Letters

RESEARCH LETTER

Comparison of National Institutes of Health Grant Amounts to First-Time Male and Female Principal Investigators

Federal funding is associated with the quality of science and researchers' professional advancement. ${ }^{1}$ Female junior faculty received less university start-up support than males in one study, ${ }^{2}$ a factor associated with early-career attrition rates. ${ }^{3}$ We investigated another potential association: the size of National Institutes of Health (NIH) grant awards to first-time awardees.

Methods | Using the public NIH Principal Investigators (PI) database, we analyzed grant amounts to first-time female and male grant awardees from 2006 to 2017. A PI's sex was determined algorithmically from first names. First-time PIs had no prior NIH awards as far back as 1985.

To examine factors related to funding, we first compared the median number of articles published per year, the median number of citations per article, and the number of areas of research expertise in published articles for first-time female and male PIs prior to their first NIH grant, using Microsoft Academic Graph (MAG). Areas of research expertise were estimated from the articles' research topic as reported in MAG. Only articles with the PI as the last author were counted. ${ }^{4}$

To further control for confounding, we examined awardees of the top 10 most highly funded grants awarded to individual PIs only, which represents $\$ 14$ billion in funding or 58% of all NIH funds awarded to 19559 first-time PIs. Also, we investigated awardees at the same 14 Big Ten and 8 Ivy League universities ($\$ 1.8$ billion in funding or 7.5% of NIH funds awarded to 8039 first-time PIs), as well as the top 50 NIH most
highly funded institutions (\$9 billion in funding or 38% of funding awarded to 20335 first-time PIs). The 2-sided MannWhitney test of medians (threshold $P<.05$) and Python software (version 2.7.12) were used in the analyses.

Results | From 2006 to 2017, 53903 NIH grants were awarded to first-time PIs across all 225 NIH grant types and 2766 institutions (Table 1). Of first-time PIs, 43.6% were female, similar to the female enrollment level of 38% in US MD-PhD programs during the same period. ${ }^{5}$

Baseline performance measures were available for 73.4% of first-time PIs. No statistically significant differences by sex were found for baseline performance measures. The median number of articles published for men and women per year was 2.0 ($P=.64$), the median number of citations per article was 15 ($P=.99$), and the median number of research areas was 2.0 ($P=.90$).

For first-time PIs across all grant types and institutions, women received a median of $\$ 126615 \mathrm{vs} \$ 165721$ for men (median difference, -\$39 106 [95\% CI, -\$46 099 to -\$35 675]; P < .001). For the 10 highest-funded grant types across all institutions, first-time female PIs received a median award amount of $\$ 305823$ vs $\$ 316350$ for male Pis (median difference, - $\$ 10527$ [95\% CI, -\$17240 to -\$3082]; $P=.002$), with the largest differences in NO1 and U01 grants. However, women receiving R01 grants received $\$ 15913$ more than men ($P<.001$).

Female PIs at the Big Ten universities received a median of $\$ 66365$ vs $\$ 148076$ for male PIs (median difference, $-\$ 81711$ [95\% CI, -\$92 734 to -\$67450]; P < .001) (Table 2). Similarly, women at Ivy League universities received statistically significantly smaller grant amounts (\$52 190 for women vs $\$ 71703$ for men; median difference, -\$19513 [95\% CI, -\$31 310 to

Table 1. Sex Differences in National Institutes of Health Grant Amounts to First-Time Principal Investigators (PIs) by Grant Type, 2006-2017

	No. of Grants (\% Female PIs)	Total Funds, \$		Median Funds, \$		Median Difference (95\% CI)	P Value
		Male Pls	Female Pls	Male Pls	Female Pls		
All grant types	53903 (43.6)	14299086366	9602869550	165721	126615	-39 106 (-46 099 to -35 675)	<. 001
10 Highest-funded grant types ${ }^{\text {a }}$							
N01	4294 (33.9)	5127062990	2431489767	758015	631753	-126 262 (-192 487 to -42 158)	. 008
U2G	659 (40.2)	620904033	403834797	635700	706812	71112 (-48 258 to 245 451)	. 21
ZIA	473 (36.1)	251977313	161597279	593777	541648	-52 128 (-201599 to 135016)	. 44
U01	1118 (40.9)	502103617	293859180	442335	350000	-92 335 (-138 305 to -24 242)	<. 001
U19	289 (29.7)	99530085	38978847	287250	260842	-26408 (-94772 to 64675)	. 74
R21	4021 (39.1)	514696219	329828103	210673	211477	804 (-3173 to 4558)	. 45
R01	6805 (35.1)	1714019703	966030337	348596	364509	15913 (8625 to 22 803)	<. 001
P01	666 (27.6)	153880046	56634953	234354	224150	-10204 (-50 026 to 18305)	. 07
P50	519 (31.2)	111300430	43327101	218574	201512	-17062 (-46741 to 18278)	. 17
P30	715 (34.7)	130140753	46459974	150333	149473	-860 (-22 017 to 17 127)	. 69
Total	19559 (35.7)	9225615189	4772040338	316350	305823	-10527 (-17 240 to -3082)	. 002

${ }^{\text {a }}$ Excluded U54 grants, which are generally institutional and not individual awards.

Table 2. Sex Differences in National Institutes of Health Grant Amounts to First-Time Principal Investigators (PIs) by Institution, 2006-2017

	No. of Grants (\% Female PIs)	Total Funds, \$		Median Funds, \$		Median Difference (95\% CI)	P Value
		Male Pls	Female Pls	Male Pls	Female Pls		
Big Ten University							
Total	4475 (43.2)	759569110	339745391	148076	66365	-81711 (-92 734 to -67 450)	<. 001
Michigan	910 (41.2)	141026696	65961692	159600	120960	-38640 (-81560 to -17 500)	<. 001
Northwestern	611 (44.5)	87073063	39627399	77250	52172	-25 078 (-77 494 to -7259)	<. 001
Wisconsin	569 (41.8)	137528574	40251054	105694	53971	-51723 (-94 568 to -15 510)	<. 001
Minnesota	566 (43.3)	106537748	45162305	139870	56042	-83 828 (-123 299 to -47 061)	<. 001
Ohio State	342 (45.9)	46967702	36622204	187777	130869	-56908 (-86744 to -3736)	. 03
Iowa	341 (40.2)	63480034	22356759	160013	97200	-62 908 (-130 710 to -24651)	<. 001
Penn State	298 (50)	55777776	16459133	149157	47114	-102 043 (-166 464 to -42 934)	<. 001
Illinois	208 (42.3)	21983400	13978567	64171	48255	-15 916 (-38 387 to 1488)	. 12
Michigan State	130 (50)	19983899	19990339	163290	76750	-86540 (-148787 to 76 019)	. 32
Maryland	119 (47.1)	12952641	5375086	152000	47408	-104 592 (-178 234 to -20 000)	<. 001
Rutgers	116 (40.5)	33708247	7697544	249000	77083	-171917 (-247750 to -47 350)	. 004
Purdue	99 (39.4)	13633152	6630927	173286	149827	-23 459 (-94849 to 34 916)	. 34
Indiana	98 (38.8)	12001025	6782321	172681	92458	-80223 (-174882 to 92 180)	. 57
Nebraska	68 (39.7)	6915153	12850061	146419	70426	-75993 (-146777 to 49890)	. 12
Ivy League University							
Total	3564 (41.4)	481120397	218796084	71703	52190	-19513 (-31310 to -6976)	<. 001
Pennsylvania	914 (42.8)	114250899	46932468	78681	52154	-26527 (-53526 to -7150)	<. 001
Harvard	835 (39.2)	92162114	44437929	53318	47606	-5712 (-9856 to -2822)	<. 001
Yale	697 (44.3)	108217418	44899505	126765	57962	-68803 (-86 285 to -13 109)	<. 001
Cornell	498 (39.6)	65519644	36179905	49646	52190	2544 (-9112 to 13 588)	. 75
Brown	203 (45.8)	23502947	10323364	125719	49214	-76505 (-150 053 to -1127)	. 004
Dartmouth	168 (39.9)	34470140	10509570	141750	123909	-17841 (-87 065 to 50 130)	. 17
Princeton	164 (37.2)	20509968	15466356	52190	53541	1351 (-2904 to 5644)	. 39
Columbia	85 (35.3)	22487267	10046987	201032	53174	-147858 (-238 188 to 53063)	. 20
All Top 50 Institutions							
Total	20355 (43.7)	5243541876	3891624358	134919	93916	-41003 (-47 052 to -31 316)	<. 001

-\$6976]; $P<.001$). At the top 50 NIH-funded institutions, firsttime female awardees received significantly smaller grant amounts (\$93 916 for women vs \$134 919 for men; median difference, - \$41 003 [95\% CI, -\$47 052 to -\$31 316]; $P<.001$).

Discussion | This study found sex differences in the size of NIH funds awarded to comparable first-time female and male PIs, even at top research institutions. Funding disparities favoring men occurred among certain grant types, although for R01 grants, the most frequent award for first-time awardees, women received larger grants, as previously observed. ${ }^{6} \mathrm{Al}$ though the analyses controlled for key factors, limitations include possible unmeasured confounding and no data on grant applications that were turned down. Further study of the institutions where inequalities were lowest may provide insight into the reasons for sex imbalances in grant amounts awarded during formative career stages.

Diego F. M. Oliveira, PhD
 Yifang Ma, PhD
 Teresa K. Woodruff, PhD
 Brian Uzzi, PhD

Author Affiliations: Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois (Oliveira, Ma); Feinberg School of Medicine, Northwestern University, Chicago, Illinois (Woodruff); Kellogg School of Management, Northwestern University, Evanston, Illinois (Uzzi).

Accepted for Publication: December 21, 2018.
Corresponding Author: Teresa K. Woodruff, PhD, Women's Health Research Institute and Feinberg School of Medicine, Northwestern University, 303 E Superior St, Ste 10-121, Chicago, IL 60611 (tkw@northwestern.edu).

Author Contributions: Dr Uzzi had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Oliveira, Woodruff, Uzzi.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: All authors.
Critical revision of the manuscript for important intellectual content: Oliveira, Woodruff, Uzzi.
Statistical analysis: All authors.
Obtained funding: Woodruff, Uzzi.
Administrative, technical, or material support: Oliveira, Woodruff, Uzzi. Supervision: Uzzi.

Conflict of Interest Disclosures: None reported.
Funding/Support: This study is based on work supported by grant R01GM112938 from the National Institutes of Health, grant 1747631 from the National Science Foundation, and funding from the Northwestern Institution on Complex Systems and the Kellogg School of Management.

Role of the Funder/Sponsor: The funders played no role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

1. Duch J, Zeng XHT, Sales-Pardo M, et al. The possible role of resource requirements and academic career-choice risk on gender differences in publication rate and impact. PLoS One. 2012;7(12):e51332. doi:10.1371/journal. pone. 0051332
2. Sege R, Nykiel-Bub L, Selk S. Sex differences in institutional support for junior biomedical researchers. JAMA. 2015;314(11):1175-1177. doi:10.1001/jama.2015.8517
3. Etzkowitz H, Kemelgor C, Uzzi B. Athena Unbound: The Advancement of Women in Science and Technology. Cambridge, England: Cambridge University Press; 2000. doi:10.1017/CBO9780511541414
4. Wuchty S, Jones BF, Uzzi B. The increasing dominance of teams in production of knowledge. Science. 2007;316(5827):1036-1039. doi:10.1126/ science. 1136099
5. Association of American Medical Colleges. Table B-11: total MD-PhD enrollment by US medical school and sex. https://www.aamc.org/data/facts/ enrollmentgraduate/161898/tot-mdphd_enroll-school-sex.html. Accessed November 30, 2018.
6. Jagsi R, Motomura AR, Griffith KA, Rangarajan S, Ubel PA. Sex differences in attainment of independent funding by career development awardees. Ann Intern Med. 2009;151(11):804-811. doi:10.7326/0003-4819-151-11-
200912010-00009

COMMENT \& RESPONSE

Weight Loss Interventions in Adults

To the Editor The US Preventive Services Task Force (USPSTF) ${ }^{1}$ recommended high-intensity counseling for adults with obesity, followed by regular contact for maintenance of weight loss. The task force did not issue recommendations for pharmacotherapy because of (1) perceived lack of generalizability of the clinical trial findings, owing to stringent inclusion criteria and run-in periods; (2) high rates of dropout in the trials; and (3) lack of data "about the maintenance of improvement after discontinuation of pharmacotherapy."

In regard to this third point, the task force recommendation implies that medications to treat obesity should not be used on a long-term basis. However, all 4 medications approved by the US Food and Drug Administration (FDA) since 2012 for treatment of obesity have been approved for longterm use. In addition, the Endocrine Society guideline on pharmacotherapy for obesity ${ }^{2}$ notes that medications are most appropriately used long-term. The guideline gives explicit direction for the conditions in which clinicians can use phentermine long-term (a drug that is not approved by the FDA for long-term use but is the most commonly prescribed medication in the United States for obesity).

Obesity is not a lifestyle choice but rather a chronic metabolic disease. Patients with obesity experience disproportionate reductions in metabolism with even modest weight loss. They also experience increases in hunger, ${ }^{3,4}$ which persist over time. These increases in appetite provide a rationale for the long-term use of medications to treat obesity, even so-called reduced obesity (ie, a patient whose body mass index is ≥ 30 but who has lost $\geq 5 \%$ of his or her initial weight).

We believe that the task force should have addressed pharmacotherapy for obesity. In other diseases such as hypertension or type 2 diabetes, medications are given indefinitely to produce sustained improvements in blood pressure or blood
glucose levels. Medications for weight reduction are similar. Although they may not be appropriate for every patient seeking treatment for their weight, they do help some individuals maintain a reduced body weight. Patients with the chronic relapsing disease of obesity deserve to be treated with the tools currently available for long-term management, which include behavioral treatment, pharmacotherapy, and, for some, bariatric surgery.

Adam G. Tsai, MD, MSCE
Caroline Apovian, MD
Lee Kaplan, MD, PhD

Author Affiliations: Department of Metabolic-Surgical Weight Management, Kaiser Permanente, Denver, Colorado (Tsai); Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts (Apovian); Weight Center, Massachusetts General Hospital, Boston (Kaplan).
Corresponding Author: Adam G. Tsai, MD, MSCE, Kaiser Permanente, 2045 Franklin St, Third Floor, Denver, CO 80205 (adam.tsai@kp.org).
Conflict of Interest Disclosures: Dr Tsai reported being the chair of the education committee, Dr Apovian the president, and Dr Kaplan on the executive council of the Obesity Society. Dr Apovian reported receiving personal fees from Nutrisystem, Zafgen, Sanofi-Aventis, Orexigen, GI Dynamics, Takeda, Scientific Intake, Xeno Biosciences, Rhythm Pharmaceuticals, Eisai, EnteroMedics, Bariatrix, and NovoNordisk; receiving grants from Aspire Bariatrics, GI Dynamics, Myos, Takeda, Vela Foundation, Coherence Lab, Energesis, the National Institutes of Health, and the Patient-Centered Outcomes Research Institute; and having past stock ownership in Science-Smart LLC.

1. Curry SJ, Krist AH, Owens DK, et al; US Preventive Services Task Force. Behavioral weight loss interventions to prevent obesity-related morbidity and mortality in adults: US Preventive Services Task Force recommendation statement. JAMA. 2018;320(11):1163-1171. doi:10.1001/jama.2018.13022
2. Apovian CM, Aronne LJ, Bessesen DH, et al; Endocrine Society. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342-362. doi:10.1210/jc.2014-3415
3. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597-1604. doi:10.1056/NEJMoa1105816
4. Polidori D, Sanghvi A, Seeley RJ, Hall KD. How strongly does appetite counter weight loss? quantification of the feedback control of human energy intake. Obesity (Silver Spring). 2016;24(11):2289-2295. doi:10.1002/oby. 21653

In Reply Dr Tsai and colleagues cite a guideline ${ }^{1}$ on pharmacotherapy for obesity and state that the USPSTF should have addressed pharmacotherapy in its recommendation on adult obesity. ${ }^{2}$ According to the authors, pharmacotherapy should be considered for long-term use because obesity is defined as a chronic disease.

In reviewing the evidence, ${ }^{3}$ the USPSTF found that participants in trials who were randomized to medications plus behavioral interventions, compared with behavioral intervention alone, were more likely to lose 5% of their weight and maintain more of their weight loss. ${ }^{2}$ Limited data from trials also found a reduced incidence of diabetes among participants at increased risk for type 2 diabetes. Intermediate outcomes, such as use of lipid-lowering and antihypertensive medications or the prevalence of the metabolic syndrome, were rarely reported and had mixed findings. Evidence on health outcomes (eg, cancer, cardiovascular disease, mortality) was lacking.

Despite some positive findings, pharmacotherapy trials had several limitations. Study participants were required to meet

