposition, on the

other hand, considers the other extreme case where demand uncertainty is zero.

Proposition 4 When the demand shock is zero, the value of information sharing is zero for the

one-step-ahead forecast.

When demand is deterministic, the order becomes Ot = m + κ(B)δt, where m is a constant

composed of historical demand. Since only one signal series propagates to become orders, we can

directly apply Proposition 1 to examine whether κ(B) is invertible. The unique root of κ(z∗) = 0 lies

on the unit circle, which Plosser and Schwert (1997) defined as strictly non-invertibility. The author

shows that the univariate MA parameter’s estimator is asymptotically similar to the invertible

processes, indicating that κ(B) can be correctly estimated from historical orders. Therefore, we

can infer the decision deviation history by orders and conclude zero value of information sharing.

To summarize the above theoretical findings, we characterize the value of information sharing

with a numerical analysis. We measure the value of information sharing by the MSE percentage

improvement of the InfoSharing forecasts over the NoInfoSharing forecasts. When h= 1, the mea-

sure is (Var(Ot+1 − Ôt,t+1|ΩO
t )−Var(Ot+1 − Ôt,t+1|ΩO

t ∪ΩD
t ))/Var(Ot+1 − Ôt,t+1|ΩO

t ), which takes

value between 0 and 1.

Figure 2 displays the MSE percentage improvement of the 1-step-ahead forecast with respect

to the relative weight of the decision deviation under three sets of inventory policy parameters.
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Figure 3 Consistency between the actual and predicted root mean squared forecast error without information

sharing (left) and with information sharing (right).

Keeping the DOI level and the order smoothing level fixed, we choose three sets of policy parameters

βi (i= 0,1) that correspond to three lines in Figure 2. Consider the retailer faces an ARIMA(0,1,1)

demand, Dt = Dt−1 + εt − λεt−1, with the MA parameter λ = 0.5. The policy parameter ψ(B) is

non-invertible for the top two processes but invertible for the bottom one. εt and δt are independent.

Our theoretical prediction aligns with the numerical observations. When the decision uncertainty

is zero, the value of information sharing is positive for the first two and zero for the last policy

parameters. This pattern is consistent with Proposition 1. Note that the studies in the literature

correspond to the points on the vertical axis where the decision deviation weight is zero. Our theory

can describe the entire curve. As decision deviations become dominant, there is little (and zero if

decision deviation weight = 1) gain from sharing the downstream sales information, which coincides

with Proposition 4. When both the decision uncertainty and the demand uncertainty exist, Figure

2 presents a strictly positive value of information sharing, which agrees with Proposition 3.

6.4. Our Theory is Supported by Our Empirical Findings

In this section, we validate whether the observed forecast accuracy improvements in the data set

agrees with our theory predictions. To this end, we compare the predicted and actual root mean

squared forecast error, separately under the InfoSharing method and NoInfoSharing method.

To be specific, we first derive the actual value from the empirical study. Second, we calculate

the predicted root mean squared forecast error based on our theory and the estimated demand

and policy parameters. When there is information sharing, the mean squared forecast error is

c20σ
2
ε + σ2

δ . In the absence of information sharing, based on the Innovation Algorithm in the time

series literature, the mean squared forecast error becomes a function of c0, σε, σδ, policy parameters

and demand parameters listed in Table 2.

We present the results in Figure 3. We plot the predicted against the actual root mean squared

prediction error under both no information sharing (left) and information sharing (right) case. Each



27

point represents a product with a corresponding index in Table 3. A perfect model fit would lead

to the points lying on the 45-degree dashed line in the figure. We fit a regression of the theoretical

predictions on the actual observations. Under the information sharing setting, Predicted=−13.03+

1.17×Actual, and the 95% confidence interval on the coefficient 1.17 is [0.95,1.40]. Under the no

information sharing setting, Predicted= −14.02 + 1.03×Actual, and the 95% confidence interval

on the coefficient 1.03 is [0.77,1.29]. The predicted points from our model are overall close to the

45-degree line for both cases, indicating a good fit. It shows that our new theoretical model can well

explain how demands propagate upstream, and thus can predict the value of information sharing

well.

We have proved that the value of information sharing is strictly positive under any forecast lead

time. In the following section, we study how its magnitude changes relative to key variables.

7. Theoretical Properties of the Value of Information Sharing

We present the magnitude of the benefit of information sharing as a function of the demand

process characteristics, namely, λ of an ARIMA(0,1,1) demand process (Lee et al. 2000 studies

the impact of ρ in an AR(1) process). We then discuss the impact other important variables, such

as the forecast lead time and the order smoothing level. We focus on the 1-step-ahead forecast. We

theoretically analyze two special cases and resort to numerical studies for more involved settings.

We analyze a simple yet reasonable model to derive the theoretical prediction. The empirical

estimation suggests that 8 out of 14 products follow an ARIMA(0,1,1) demand. Henceforth, in

this section, we focus on an ARIMA(0,1,1) demand with λ∈ [0,1),

Dt =Dt−1 + εt−λεt−1,

which can be equivalently written as an exponential smoothing form, Dt = (1−λ)
∑∞

i=1 λ
i−1Dt−i+

εt. The current observation is a weighted average of historical observations with exponentially

decaying coefficients. Values of λ closer to one put greater weight on recent data, and thus react

more intensely to recent variations, while processes with λ closer to zero smooth the weight on past

observations, and thus are less responsive to recent changes. Therefore, the process trends more

slowly with a smaller λ. For example, the products that we study can be classified according to

λ. Orange juice is an everyday drink for consumers. Sports drinks, on the other hand, are mainly

consumed for exercising, and thus their consumptions are influenced by weather, temperature and

sporting events. The data exhibits a clearer slowly trending pattern in demand for sports drinks.

Consistent with the above analysis, our estimated λ is larger for orange juice products and smaller

for sports drinks products. according to our demand parameter estimations. We refer to demand

with small λ as slowly trending demand.
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Figure 4 Under an ARIMA(0,1,1) demand with λ and a ConDOI policy with order smoothing with β0, γ = 0.5

and Γ = 2, the MSE percentage improvement strictly increases with λ.
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Recall that the retailer’s future demand forecast is a weighted average of historical H+ 1 weeks’

demands. In the rest of this section, we assume the retailer’s order relies on current and last weeks’

demand, H = 1. We assume that demand signals and decision deviations are independent. The

order can be written as a summation of two processes in εt and δs as in (12), X1
t = (1 + γΓβ0 +

γΓβ1B)(1 + λB)εt − γ2
∑∞

i=1(1− γ)i−1(Γβ0 + Γβ1B)(1 + λB)εt−i and X2
t = δt − δt−1 −

∑∞
i=1 γ(1−

γ)i−1(δt−i− δt−i−1).

We focus on processes X1
t and X2

t with degrees smaller or equal to 3. When the degree of either

process exceeds 3, the complexity of the problem precludes analytically tractable solutions and

necessitates numerical analysis. Note that we will relax this restriction by allowing an infinite degree

in the following numerical study. Therefore, we study two simple policies: (1) the retailer follows a

demand replacement policy (γ = 0), and (2) the retailer adopts a ConDOI policy (γ = 1) with zero

weight on the previous week’s demand (β1 = 0). Under (1), the order process is Ot =Dt + δt, and

under (2), the order process is Ot = (1 + Γβ0)Dt −Γβ0Dt−1 + δt − δt−1. The following proposition

demonstrates that the value strictly decreases with λ (see the proof in the online companion).

Proposition 5 The value of information sharing under the 1-step-ahead forecast strictly decreases

with λ under both (1) and (2).

To further explore the demand’s impact under other policy parameters, we conduct numerical

studies. Figure 4 presents the relation of MSE percentage improvement with respect to λ under

three policy weight parameters (β0 = 1.5,0.5 and −0.2). The value declines as λ is larger, which

corroborates the analytical findings without restrictions on the degree of two MA processes. When

λ is closer to 1, the coefficient of demand signals becomes closer to the coefficient of decision

deviations, and hence, less information is lost as signals propagate upstream and information

sharing is less valuable. For example, under the demand replacement policy (1), when λ= 1, the
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centered order becomes εt − εt−1 + δt − δt−1. An immediate result from Theorem 2 is a complete

information propagation and zero value of demand.

Let us revisit the empirical MSE percentage improvement in the last column of Table 3. Except

for the two orange drinks 12 OR and 12 ORCA, which have a much smaller bottle volume compared

to other orange juice products and serve a similar function as sports drinks, the orange juice

products gain less from information sharing than the rest of the products. Consistent with our

theoretical predictions, their λ is closer to zero, which differs substantially from 12 OR, 12 ORCA

and the other sports drinks in Table 2. Hence, our theory can provide a correct mapping from the

demand pattern to the potential gain from information sharing.

The result implies that it is more worthwhile for suppliers in industries with slow trending con-

sumptions to invest in the information sharing system to improve predictions. Note that forecasting

beyond one week might reverse the relation of the value of information sharing and demand param-

eter λ. We recommend that managers resort to run a numerical study to validate the potential

gain based on demand and policy characteristics.

Forecast lead time. Note that the h-step-ahead forecast is the sum of forecasts within h periods.

Companies may also monitor predictions in a specific lead time, which they use to adjust manufac-

ture plans. We define the hth-step-ahead forecast as the forecast made in period t about demand in

period t+h. We conduct a numerical analysis on the impact of the forecast lead time (see detailed

results in the online companion), and we find different results on the two forecast metrics. We

show that the value of information sharing of the hth-step-ahead forecast strictly decreases as the

forecast lead time increases. This is because future signals are less dependent on historical demand,

and thus, the future uncertainty is less likely to be resolved with information sharing. This implies

a limited potential gain in farther forecasts. We find that for the h-step-ahead forecast, the value of

information sharing might increase with forecast lead time under some conditions. This is because

historical signals are cancelled out when summing the future forecasts within h periods, and the

forecast error might increase less slowly with forecast lead time under information sharing19.

Order smoothing level. We also explore the impact of the smoothing level (see numerical studies

in the online companion). We find that the value of information sharing increases as γ increases.

When γ is close to 1, there is less inventory smoothing, and the order depends more on historical

demand and inventory. Thus, current demand becomes very valuable for predicting future orders,

and information sharing provides greater improvements. It is interesting to note that, when γ = 0

19 For example, when the decision deviation process is δt−δt−1, its h-step-ahead forecast error is δt+h and the variance
does not change with forecast lead time. In contrast, the aggregate process does not preserve this structure, and
the h-step-ahead forecast error might strictly increases with forecast lead time. If the decision deviation weight is
relatively large, the forecast error under information sharing hardly increases with forecast lead time, which means
that farther forecast can have a higher value of information.



30

(demand replacement policy with Ot = Dt + δt), the order only relies on demand in the period,

which leads to a small benefit from sharing information.

8. The Value of Operational Knowledge

Note that in previous sections, apart from incorporating demand information, we also explicitly

used knowledge of the downstream replenishment policy. We define it as operational knowledge.

In our study, operational knowledge is ConDOI policy with order smoothing where the retailer’s

demand forecast is a weighted moving average of recent four weeks’ demand. When the supplier

does not have such knowledge, the value of demand might be limited (Chen and Lee 2009 propose

that the retailer should share projected future orders to avoid sharing the policy). In this section,

we empirically quantify the benefit of knowing the downstream replenishment policy, which we refer

to as operational knowledge. We replicate the situation where companies lack operational knowl-

edge, using statistical forecasting methods that capture statistical correlations between sales and

orders. By contrasting them against the InfoSharing and NoInfoSharing methods, we decompose

the value of information sharing into two parts: the value stemming from only sales information

and the additional value stemming from operational knowledge. The NoInfoSharing forecast uses

only orders information. Its forecast accuracy difference from the statistical forecasts measures the

benefit of only sales data. The InfoSharing forecast incorporates downstream sales information as

well as the downstream inventory policy. Its forecast accuracy improvement over the statistical

forecasts measures the value of operational knowledge.

We consider three forecasting methods. We first capture the order demand correlation by regress-

ing orders on demands within the past five weeks, referred to as the Reg D method,

Ot = c0Dt + c1Dt−1 + · · ·+ c5Dt−5 + εt. (13)

Similarly, we regress orders on both orders and demands, and we call it the Reg D and O method,

Ot = c0Dt + c1Dt−1 + · · ·+ c5Dt−5 + b1Ot−1 + · · ·+ b5Ot−5 + εt. (14)

We then treat the order as an ARIMA process while at the same time accounting for demand,

which adds observed demands to orders in (10),

(1−B)dOt = µ+ ρ̃1(1−B)dOt−1 + · · ·+ ρ̃p(1−B)dO1
t−p + ηt + λ̃1ηt−1 + · · ·+ λ̃qηt−q (15)

+c1(1−B)dDt + · · ·+ cp(1−B)dDt−p+1 + εt+1 + e1εt + · · ·+ eqεt−q+1.

The parameters in equation (15) can be estimated by fitting Ot and Dt+1 series in a two-dimensional

vector ARIMA model. Note that method (15) is more general than method (10). We specify a

vector ARIMA(3,1,1)20 model with µ= 0. We refer to this as the Vector ARIMA method.

20 VARIMA(3,1,1) model is

[
Od

t

Dd
t+1

]
=

[
c111 c

1
12

c121 c
1
22

][
Od

t−1

Dd
t

]
+ · · ·+

[
c311 c

3
12

c321 c
3
22

][
Od

t−3

Dd
t−2

]
+

[
ηt
εt+1

]
+

[
e111 e

1
12

e121 e
1
22

][
ηt−1

εt

]
,

where ci21 and ci22 are restricted to zero for i= 1,2,3. e112, e121 and e122 are restricted to zero, ηt is the order shock and
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Table 4 Forecast accuracy summary for all methods at the overall level.

No Info Sharing Vector ARIMA Reg D Reg D and O Info Sharing

MAPE 56.45% 42.72%∗ 45.94%∗ 42.18%∗ 33.36%∗

Note. Significant accuracy improvement over the NoInfoSharing method is marked by star (p= 0.01). Significant (p= 0.05)
accuracy improvement of the InfoSharing method over the other unbold methods is also in bold. All methods that include
downstream sales outperform the NoInfoSharing forecast. The value of operational knowledge is positive, since the
InfoSharing forecast outperforms any statistical method.

Let us summarize the overall prediction accuracy in MAPE across all products in Table 4. The

NoInfoSharing forecasts have the lowest accuracy (or highest forecast error) with 56.45% MAPE,

and the InfoSharing forecasts have the highest predictive power with 33.36% MAPE. We can

achieve a 40.90% percentage improvement in total. We show that 21.26% comes from statistical

methods and 19.64% comes from operational knowledge. This means that operational knowledge,

as least in our study, brings a similar order of magnitude of forecasting improvements as using only

sales information. This suggests that companies should always learn the downstream replenishment

policy to specify the correct structure between orders and demand, which enables the companies

to better utilize downstream demand information to achieve the greatest improvements.

Remark. One might notice that the only difference between equation (9) and equation (13) is It−1.

This does not mean that operational knowledge is only about knowing or including retail inventory.

Operational knowledge is about using the policy structure to incorporate retail inventory in the

order decisions. Note that we quantify the value of operational knowledge in a specific setting.

It is possible that operational knowledge can bring no value in some cases. For example, when

the retailer follows a demand replacement policy, we have Ot = Dt + εt. Simply estimating the

correlation between Ot and Dt can correctly capture the policy parameters, and there is no value

of operational knowledge.

9. Conclusions and Discussions

This paper empirically evaluates the supplier’s forecast improvement by incorporating downstream

retail sales data and supports the observations with an extended theoretical model. Table 3 in

Section 4 summarizes our main empirical findings. Our observations highlight the positive value

to suppliers of incorporating retailers’ sales data: 4.7% to 58.6% MAPE percentage improvements

across 14 products and a 40.90% improvement in MAPE on an overall level, which is regarded as a

significant improvement by the CPG company we studied. In addition, we empirically decompose

the 40.90% total improvement into two parts, 21.26% from sales data and 19.64% from knowledge

of the downstream replenishment policy.

εt is the demand shock. We choose (3,1,1) due to the computational constraints. Such parameter can represent the
majority of parameters found in (10).
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We revisit and extend the theoretical model in the existing literature. Until now, the theoretical

literature showed no value of information sharing for 10 out of 14 products. By taking into account

the idiosyncratic shocks in decision making, we relax the strict adherence to the replenishment

policy assumption in the literature. Our new theory yields qualitatively different results than the

previous literature. We demonstrate that if both demand signals and decision signals are nonzero,

the value of information sharing is strictly positive for any forecast lead time. Further, our new

theory is supported by our empirical observations. Our paper therefore underscores the importance

of recognizing that the decision maker may deviate from the exact policy, a phenomenon that is

common in practice and is absent in earlier theoretical models.

We show that decision deviations are present and have a significant impact on the value of

information sharing. We pointed out several possible operational explanations for the deviations.

Interesting studies could also look at behavioral factors that would cause decision deviations (see

studies by Schweitzer and Cachon 2000 and Van Donselaar et al. 2010).

Our paper suggests that the value of information sharing is higher when (1) product demand

has high local volatility, such as orange juice that is consumed daily; (2) the retailer’s ordering

policy has a low inventory smoothing level, such as a strict ConDOI policy; or (3) incorporating

the inventory policy structure in determining the relationship between orders and demand.

Our study focuses on a specific linear and stationary inventory policy with a stationary demand

process. It is worth noting that the conclusion regarding the strictly positive value of information

sharing can be generalized to any linear and stationary inventory policy and stationary demand.

In fact, we prove that the value of information sharing is always positive, if a retailer follows

the generalized order-up-to policy and the MMFE demand (in the Technical Companion). We

highlight the key intuition that continues to remain in general settings: demand signals and decision

deviations accumulate in innately different evolution patterns as they propagate upstream.

In this paper, we focus on low-promotional products, the demand and orders of which are sta-

tionary. We also empirically test the forecast accuracy of the remaining high-promotional products

(we elaborate on the forecasting procedure and results in the Technical Companion). We find that

the value of information sharing is positive for most promotional products. As the promotional

depth increases, the forecast accuracy decreases for both scenarios (with and without information

sharing), because the order series has higher uncertainty. However, we observe an insignificant

correlation between forecast improvements and the promotional depth. A potential reason comes

from the non-stationary order structure (in demand signals and decision deviation signals) caused

by non-stationary price promotions. The optimal estimators (of the ARIMA model for orders or

the replenishment policy) obtained in the current week might be suboptimal for future, which

might affect the forecast precision of the two scenarios differently. Another potential reason is that,



33

with information sharing, the estimating equation of the replenishment policy might not correctly

estimate parameters for the high promotional products, because the method by which the retailer

forecasts future demand and how it determines orders becomes more complicated than the policy

assumed in our model. Future research is needed to understand how promotional activities affect

the information transmission and the value of sharing downstream demand.

Our model can represent many industries in practice. Our results are applicable to other types

of products when their demand and replenishment policy follows a linear structure. However, our

analysis has limitations. In particular, future research should break the affine structure and explore

non-linear policies such as the (s,S) policy. This requires a re-examination via a non-linear time

series model or a proper approximation.

For practitioners, having access to more data points, such as the daily level data, can help identify

detailed ordering patterns and benefit the forecast precision. For example, one can distinguish the

“Friday effect” and the “batching effect” in a positive decision deviation (over-replenishment from

the target inventory policy) by the day of the order. However, forecasting at the daily level comes

at the price of both a heavy computation burden and a nonlinear estimation. The CPG company

currently needs around 24 hours on modern computing technology starting each Saturday night to

run the ARIMA model on all product lines. If the company were to forecast at the daily level, they

would need more computational power or would need to start their forecasts earlier (than Saturday

night), which would increase their forecast lead time, and thus reduce their forecast accuracy. In

addition, the daily level data has a lot of zero orders (the planner claims to order only once per

week around 80% of the weeks). For the baseline forecast without downstream demand, fitting

linear time series models is not a good option on such a data set. Further, to obtain the forecast

with downstream demand, we need to model a nonlinear inventory policy, which takes more effort

to estimate. Nonlinear models are beyond the scope of our paper and require further investigation.

Forecasting at a coarse level, such as the monthly level or beyond, loses precision and thus fails to

support short-term managerial decisions.
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10. Appendix

Proof of Theorem 2: With information sharing. Recall that X i
t = χi(B)εit with coefficient

χi(B) = 1 + λi1B + λi2B
2 + · · · + λiqiB

qi . Let ΩXi

t = sp{εi1, ..., εit} denote the plane containing the

historical shocks εi1, ..., ε
i
t. According to the definition, εit+l ⊥ ΩXi

t for any l ≥ 1. Since we assume

εit ⊥ ε
j
t−k for any k > 0, the general orthogonal condition can be written as

εit+l ⊥Ω
Xj
t ,∀i, j, l. (16)

The h-step-ahead forecast of process X i
t made in period t is X̂ i

t,t+h = λihεt + λih+1ε
i
t−1 + · · · +

λiqiε
i
t+h−qi . The total forecast with information sharing is

∑N

i=1 X̂
i
t,t+h. We denote Var(

∑h

l=1(St+l−

Ŝt,t+l)| ∪i ΩXi

t ) as Var(
∑h

l=1(St+l−
∑N

i=1 X̂
i
t,t+l)) in the proof.

Without information sharing. In absence of demand information, the order process is St =

χS(B)ηt, where χS(B) = 1 + θ1B + θ2B
2 + · · · + θqSB

qS . (Note that qS might be infinite.) Let

ΩS
t = sp{η1, ..., ηt} denote the plane containing the order process signals η1, ..., ηt. Since χS(B)ηt =
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∑N

i=1χi(B)εit and χS(B) is invertible, then ηt = χ−1S (B)
∑N

i=1χi(B)εit. We have ΩS
t ∈∪iΩXi

t , because

ηt is a linear combination of εis, s≤ t.

According to (16), we have εjt+l ⊥∪iΩXi

t for any j and any l≥ 1. Since ΩS
t ∈∪iΩXi

t , then

εit+l ⊥ΩS
t ,∀i, l. (17)

The h-step-ahead forecast of process St made in period t is Ŝt,t+h = θhηt + θh+1ηt−1 + · · · +

θqSηt+h−qS . We denote Var(
∑h

l=1(St+l− Ŝt,t+l)|ΩS
t ) as Var(

∑h

l=1(St+l− Ŝt,t+l)) in the proof.

The Value of Information Sharing. We first prove the statement under the assumption εit ⊥ ε
j
t

for any i 6= j. We rewrite Var(St+h − Ŝt,t+h) as Var(St+h −
∑N

i=1 X̂
i
t,t+h +

∑N

i=1 X̂
i
t,t+h − Ŝt,t+h).

According to the orthogonal condition (16) and (17), Var(
∑h

l=1(St+l− Ŝt,t+l)) can be simplified to

Var(
h∑
l=1

(St+l− Ŝt,t+l)) = Var(
h∑
l=1

(St+l−
N∑
i=1

X̂ i
t,t+l)) + Var(

h∑
l=1

(Ŝt,t+l−
N∑
i=1

X̂ i
t,t+l)). (18)

Var(
∑h

l=1(St+l− Ŝt,t+l))>Var(
∑h

l=1(St+l−
∑N

i=1 X̂
i
t,t+l)) if and only if

∑h

l=1(Ŝt,t+l−
∑N

i=1 X̂
i
t,t+l) 6=

0. We prove that if χi(B) 6= χj(B) for some i, j, then
∑h

l=1(Ŝt,t+l−
∑N

i=1 X̂
i
t,t+l) 6= 0.

Suppose that there exists a finite forecast lead time h where h≤maxi{qi} such that
∑h

l=1 Ŝt,t+l =∑h

l=1

∑N

i=1 X̂
i
t,t+l. This is equivalent to

∑h

l=1 Ŝt−h,t+l−h =
∑h

l=1

∑N

i=1 X̂
i
t−h,t+l−h, which can be

expanded as
(∑h

j=1 θj

)
ηt−h +

(∑h+1

j=2 θj

)
ηt−h−1 + · · · + (θqS−1 + θqS )ηt−qS−h+2 + θqSηt−qS−h+1 =∑N

i=1

((∑h

j=1 λ
i
j

)
εt−h +

(∑h+1

j=2 λ
i
j

)
εit−h−1 + · · ·+ (λiqi−1 +λiqi)ε

i
t−qi−h+2 +λiqiε

i
t−qi−h+1

)
. For nota-

tional convenience, let λij = 0 for j > qi. We define
∑k

j=0 θj as θ̃k and
∑k

j=0 λ
i
j as λ̃ik. Given St =∑N

i=1X
i
t , we subtract the above equation from

∑t−h+1

r=t Sr =
∑t−h+1

r=t

∑N

i=1X
i
r,

ηt + θ̃1ηt−1 + · · ·+ θ̃h−1ηt−h+1 =
N∑
i=1

(
εit + λ̃i1ε

i
t−1 + · · ·+ λ̃ih−1ε

i
t−h+1

)
. (19)

Since χS(B) is invertible, χ−1S (B) has finite degree. We replace ηt−j with χ−1S (B)
∑N

i=1χi(B)εit−j

for all j,

ηt + θ̃1ηt−1 + · · ·+ θ̃h−1ηt−h+1 =
h−1∑
j=0

θ̃jχ
−1
S (B)

N∑
i=1

χi(B)εit−j. (20)

According to Assumption A2, there exists at least one process k such that χ−1S (B)χk(B) is of

infinite degree. Therefore, the degree with respect to εkt is infinite in (20) while the degree is finite

in (19). We have reached a contradiction. Therefore, the value of information sharing is positive.

Note that in the above analysis, we use the assumption that the shocks are independent across

processes. We next extend the above proof to the situation where contemporaneous signals are

correlated. We prove that, when there exist two processes with different coefficients, St equals to

the sum of N time series processes with orthogonal signals and the two processes still have different

coefficients. We denote the two different processes as XN−1
t and XN

t , where χN−1(B) 6= χN(B).

Since Assumption A1 requires that εit is not a linear combination of ε−it for any i, we can decompose
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ε2t into β2,1ε
1
t and ε̂2t , where ε̂2t ⊥ ε1t . For the same reason, we can decompose εit into βi,1ε

1
t , βi,2ε̂

2
t ,

. . . and ε̂it, where ε̂it ⊥ ε
j
t for any j < i. The aggregate process can be written as N processes with

orthogonal signals, and the last two processes are (χN−1(B) +βN,N−1χN(B)) ε̂N−1t and χN(B)ε̂Nt .

If βN,1 6= 0, then χN−1(B) + βN,N−1χN(B) 6= (1 + βN,1)χN(B), and thus their coefficients are

different. If βN,N−1 = 0, then according to the assumption, we have χN−1(B) 6= χN(B). We can

apply the above results to show that for h≤maxi{qi}, the value is positive.
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