Managing Business Process Flows
Managing Business Process Flows

PRINCIPLES OF OPERATIONS MANAGEMENT

Ravi Anupindi  
*University of Michigan*

Sunil Chopra  
*Northwestern University*

Sudhakar D. Deshmukh  
*Northwestern University*

Jan A. Van Mieghem  
*Northwestern University*

Eitan Zemel  
*New York University*
BRIEF CONTENTS

Preface xv

PART I  Process Management and Strategy  1
   Chapter 1  Products, Processes, and Performance  2
   Chapter 2  Operations Strategy and Management  20

PART II  Process Flow Metrics  45
   Chapter 3  Process Flow Measures  46
   Chapter 4  Flow-Time Analysis  80
   Chapter 5  Flow Rate and Capacity Analysis  102
   Chapter 6  Inventory Analysis  121

PART III  Process Flow Variability  151
   Chapter 7  Managing Flow Variability: Safety Inventory  152
   Chapter 8  Managing Flow Variability: Safety Capacity  188
   Chapter 9  Managing Flow Variability: Process Control and Capability  229

PART IV  Process Integration  271
   Chapter 10  Lean Operations: Process Synchronization and Improvement  272

Appendix I  MBPF Checklist  303
Appendix II  Probability Background  306

Solutions to Selected Problems  311

Glossary  317

Index  324
## CONTENTS

**Preface xv**

### PART I Process Management and Strategy 1

#### Chapter 1 Products, Processes, and Performance 2

- Introduction 2
- 1.1 The Process View of Organizations 3
- 1.2 Performance Measures 7
  - 1.2.1 The Importance of Measurement: Management by Fact 7
  - 1.2.2 Types of Measures: Financial, External, and Internal 7
- 1.3 Products and Product Attributes 10
- 1.4 Processes and Process Competencies 13
- 1.5 Enabling Process Success 14
- 1.6 Some Basic Process Architectures 15
- 1.7 The Plan of the Book 17

Summary 18

Key Terms 18

Discussion Questions 18

Selected Bibliography 19

#### Chapter 2 Operations Strategy and Management 20

- Introduction 20
- 2.1 Strategic Positioning and Operational Effectiveness 21
- 2.2 The Strategy Hierarchy 23
- 2.3 Strategic Fit 25
- 2.4 Focused Operations 27
- 2.5 Matching Products and Processes 30
- 2.6 The Operations Frontier and Trade-Offs 31
- 2.7 The Evolution of Strategy and Operations Management 37
- 2.8 The Opportunity Today in Service Operations 40

Summary 41

Key Terms 42

Discussion Questions 42

Selected Bibliography 43

### PART II Process Flow Metrics 45

#### Chapter 3 Process Flow Measures 46

- Introduction 46
- 3.1 The Essence of Process Flow 47
- 3.2 Three Key Process Measures 48
Chapter 5 Flow Rate and Capacity Analysis 102

5.1 Flow Rate Measurements 103
5.2 Resources and Effective Capacity 103
  5.2.1 Resources and Resource Pools 103
  5.2.2 Effective Capacity 104
  5.2.3 Capacity Utilization 105
  5.2.4 Extensions: Other Factors Affecting Effective Capacity 106
5.3 Effect of Product Mix on Effective Capacity and Profitability of a Process 106
  5.3.1 Effective Capacity for Product Mix 107
  5.3.2 Optimizing Profitability 108
5.4 Capacity Waste and Theoretical Capacity 109
  5.4.1 Theoretical Capacity 109
  5.4.2 Theoretical Capacity Utilization 110
5.5 Levers for Managing Throughput 110
  5.5.1 Throughput Improvement Mapping 111
  5.5.2 Increasing Resource Levels 112
  5.5.3 Reducing Resource Capacity Waste 112
  5.5.4 Shifting Bottlenecks and the Improvement Spiral 113

Summary 114
Key Equations and Symbols 114
Key Terms 114
Discussion Questions 115
Exercises 115
Selected Bibliography 116

Appendix 5.1 Other Factors Affecting Effective Capacity: Load Batches, Scheduled Availability, and Setups 117
Appendix 5.2 Optimizing Product Mix with Linear Programming 119

Chapter 6 Inventory Analysis 121

6.1 Inventory Classification 122
PART III Process Flow Variability 151

Chapter 7 Managing Flow Variability: Safety Inventory 152
Introduction 152
7.1 Demand Forecasts and Forecast Errors 154
7.2 Safety Inventory and Service Level 155
  7.2.1 Service Level Measures 156
  7.2.2 Continuous Review, Reorder Point System 157
  7.2.3 Service Level Given Safety Inventory 159
  7.2.4 Safety Inventory Given Service Level 161
7.3 Optimal Service Level: The Newsvendor Problem 163
7.4 Leadtime Demand Variability 170
  7.4.1 Fixed Replenishment Lead Time 170
  7.4.2 Variability in Replenishment Lead Time 172
7.5 Pooling Efficiency through Aggregation 173
  7.5.1 Physical Centralization 174
  7.5.2 Principle of Aggregation and Pooling Inventory 177
7.6 Shortening the Forecast Horizon through Postponement 179
7.7 Periodic Review Policy 180
7.8 Levers for Reducing Safety Inventory 182
Summary 183
Key Equations and Symbols 183
Chapter 8 Managing Flow Variability: Safety Capacity 188

Introduction 188
8.1 Service Process and Its Performance 190
   8.1.1 Service Processes 190
   8.1.2 Service Process Attributes 192
   8.1.3 Service Process Performance 192
   8.1.4 Relationships between Performance Measures 196
8.2 Effect of Variability on Process Performance 197
8.3 Drivers of Process Performance 200
   8.3.1 The Queue Length Formula 200
   8.3.2 The Exponential Model 202
8.4 Process Capacity Decisions 205
8.5 Buffer Capacity, Blocking, and Abandonment 206
   8.5.1 Effect of Buffer Capacity on Process Performance 207
   8.5.2 The Buffer Capacity Decision 208
   8.5.3 Joint Processing Capacity and Buffer Capacity Decisions 210
8.6 Performance Variability and Promise 211
8.7 Customer Pooling and Segregation 213
   8.7.1 Pooling Arrivals with Flexible Resources 213
   8.7.2 Segregating Arrivals with Specialized Resources 215
8.8 Performance Improvement Levers 216
   8.8.1 Capacity Utilization Levers 217
   8.8.2 Variability Reduction Levers 218
   8.8.3 Capacity Synchronization Levers 219
   8.8.4 Buffer Capacity Levers 220
   8.8.5 Pooling and Segregation Levers 220
8.9 Managing Customer Perceptions and Expectations 221
Summary 222

Key Terms 184
Discussion Questions 184
Exercises 184
Selected Bibliography 186
Appendix Calculating Service Level for a Given Safety Inventory 187

Contents xi
Chapter 9  Managing Flow Variability: Process Control and Capability  229

Introduction  229
9.1 Performance Variability  231
9.2 Analysis of Variability  233
  9.2.1 Check Sheets  233
  9.2.2 Pareto Charts  234
  9.2.3 Histograms  235
  9.2.4 Run Charts  237
  9.2.5 Multi-Vari Charts  238
9.3 Process Control  240
  9.3.1 The Feedback Control Principle  240
  9.3.2 Types and Causes of Variability  241
  9.3.3 Control Limit Policy  243
  9.3.4 Control Charts  244
  9.3.5 Cause–Effect Diagrams  252
  9.3.6 Scatter Plots  253
9.4 Process Capability  254
  9.4.1 Fraction of Output within Specifications  255
  9.4.2 Process Capability Ratios ($C_{pk}$ and $C_p$)  256
  9.4.3 Six-Sigma Quality  257
  9.4.4 Capability and Control  260
9.5 Process Capability Improvement  260
  9.5.1 Mean Shift  260
  9.5.2 Variability Reduction  261
  9.5.3 Effect of Process Improvement on Process Control  262
9.6 Product and Process Design  263
  9.6.1 Design for Producibility  263
  9.6.2 Robust Design  265
  9.6.3 Integrated Design  265
Summary  226
Key Equations and Symbols  267
Key Terms  267
Discussion Questions  268
Exercises  268
Selected Bibliography  270

PART IV Process Integration  271

Chapter 10  Lean Operations: Process Synchronization and Improvement  272
Introduction  272
10.1 Processing Networks  273
10.2 The Process Ideal: Synchronization and Efficiency  274
10.3 Waste and Its Sources 275
10.4 Improving Flows in a Plant: Basic Principles of Lean Operations 278
  10.4.1 Improving Process Architecture: Cellular Layouts 280
  10.4.2 Improving Information and Material Flow: Demand Pull 281
  10.4.3 Improving Process Flexibility: Batch-Size Reduction 284
  10.4.4 Quality at Source: Defect Prevention and Early Detection 285
  10.4.5 Reducing Processing Variability: Standardization of Work, Maintenance, and Safety Capacity 286
  10.4.6 Visibility of Performance 287
  10.4.7 Managing Human Resources: Employee Involvement 287
  10.4.8 Supplier Management: Partnerships 288
10.5 Improving Flows in a Supply Chain 289
  10.5.1 Lack of Synchronization: The Bullwhip Effect 290
  10.5.2 Causes of the Bullwhip Effect 291
  10.5.3 Levers to Counteract the Bullwhip Effect 293
10.6 The Improvement Process 295
  10.6.1 Process Stabilization: Standardizing and Controlling the Process 295
  10.6.2 Continuous Improvement: Management by Sight and Stress 296
  10.6.3 Business Process Reengineering: Process Innovation 297
  10.6.4 Benchmarking: Heeding the Voices of the Best 298
  10.6.5 Managing Change 298
Summary 299
Key Terms 300
Discussion Questions 300
Selected Bibliography 300

Appendix I MBPF Checklist 303
Appendix II Probability Background 306

Solutions to Selected Problems 311
Glossary 317
Index 324
PREFACE

In this book, we present a novel approach to studying the core concepts in operations, which is one of the three major functional fields in business management, along with finance and marketing. We view the task, and the raison d'être, of operations management as structuring (designing), managing, and improving organizational processes and use the process view as the unifying paradigm to study operations. We address manufacturing as well as service operations in make-to-stock as well as make-to-order environments.

We employ a structured data-driven approach to discuss the core operations management concepts in three steps:

• Model and understand a business process and its flows.
• Study causal relationships between the process structure and operational and financial performance metrics.
• Formulate implications for managerial actions by filtering out managerial “levers” (process drivers) and their impact on operational and financial measures of process performance.

NEW TO THIS EDITION

The first edition of this book was published in 1999 and reflected our experiences from teaching the core Operations Management course at the Kellogg School of Management of Northwestern University. The second edition, published in 2006, improved exposition and clarified the link between theory and practice. While this third edition retains the general process-view paradigm, we have striven to sharpen the development of the ideas in each chapter, illustrate with contemporary examples from practice, and eliminated some content to make room for some new content, such as:

• Opening vignettes and real-life examples of how the theory can be applied in practice have been made current. In addition, exposition of material in the chapters has been further improved with technical derivations details and other tangential ideas relegated to chapter appendices.
• Chapter 4 has been completely revised, with an emphasis on measurement, analysis of critical path, and management approaches to leadtime improvements. Technical analysis has been shifted to appendices.
• Chapter 5 has been substantially revised with emphasis on effective capacity and bottleneck management, on the effects of product mix on capacity, and on reduction of capacity waste.
• Chapter 6 now includes discussion of quantity discount policies. Discussions of periodic review policies have been added to Chapters 6 and 7.
• Chapter 8 has undergone a complete revision and reorganization to improve flow of concepts; we have also added some discussion on priority processing.
• Chapter 9 has more details on control charts, includes fraction defective chart, recent applications, discussion of integrated design, and total quality management.
• Answers to selected exercises from Chapters 3 to 9 appear at the end of the book.
• The end-of-chapter and end-of-book features have been updated.

Finally, we have removed iGrafx simulation (both the software and the associated sample models) from this edition.
OVERVIEW

Our objective is to show how managers can design and manage process structure and process drivers to improve the performance of any business process. The book consists of four parts.

In Part I, “Process Management and Strategy,” we introduce the basic concepts of business processes and management strategy. Processes are the core technologies of any organization to design, produce, and deliver products and services that satisfy external and internal customer needs. Processes involve transforming inputs into outputs by means of capital and labor resources that carry out a set of interrelated activities. The existence of trade-offs in process competencies implies that world-class operations must align their competencies with the desired product attributes and overall competitive priorities as formulated by the competitive strategy.

In Part II, “Process Flow Metrics,” we examine key process measures, their interrelationships, and managerial levers for controlling them. In particular, process flow time, flow rate or throughput, and inventory are three fundamental operational measures that affect the financial measures of process performance. Flow time can be improved by restructuring and shortening the time-critical path of activities; throughput can be improved by increasing the bottleneck capacity, and inventory can be decreased by reducing the batch sizes, streamlining the process, or reducing variability. Yet, throughout this part, the focus is on the average values, ignoring for now the impact of variability in process performance.

In Part III, “Process Flow Variability,” we study the effect of variability in flows and processing on the process performance and the managerial levers to plan for and control it. Safety inventory is used to maintain the availability of inputs and outputs in spite of variability in inflows and demands in the make-to-stock environment. Safety capacity is used to minimize waiting times due to variability in inflows and processing times in the make-to-order environment. Safety time is used to provide a reliable estimate of the response time to serve a customer. Finally, feedback control is used to monitor and respond to variability in process performance dynamically over time.

In Part IV, “Process Integration,” we conclude with principles of synchronization of flows of materials and information through a network of processes most economically. The ideal is to eliminate waste in the form of excess costs, defects, delays, and inventories. Instead of responding to the economies of scale and variability in flows, the long-term approach is to eliminate the need for such responses by making processes lean, flexible, and predictable. It requires continual exposure and elimination of sources of inefficiency, rigidity, and variability and use of information technology to integrate various subprocesses. The goal is to design and control the process for continuous flows without waits, inventories, and defects. We close with the different philosophies of process improvement toward achieving this goal.

In Appendix I, we give a summary of the “levers” to manage business processes. We hope that this checklist will be useful to the practitioner. We assume that our readers have knowledge of some basic concepts in probability and statistics; for completeness, we summarize these as background material in Appendix II.

INSTRUCTOR RESOURCES

- **Instructor Resource Center:** The Instructor Resource Center contains the electronic files for the test bank, PowerPoint slides, and the Solutions Manual. ([www.pearsonhighered.com/anupindi](http://www.pearsonhighered.com/anupindi)).
Register, Redeem, Login: At www.pearsonhighered.com/irc, instructors can access a variety of print, media, and presentation resources that are available with this text in downloadable, digital format. For most texts, resources are also available for course management platforms such as Blackboard, WebCT, and Course Compass.

Need help? Our dedicated technical support team is ready to assist instructors with questions about the media supplements that accompany this text. Visit http://247.pearsoned.com/ for answers to frequently asked questions and toll-free user support phone numbers. The supplements are available to adopting instructors. Detailed descriptions are provided on the Instructor Resource Center.

Instructor’s Solutions Manual

The Instructor’s Solutions Manual, updated by the authors, is available to adopters as a download from the Instructor Resource Center.

Test Item File

The test item file, updated by the authors, is available to adopters as a downloaded from the Instructor Resource Center.

PowerPoint Presentations

The PowerPoint presentations, updated by the authors, are available to adopters as a downloaded from the Instructor Resource Center.

ACKNOWLEDGMENTS

We gratefully acknowledge the feedback from our full-time, part-time, and executive management students at our respective institutions and numerous adopters of the textbook at other institutions. Our colleagues Krishnan Anand (now at David Eccles School of Business, University of Utah), Sarang Deo, Martin (Marty) Lariviere, Andy King (now at Dartmouth College), and Matt Tuite (now retired) have, over time, given us many suggestions for improvement. In particular, Anand suggested the original Loan Application Flow example in Chapter 3, while Marty offered us several new exercises. (Instructors know that good problem sets are golden.) Andy pointed out the need to explicitly account for setup times in determining flow rate more accurately. In addition, we also benefited from the suggestions by several colleagues at other universities. We are particularly indebted to Larry Robinson at Cornell University, George Monahan at the University of Illinois at Urbana–Champaign, Kevin Gue and Ken Doerr of the Naval Postgraduate School at Monterey, and Marty Puterman at the University of British Columbia.

The manuscript has benefited significantly from extensive and meticulous reviews from Amy Whitaker, developmental editor at Pearson Prentice Hall. We are thankful to her for suggesting, among other things, the idea of a glossary of terms and helping us prepare this list. Several people from the staff at Pearson Prentice Hall have really worked hard in patiently coordinating the entire project. In particular, we are thankful to Mary Kate Murray, Senior Project Manager; Chuck Synovec, Senior Acquisition Editor; Anne Fahlgren, Executive Marketing Manager; Clara Bartunek, Production Project Manager. We also thank Mohinder Singh of Aptara Incorporation for his assistance with the production of the book.
Finally, all of us have been influenced in various ways by the way we were taught operations at our respective alma maters. Parts of the book reflect what each of us imbibed from the various classes we took. So we thank our mentors and other faculty at Carnegie Mellon University, Stanford University, the State University of New York at Stony Brook, and the University of California at Berkeley. Last, but not least, we would like to thank our families for their support during this effort.

Ravi Anupindi  
Stephen M. Ross School of Business  
University of Michigan, Ann Arbor

Sunil Chopra,  
Sudhakar D. Deshmukh,  
and Jan A. Van Mieghem  
J.L. Kellogg School of Management  
Northwestern University

Eitan Zemel  
Leonard N. Stern School of Business  
New York University