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Abstract
This paper reviews the literature on small-world networks in social science and
management. This relatively new area of research represents an unusual level of cross-
disciplinary research within social science and between social science and the physical
sciences. We review the findings of this emerging area with an eye to describing the
underlying theory of small worlds, the technical apparatus, promising facts, and unsettled
issues for future research.
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Introduction

I
n the 1920s, Joseph Moreno, a student of Sigmund
Freud’s was interested in the sources of the ‘monsters of
the Id.’ Breaking from Freud’s view that an individual’s

psycho-emotional problems stemmed from family of origin
issues, Moreno believed that they were embedded in
contemporary relationships with family, friends, acquain-
tances, co-workers, and so forth. To measure these
connections, he devised a methodology that analyzed a
person’s network of connections using concepts such as the
sociogram, centrality, and isolate. Network analysis later
gained popularity in management with the study of small
groups, as well as in the landmark, small-world study of
large and sparse networks (Milgram, 1967), before it was
taken up in the 1960s by organizational sociologists
studying career changes (White, 1970a, b), diffusion
(Coleman et al., 1966), and job search (Granovetter, 1973).

At the time network analysis entered the lexicon of
management theory, the dominant theoretical approaches
viewed actors as independent units of observation, rather than
interdependent and linked parts of a connected whole. The
dominant approaches analyzed individual attributes of human
capital or organizational and market characteristics rather
than a person’s social capital or a firm’s alliance partnerships
(Nohria and Eccles, 1992). While the individual approach
remains important, network theory has caught on by showing
how issues as wide ranging as creativity, supplier ties, referrals,
collaboration, learning, trust, contracts, profits, diffusion,
market signaling, entrepreneurship, externalities, price forma-
tion, imitation, and production markets can be understood

using the principles of network analysis and theory. The
evolving field of social network analysis continues to develop
with a recent trend exploiting an unprecedented level of cross-
talk and collaboration across the physical and social sciences.1

One area in which a high level of interdisciplinary
research activity has persisted is the topic of small-world
networks. Small-world networks correspond to a class of
networks in which links among actors are highly clustered,
in the sense that on average an actor’s connections are also
likely to be connected to each other, while the average
number of intermediaries needed to connect any two actors
across the network, the average path length, remains
relatively short. The unique combination of high clustering
and short path lengths in the same network along with a
growing acknowledgment that small-worlds appear fre-
quently in diverse types of man-made, biological, ecologi-
cal, and technological systems has suggested that small
worlds offer an especially potent organizing mechanism for
increasing performance in many different types of systems.

Previous reviews of small-world network have concen-
trated on the derivations of the methods and techniques
used in small-world analysis rather than surveying the
empirical findings (Newman, 2000). Other reviews have
examined the possibility of using complex networks as a
new model for interdisciplinary research on diverse types of
interconnected systems (Strogatz, 2001; Amaral and Ottino,
2004), or have explored how the links between small-world
networks, scale-free networks, community structure, and
network models of dynamic processes such as the spread of
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disease and social contagion are creating a new science of
networks (Watts, 2004).

This review attempts to survey the new literature on
small worlds with a focus on social science and manage-
ment research. We describe the basic methods of small-
world analysis, the empirical findings on the relationship
between small-world networks and social and economic
outcomes, and the unsettled issues for future research. To
gain coherence and focus in covering the very large
literature in their area, we use empirical studies of real-
world networks of interest to social scientists and manage-
rial scholars to bracket our review’s coverage. We direct
readers interested in the computational details of small-
world analysis, or work in non-social science domains such
as brain networks or metabolic pathways, and general
network analysis to the papers mentioned above and to
other reviews (Galaskiewicz, 1996; Borgatti and Foster,
2003; McGrath et al., 2003; Sporns et al., 2004; Guimera and
Amaral, 2005; Cowan et al., 2006; Amaral and Uzzi, 2007).

Milgram’s small-world study
The idea of a small-world network is typically attributed to
the 1967 landmark work of Stanley Milgram. His ideas were
based on a series of field experiments that relied on brash
creativity to make original discoveries that have had lasting
effects on the study of complex networks. Milgram’s notion
of a small-world network caught the attention of many
researchers because it suggested that two characteristics of
networks that typically act against each other, clustering
and path length, are simultaneously realized in social
networks. Milgram’s conclusion that a small-world network
had a short path length despite a high level of clustering –
that is, that on average even in a very large small-world
network actors are separated by only six degrees of
separation or six intermediaries – prompted the speculation
that small worlds created unique performance benefits in
systems critical for human interaction ranging from
creativity to collaboration to communication. This is
because the many separate clusters enabled the incubation
of a diversity of specialized ideas while short paths allowed
ideas or resources to break out of their chambers and mix
into new and novel combinations (Uzzi and Spiro, 2005;
Fleming and Marx, 2006). Milgram also discovered some-
thing much less publicized than the six degrees of
separation finding. He found that approximately 60% of
the transmissions passed through the same four people!
This was a finding worth pondering. It suggested that we
are not really all connected to everyone else but rather that
there are a few people who are disproportionately well
connected and it is through these ‘superconnectors’ that
everyone connects to everyone else. The superconnectors
created shortcuts that enabled resources and ideas to hop
from cluster to cluster, by passing otherwise long paths
from one side of the network to the other. They also made a
network potentially fragile to breakup by the removal of
just a few superconnectors from the network.2

In 2000 the Earth’s population surpassed the six billion
person mark. In the context of a super-sized world and new
communication and organizational devices, Dodds et al.
(2003) attempted to replicate Milgram’s classic small-world

study. Did Milgram’s insights still hold? If the original
Milgram senders and targets had e-mail, could they have
made their connections in three or two or one degree of
separation? Focusing on e-mail as the medium of transmis-
sion, the researchers asked 61,168 participants to deliver
messages to 18 targets ranging in location and occupation
from a student in Siberia to a Norwegian animal doctor.
While just 324 ‘letters’ were successfully delivered, the
length of the chains was not dissimilar to Milgram’s
original findings – most were completed in 5–7 steps. In
1998, mathematicians tested the small-world thesis by
estimating how many friends each person on the planet has,
and how many friends they have, and so on for the
population of the planet (Blakeslee, 1998). They estimated
that any two persons chosen at random would indeed on
average be separated by about six other persons, jibing
again with Milgram’s original findings of six degrees of
separation.

Small-world theory
Milgram speculated that a small world was a network with a
surprisingly few degrees of separation between actors
despite the fact that actors tended to have cliquish groups
of friends. Watts and Strogatz (1998) showed how
Milgram’s ideas could be quantified using conventional
network measures, and more importantly established that
small-world networks constituted a class of networks
sharing the joint properties of short path lengths and high
clustering.

To quantify a small world, Watts and Strogatz showed
that two network measures can be used: average path length
(L) and the clustering coefficient (CC). L measures the
average number of intermediaries, that is, the degrees of
separation, between any two actors in the network along
their shortest path of intermediaries. The shorter the
average path length, the closer people, resources, or ideas
theoretically are to each other in the network. The CC
measures how many of an actor’s contacts are connected to
each other. When many of an actor’s contacts are
connected to each other, the actor has a highly clustered
or cliquish network.

The clustering of a network can be computed as the
average of the individual clustering coefficients of each
actor, a measure called density (Wasserman and Faust,
1994). Figure 1 shows how a clustering coefficient (CC) is
calculated for an actor (dark circle) linked to three other
actors who are in turn linked to each other in varying
degrees.

Another measure of clustering is called transitivity and
it measures the ratio of open to closed triads for the
whole network (Holland and Leinhardt, 1971; Feld, 1981;
Wasserman and Faust, 1994; Borgatti and Everett, 1999).

Figure 1 Clustering coefficient.
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CC ¼ 3 � number of triangles on the graph

number of connected triplets of vertices

Three configurations yield a triad: A is linked to B who is
linked to C; both A and B are linked to C; or both B and C
are linked to A. The percentage of closed triads in a
network is three times the total number of closed triads (to
account for the three possible configurations of triads)
divided by the total number of actual triads.

A clustering coefficient varies from 0 to 1. Zero
represents no clustering and 1 represents full clustering.
A value of 0.65 means that 65% of the triads are closed. The
two measures of clustering differ in that the former is
unweighted by size and the latter is weighted by size. This
means that the former measure shows greater clustering in
a network than the latter measure when there are many
small ego networks, which by virtue of their size are more
likely to have friends of friends connected to each other
than are large ego networks.

Once L and CC have been calculated for a network, the
question becomes by what standard do we judge a path
length to be short and a clustering coefficient to be high?
Watts and Strogatz (1998) showed that the relevant
comparison was a random graph or network with the same
number of actors in it as the observed network but where
the links among the actors are made at random. A random
network offers a relevant comparison because random
networks have relatively short path lengths and low
clustering when compared to other classes of networks
(Erdös and Rényi, 1960).

In a random network, the likelihood that any pair of
actors is linked is given by a constant probability p. For a
network with N nodes, this condition implies that the
expected degree of an actor (i.e., a person, firm, or other
entity) is k¼ p(N�1). Moreover, if kooN, then the actors
connected to actor A will have a probability p of being
connected to each other. Thus, node A will have
approximately k first-neighbors, k2 second-neighbors, k3

third-neighbors, and so forth. If N is much greater than one
and if k is at least of order one, then N¼ kL, where L is the
typical minimum path length, that is, the average number
of degrees of separation between any two nodes in the
network. Solving for L we find that L¼ log N/Log k, the
well-known approximation for the average minimum path
length between two nodes in a simple random network.
Finally, because log N increases slowly relative to N, a
distinctive property of a random network is a short average
path length even for large random networks.

Random graphs also have low clustering. In most real-
world social networks, many people’s friends are also
friends of each other. This means that a typical social
network has high clustering because the probability of
neighboring nodes being connected is relatively higher than
the probability of non-neighboring nodes being connected.
By contrast, in random graphs neighboring nodes and non-
neighboring nodes have the same probability p of being
connected. This makes a random graph have low clustering.

Using random networks as their relevant comparison,
Watts and Strogatz (1998) showed that a network was a
small world if its CC ratio (CC actualCCC random) was
many times greater than 1.0 and its PL ratio (PL actualCPL
random) was approximately 1.0, or if the CC ratio divided

by the PL ratio was much greater than 1.0, a measure
known as the small world Q (Davis et al., 2003; Uzzi and
Spiro, 2005).

Aside from the technical apparatus of using a random
graph for comparison, how does one interpret the meaning
of a network made up of random ties or a network that has
more or less randomness in it? Most persons can think of a
few contacts that they have made at random – the person in
the adjacent seat on a plane – but this kind of tie making
can be rare. Randomness does not necessarily mean that
actors make contacts randomly in chance meetings in cafes
or the unemployment line but rather that we do not
understand, or lack knowledge of, the micro processes that
lead to the choice of attachments and that as long as these
processes are non-systematic we can treat them as if they
were random. Thus, a level of clustering or path length in
the network above the level expected at random suggests a
persistent rather than a chance structure.

Empirical studies of small worlds
Table 1 presents a summary of small-world research in
social science-related studies that have reported the small-
world statistics of PL and CC for various networks. The
table shows the diversity of studies across three levels of
analysis: organizations, persons, and technology. In addi-
tion, some studies have reported the change in small-world
statistics over a significant period of time revealing how
these statistics change with time with the entry and exit of
nodes in a population. Other studies collapse time and look
at the entire network as one large cross-section. For
example, Watt’s (1999) analysis of the Hollywood film
actors’ network looks at connections among actors in the
same movie from 1898 to 1997 as one large network. The
table shows that most measures of the PL ratio range
between 1.0 and 1.5 with a mean of 1.26. By contrast, the CC
ratio has a very high variance, ranging from less than one
(Baum et al., 2003; Moody, 2004) to 2925.93 for the movie
actors network as the networks under study have changed
through time and growth.

Drawing together two lines of small-world research on
change and robustness, Kogut and Walker (2001) examined
how the network of cross-ownership among German firms
changed during the 1990s as the German economy
internationalized. Despite globalization pressures, which
can substantially change ownership cross-holdings among
companies, they found that the German network retained
its small-world properties of high clustering and short path
lengths. Moreover, they demonstrated that a small-world
network can preserve its inherent structure despite a
substantial number of shocks that rewire ownership links.
From 1994 to 1997, they observed that about 101 actual
ownership ties were either formed or broken and yet the
small world remained, suggesting that small-world net-
works are robust to even high rates of turnover. Using a
simulation that recreated the actual network structure, they
randomly rewired two times as many links as had changed
in the real-world data. They found that the small-world
structure persisted.

This suggests that a massive amount of restructuring is
needed to transform a small world into another kind of
structure, an important finding for understanding how to
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Table 1 Small world studies

Authors Network Period N k L
Actual

L
Random

CC
Actual

CC
Random

Lr CCr Q

Organizations
Kogut and
Walker (2001)

German firms 1993–1997 291 2.02 5.64 3.01 0.84 0.022 1.87 38.18 20.38

Baum et al. Canadian I-banks 1952–1957 53 1.36 3.21 4.556 0.023 0.027 0.70 0.85 1.21
(2003) 1969–1974 41 2.22 2.82 3.176 0.283 0.054 0.89 5.24 5.90

1985–1990 142 3.83 2.95 3.144 0.273 0.027 0.94 10.11 10.78
Davis et al. US Co. interlocks 1982 195 6.8 3.15 2.7 0.24 0.039 1.17 6.15 5.27
(2003) 1999 195 7.2 2.98 2.64 0.2 0.039 1.13 5.13 4.54
Verspagen and
Duyster (2004)

Strategic alliances* 1980–1996 5504 5.29 4.2 5.25 0.34 0.0008 0.80 425.00 531.25

Schilling and
Phelps,
(forthcoming)

US alliances in 11
2-digit SIC codes**

1992–2000 171
(157)

3.11
(1.42)

20.39
(18.69)

5.62
(3.01)

0.26
(0.18)

0.04
(0.039)

3.85
(2.84)

10.44
(7.53)

2.71
(2.65)

Persons
Davis et al. US Director 1982 2366 19.1 4.03 2.61 0.91 0.009 1.54 101.11 65.48
(2003) interlocks 1990 2078 17.4 3.98 2.65 0.89 0.009 1.50 98.89 65.84

1999 1916 16.3 3.86 2.69 0.88 0.009 1.43 97.78 68.14
Fleming et al.
(forthcoming)

US patenting
inventors***

1986–1990 7069 4.73 2.73 1.14 0.736 0.0452 2.394737 16.28 6.80

Kogut and
Walker (2001)

German Co.
ownership

1993–1997 429 3.56 6.09 5.16 0.83 0.008 1.18 103.75 87.91

Newman (2004) Biology
co-authorship

1995–1999 1,520,251 18.1 4.6 0.066

Physics
co-authorship

1995–1999 52,909 9.7 5.9 0.43

Mathematics
co-authorship

1940–2006 253,339 3.9 7.6 0.15

Moody, 2004 Sociologists
co-authorship

1963–1999 128,151 9.81 7.57 0.194 0.207 1.30 0.94 0.72

1989–1999 87,731 11.53 8.24 0.266 0.302 1.40 0.88 0.63
Goyal et al. Economists 1980–1989 48,608 1.244 0.182

co-authorship 1990–1999 81,217 1.672 0.157
Watts (1999) Hollywood

Film actors
1898–1997 226,000 61 3.65 2.99 0.79 0.00027 1.22 2925.93 2396.85

Smith (2006) U.S. Rappers 5533 3.9 0.18
U.S. Jazz musicians 1275 2.79 0.33
Brazilian pop 5834 2.3 0.84

Technology
Watts (1999) Power grids 4941 2.94 18.7 12.4 0.08 0.005 1.51 16.00 10.61
Vazquez et al. Internet 1997 3112 3.5 3.8 0.18
(2002) 1998 3834 3.6 3.8 0.21

1999 5287 3.8 3.7 0.24

* Chemicals and Electronics Industries, ** average across industries for analysis of separate industries, see Schilling and Phelps, forthcoming.
*** Path length for giant component, **** average for biology, physics, and mathematics.
Empty cells appear when small world statistics were not included in the original article.
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measure and gauge the institutionalized power structure
behind an industry and economy even if the economy has
experienced radical turnover of key players. Similarly, for
firms experiencing a high level of turnover either because it
is a natural consequence of the business model as in
consulting or professional services firms where most
recruits are terminated or because of mergers and
acquisitions, this result suggests that firms organized as
small worlds can experience turnover without disruption to
the underlying organization of knowledge transfer and
collaboration.

Verspagen and Duysters (2004) examined whether the
network of strategic alliances among firms in the chemical
and food and electrical industries had small-world proper-
ties. Like intercorporate ownership patterns, the network of
strategic alliances is another important means by which
firms coordinate activity and transfer knowledge. Their
data covered 5,504 alliances from 1980 to 1996. Two firms
were linked if they had an alliance. Table 1 indicates that
this alliance network was a small world with the PL ratio
close to 1.0 but with a CC ratio being much greater than 1.0.
While this work did not show a direct connection between
the small-world structure and performance, it was im-
portant in demonstrating that alliance networks, which are
relatively more volatile than ownership ties (Gulati, 2007),
have small-world properties and be examined for whether
the small-world structure adds values to alliance perfor-
mance (see Schilling and Phelps, forthcoming for a test).

Looking at a related knowledge transfer and intercorpo-
rate coordination problem, Davis et al. (2003) examined the
stability of the structure of the Fortune 1000 network of
corporate directors and the company interlocks of a cohort
of 195 F1000 firms from 1982 to 1999. As a source of
economic and political coordination (Palmer, 1983; Mintz
and Schwartz, 1985; Mizruchi, 1996), Davis et al. (2003)
were curious about how stable the structure of elites had
been relative to the massive restructuring experienced by
the US economy. For example, from 1982 to 1999 nearly all
of F1000 firms and directors at the network’s core had been
replaced by a new set. Their results showed that the small-
world network of corporate elites remained relatively stable
despite the massive turnover of companies and directors.
Any two boards remained capable of being linked by no
more than just four directors. For example, if Citigroup, a
diversified financial wanted to reach the Time Warner
board, a media conglomerate, the connector would be
Richard D. Parsons. And if Citigroup wanted to connect
with Colgate Palmolive, a consumer product company, they
could use their link to Time Warner’s board to get to
Colgate Palmolive through Reuben Mark who links Time
Warner and Colgate Palmolive. This work showed that
while the individual actors who make up a system can
change in terms of capabilities, political interests, technol-
ogy, or strategy, the underlying organizational structure of
a small world continues replicate, suggesting that a small-
world network offers a high level of flexibility for
organizing a diversity of actors.

In another paper examining the topography and change
of a small-world network of economic actors, Baum et al.
(2003) examined the formation of the short-cut links that
connect the clusters of a small world from 1952 to 1990.
Looking at the network of Canadian investment banks

where a tie exists between two banks if they worked
together on a deal, they examined whether the formation of
shortcuts was due to ‘(1) chance partnering of firms in
different cliques, (2) intentional partnering by peripheral
firms to improve their network positions, or (3) controlled
partnering by core firms to maintain their positions.’ They
found that all three scenarios played a role in explaining the
formation of short-cut ties, while chance and strategic
partnering played a greater role in their setting. This
suggested that the underlying structure of the small world
while the product of strategy is also the consequence of
chance links that make the complete structure beyond the
control of any one firm.

Table 1 also shows that as the Canadian I banking
network developed through time, the PL ratio remained
relatively constant but the CC ratio rose by a factor of about
10, suggesting that clustering varies and rises and falls over
time even as the path length stays low. To some extent, this
makes sense as the CC ratio is likely to rise as actors’ tenure
in the network increases. This is because the likelihood that
they will have connections with more actors that are linked
to each other increases with time. This study also suggests
an important next step in small-world research. Previous
research showed that high turnover among German firms
as well as US directors, did not substantially change the
small-world structure when the approximate size of the
network remains constant (Kogut and Walker, 2001; Davis
et al., 2003). Baum et al.’s (2003) research suggests that
growth combined with turnover has little apparent affect on
the PL ratio but a significant effect on the CC ratio. This
suggests that future research on the growth and emergence
of real-world small worlds could help reveal how robust
these systems are when entry exceed exit or vice versa.

Schilling and Phelps (forthcoming) offered one of the
first studies of the relationship between small-world-
alliance networks and firm performance in the area of
patenting rates. Building on the alliance literature’s findings
that joint ventures and informal agreements between and
among firms can boost a firm’s innovation potential
(Kogut, 1989; Powell et al., 1996; Gulati, 2007; Uzzi, 1997),
they reasoned that the more a firm was embedded in an
industry-wide alliance network with high clustering and
short average path lengths, the more likely it was to gain
access to knowledge important for innovation. This is
because small-world networks enable reach (links to distant
information) while forfeiting little information transmis-
sion capacity (efficient information transfer between closely
connected firms).

This hypothesis highlighted the difference between
small-world theory and the conventional alliance wisdom,
which held that ‘alliances that create redundant paths
within a clique of partners yield transmission capacity but
forfeit reach, while alliances that create nonredundant paths
to new firms create reach but forfeit bandwidth.’ Studying
the longitudinal patent performance of 1106 firms in 11
industry-level alliance networks they found results consis-
tent with the small-world hypothesis. The more firms were
embedded in networks with small-world properties, the
more likely they were to patent at greater rates than firms
not in small-world networks. Also, the results were stronger
for models employing a two- and three-year lag vs a one-
year lag, suggesting firms do not quickly realize the
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innovation benefits of collaboration and that small worlds
influence the knowledge base, innovative capacity, and rate
of innovation of the firms embedded in them.

Numerous studies have looked at the small-world
properties of actor networks. At the boundary between
actors that collaborate independently as free-lancers in a
market and those that collaborate within the confirms and
rules of large firms, Fleming et al. (forthcoming) and
Fleming and Marx (2006) studied inventors in Silicon
Valley and Route 128 in Boston. These inventors collabo-
rated on patented inventions with others within and outside
their firms and as freelancers with private patentors or
patentors in other firms. Two patentors were linked if they
co-authored a patent.

Consistent with predictions, they found that the network
of inventors has a small-world structure. Contrary to
predictions, they found no relationship between the small-
world structure of these networks and patenting rates in
these regions. Nevertheless, they did find that short path
lengths and the size of the largest component positively
correlated with patenting (see also Fleming et al. (forth-
coming), suggesting that the level of connectivity within the
larger subcomponents of a small world does have an effect
on performance.

An active area of small-world networks built around
freelancers has been done on scientists whose networks of
co-authorship can be extensively mapped from historical
publication records. Newman (2004) looked at co-author-
ship networks in biology, physics and mathematics using
the medline, Physics E-Prints archive, and mathematical
reviews databases respectively. Building on work on the
bibliometric properties of published paper archives and
databases that have looked at the organizational and
institutional properties of collaboration (De Solla Price,
1963), he analyzed these networks using the standard tools
of small worlds. He found that all these networks had small-
world properties. He found that for the bulk of scientists in
these fields gained access to researchers outside their
immediate clique of co-authors through a surprisingly
small and disproportionately important group of scientists
that weave together the invisible college.

Delving deeply into the network structure of a single
discipline, Moody (2004) examined the networks of
sociologists from 1963 to 1999 using sociological abstracts.
Whereas Newman (2004) had looked across fields for
similarity, Moody looked within a field’s subspecialties for
differences. Compared to the physical sciences, co-author-
ship was rare in sociology. Sixty-seven percent of the
papers were sole-authors and 66% of the co-authored
papers were written by just two authors (see Wuchty et al.,
2007 for comparisons of all scientific fields in the physical
sciences, social sciences, and arts and humanities from 1955
to 2005). Another surprising finding was that this network,
which was made up of many subspecialties such as Marxist
theory, economic sociology, criminology, and so forth, was
not a small world. Presumably, the many criss-crossing
subfields of the discipline produced knowledge clusters that
were overlapping in content and authorship rather than
distinct. ‘In each case, the clustering coefficient is a little
smaller than random expectations, but distances are
significantly greater than expected under random mixing,
in direct contraction to the small-world model. These

findings suggest that the collaboration network is not
composed of a distinct, separate cluster. Instead, permeable
theoretical boundaries likely result in a network that folds
in on itself, connecting people at greater distances from
widely different specialties’ (p. 228). Also, in contrast to
Newman’s (2004) work, Moody found that the high level of
overlapping among subfields was not centered on a core of
star authors. The network did not fragment until 100% of
the scholars with 8–10 links were removed from the
network, suggesting that links within and between sub-
disciplines were not disproportionately dependent on the ties
of a few highly published authors with many co-authors.

Goyal et al. (2006) also examined the co-authorship
network of a single field. They studied co-authorship
patterns among economists from 1980 to 1999 and found
two notable characteristics of this small world. One, over
time the more stable feature of the small world was the
increased presence of brokers, ‘interlinked stars,’ that
spanned the network of collaboration (shortening other-
wise long path lengths and two) and the average degree of
the networks had increased. This suggests, in contrast to
Moody’s study of sociologists, that co-authorship among
economists had become more prevalent with time as the
search for knowledge in this small world of many
subspecialties has lead authors to work with more
collaborators and that it has become more focused on
stars that connect the subspecialties.

These findings on the structure of co-authorship net-
works among scientists show that there is a tendency for a
small-world organization, but that it is not universal.
Moreover, the similarity of structure that is found between
different fields of science may obscure important differ-
ences within the internal structure of a field in terms of who
are the best connected individuals and the roles they play in
weaving together the fields structure. Finally, they suggest
that the structure of the network is affected through time by
simply the propensity to work in teams on papers. The
more a field is oriented towards team vs solo production of
scientific knowledge, the more a small-world structure
appears to arise (see also Guimera et al., 2005; Wuchty
et al., 2007).

Like engineers and research scientists endeavoring to
create innovations and new ventures, creative artists must
collaborate for access to expertise to make products (e.g.,
bands are made up of musicians who specialize in the
playing of certain instruments) as well as for access to
creative material embedded in the conventions of different
genres and art forms and personal artist styles (Becker,
1982; Uzzi and Spiro, 2005). Table 1 shows several artists
networks. Notably for the large size and diversity of the
network, Watts (1999) showed that the network of Holly-
wood actors (actors were linked if they worked on the same
movie) had a small-world structure. Brett Tjaden created
the Six Degrees of Kevin Bacon game to examine the
network structure of this small world. In this game a player
names an actor or actress. If the person acted in a film with
Kevin Bacon, then they have a ‘Bacon Number’ of one. If
they acted in a film with someone who has worked with
Bacon, they have a Bacon Number of two, and so on. Tjaden
showed that the highest Bacon Number is eight, a relatively
short maximum path length for a network this large,
especially if one considers that Bacon was connected to less
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than 1% of the actors. The most-connected actor or actress
in Hollywood was Rod Steiger. Steiger was highly connected
because he worked on film in diverse genres, making him a
node that links the diverse clusters of the small world (cited
in Uzzi and Spiro, 2005).

Smith (2006) investigated the world of musical artists in
Rap (www.allhiphop.com; www.ohhla.com), Jazz, and
Brazilian pop music (www.allmusic.com). Table 1 indicates
that these networks are diverse in terms of institutional
settings, artists backgrounds, and musicians’ technical
proficiency but all share small-world characteristics of a
short path length and high clustering although a definitive
conclusion is impossible because the PL ratio and CC ratio
were not reported in his analysis.

Another noteworthy aspect of this study was that it
attempted to examine the performance implications of
small worlds on the success of the actors in the small world.
Measuring the betweenness and degree centrality of rappers
he found no evidence in support of an effect of a small-
world performance using the number of Gold or Platinum
record sales of an artist. Smith (2006) concluded that ‘The
variables influencing how connected a rapper is can include
perceptions of talent, social stature and reputation, and
even personal preference. For an example, Dr Dre and
Snoop Dogg are both prominent West Coast rappers. Dr
Dre only has a node degree of 105 compared to Snoop’s 240
despite having a higher record index score [gold and
platinum albums] and the same regional roots. [but] y. Dr
Dre has gone into more producing but not collaborated as
prolifically as Snoopy.’ Another reason for the zero
correlation between small-world characteristics and the
success of an artist is that the measure of records sales in
terms of Gold and Platinum may be too narrow or selective
measures of performance in that few albums reach these
marks. Other measures of performance such as number of
albums, number of hits, profitability of an album, and so on
were not tested due to unavailable data.

Technological networks have been another area of small-
world research of interest to management scholarship on
technology. Watts (1999) showed that the modern man-
made southwestern power grid with about 4900 nodes had a
small-world structure. This small-world structure suppo-
sedly promoted robustness in the system by buffing
functioning parts of the system from parts experiencing
failure. This idea of system robustness, a critical aspect of
physical networks as well as social networks as noted in the
Kogut and Walker (2001) study, is perhaps most note-
worthy in the many network studies of the Internet.
Vazquez et al. (2002) and Barabási et al. (2000) have both
shown that the high clustering of the routers that make up
the Internet along with the few superconnecter routers than
tie the Internet together make it highly robust to the
random failure of any one node. This line of work has
suggested that large-scale technological systems created
and maintained to conform to small-world properties can
help boost system performance.

Small-world-affiliation networks
In an affiliation or bipartite network, actors work in teams
rather than as solo players and each actor on the team is
linked to every other actor on the team (Wasserman and

Faust, 1994). Teams are linked if there is (are) a teammate
common to both teams. Figure 2 shows an affiliation
network’s two-tier structure and how it can be projected as
an unipartite network.

Affiliation networks deserve special attention for at least
three reasons. Affiliation networks are ubiquitous. Many
critical types of social networks involve teamwork: actors in
a movie (Amaral et al., 2000), creative artists who make
musicals (Uzzi and Spiro, 2005), organizational project
teams, investment bank syndicates, venture capital syndi-
cates (Kogut et al., 2007), co-patenting inventors
(Gittelman and Kogut, 2003), co-authors on scientific
papers (Newman, 2001; Guimera et al., 2005), and boards
of directors (Robins and Alexander, 2004).

Affiliation networks have been shown to have important
effects on performance. They appear to account for major
leaps forward in science, art, and philosophical thinking
throughout the ages. Going back through all recorded
history in Eastern and Western civilizations, Randall
Collins’ masterpiece, the Sociology of Philosophies, exam-
ined whether great inventions in art, science, and
philosophy occurred by loners or by individuals who were
parts of teams, networks, salons, and other community
oriented movements. He showed that except for three
individuals: Taoist meta physicist Wang Chung, 14th
century Zen spiritualist Bassui Tokusho, and 14th century
Arabic philosopher Ibn Khaldun, all the other great
advances, including Freud, Hegel, de Medici, Smith,
Hutchinson, Watson and Crick, and Darwin, came about
by individuals who were a part of a network of relationships
in which many individuals worked as part of teams.

The statistical properties of affiliation networks differ
from the properties of unipartite small-world networks
(Borgatti and Everett, 1999; Newman et al., 2001). Affilia-
tion small worlds have different levels of clustering and
different characteristic path lengths than unipartite graphs.
In particular, they have much higher clustering than a
unipartite small world because each person’s membership
on a team means that they are also a member of a fully
connected clique (each teammate is linked together,
creating a density of 1.0 on each team). Consequently, an
affiliation network will appear to have a high level of
clustering by virtue of its team topography, not because
friends of friends are also friends of each other. Conversely,
affiliation networks tend to have shorter path lengths than
unipartite networks as the number of overlapping team-
mates between teams increase.

These differences can be seen in a small-world study by
Uzzi and Spiro (2005). They studied the affiliation network
of creative artists that made Broadway musicals from the

A B C D E F

Figure 2 Bipartite-affiliation network and its unipartite projection. Note: Top
row represents four teams and the bottom row represents the teams’
members (e.g., co-authors on a paper or artists that make a show).
Teammates are members of a fully linked clique (e.g., A B C, B C D, C E, and D
F). Connections form between agents on separate teams when links like (B C)
connect the A B C, B C D, and C E teams.
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first musical produced in 1877 to the modern day, which
included over 400 original shows and more than 2000
creative artists. Each musical was created by a team of
artistic specialists (composer, lyricist, choreographer,
librettist, director, and producer) who collaborated to
produce a musical. Each team formed a fully linked clique.
A team linked to the network of past creative artists if at
least one artist on the team had worked on a prior team
already in the global network.

Figure 3 shows four productions: Pajama Game (1954),
West Side Story (1957), Gypsy (1959), and Fiddler on the
Roof (1967). Each musical is a made up of a team of five
persons. These five musicals can be converted into a
unipartite projection in which all the members of the team
are connected in a fully connected clique. Across these four
musicals, there are several persons that participate in more
than one team. In this based-on-real-life example artist a is
producer Harold Robbins, artist b is Stephen Sondheim, the
composer in Gypsy and the Lyricist in West Side Story,
artist c is librettist Arthur Laurents, and artist d is director
Jerome Robbins. Dynamically assembling these artists
through time into one global network, the fully linked
cliques link together by artists who worked on more than
one team.

The diagram reveals that the real level of clustering in an
affiliation network is the difference between the between
person clustering of the actual network and the level of
clustering of a random graph of the same size. The
reasoning is that all the within team clustering can be
explained fully by random rewiring (any rewiring of the
links among members of the same team recreates exactly

the same pattern of ties within the fully linked clique).
Consequently, the real level of clustering in the actual
network has to be due to the between clique clustering that
cannot be accounted for by random reassignment.

The implications of affiliation network structure on
statistical tests of a small world are more clearly seen by
looking at how the tests of clustering and path length
change. A bipartite small world is still defined as a network
that is more highly clustered than a random network and
one that has a short path length relative to a random
network. However, the randomization process must change
to account for the different clustering properties of a
bipartite network.

First, the test for comparing the CC actual to the CC
random is biased in an affiliation network because the fully
connected teams that make up the network inflate the level
of clustering of the actual network relative to the simple
random graph comparison used in the unipartite network.
Second, the same factors artificially underestimate the
actual path length relative to the simple random graph
comparison in the unipartite networks. For example,
Newman et al. (2001) analyzed the small-world statistics
of the network of the boards of directors of major US
companies (Davis et al., 2003) with and without the
correction for its bipartite structure. They demonstrated
that uncorrected network statistics gave a misleading
picture of the true topography of the network. While the
uncorrected CC ratio showed a very high level of clustering,
the network statistics that corrected for the affiliation
structure of the network showed that the level of clustering
in the network was virtually identical to what would be

d

Musicals

Pajama Game ’54 West Side Story ’57 Fiddler on the Roof ’67Gypsy ’59

Artists
a b c d

a a b

c

c

b

d

c

Production
Team clique

Assembly of
Cliques into
Global Network  

New Shows
Are Created 

a b

c

d

Figure 3 Affiliation networks of broadway creative artists. Note: Figure is based on actual data; A¼ Harold Prince (Producer), B¼ Steven Sondheim (Composer/
lyricist in Gypsy and Lyricist West Side Story), C¼ Arthur Laurents (Librettist), and D¼ Jerome Robbins (Director). As the fully linked cliques are connected to each
other through artists who are part of multiple teams, the frequency between clique connections is disproportionately made up of repeated ties and third-party ties.
This pattern is illustrated by the high connectivity among the artists who separately worked on West Side Story, Gypsy, and Fiddler and the frequency of the
repeated and third ties among B &C and C & D, Sondheim, Laurents and Robbins and Sondheim.
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expected in a random bipartite network of the same size.
Conyon and Muldoon (2005) found similar results for the
boards of director network of UK firms when it was treated
as a bipartite rather than a unipartite network. These
findings echoed earlier sociological work on boards of
directors that showed that the reconstitution of broken
board ties between companies could be explained by
random reordering (Palmer, 1983; Zajac, 1988; Robins
and Alexander, 2004).

Newman et al. (2001) obtained an analytical solution for
the random CC and random PL for a bipartite graph. The
key adjustment in going from the unipartite to the bipartite
network solution is that the random affiliation network has
two rather than one distribution of links: the number of
individuals per team and the number of teams per
individual. Their model is implemented in two steps. First,
calculate the tie distributions for each team and each actor
in the actual network. Second, for each team and actor in
the random graph equivalent, reproduce the degree
distribution of the actual network by linking team and
teammate nodes randomly. The actual PL is calculated by
taking the weighted average of the PL of each actor in the
network. The PL for a random bipartite graph is computed
by using the same degree distribution as the bipartite
random cluster coefficient. In a unipartite random graph,
the PL is estimated as log(n)Clog(k). In the bipartite
network, paths are traced from both the perspective of the
actor and the team of which the actor is a member.

These differences in methods reflect related differences
in the interpretation of the PL and CC ratio for unipartite
and bipartite small worlds. The bipartite PL ratio has the
same interpretation as in a unipartite network – the greater
the PL ratio, the greater the mean number of links between
actors. The bipartite CC ratio has a related but different
interpretation than the unipartite CC ratio. While the
random CC of an affiliation network lies on a scale of 0–1
and has the same interpretation as the actual CC, the CC
ratio has a different interpretation. It reveals how much
between clique clustering there is over that amount
expected by simple random assignment. Thus, when the
bipartite CC ratio is approximately 1.0, there is little
between-team clustering. Almost all of the clustering is due
to within-team clustering. When the CC ratio exceeds 1.0,
the amount of between-team clustering is also increasing –
that is, there are more overlapping team memberships that
cannot be explained by random linking. Consequently,
unlike the CC ratio of a unipartite, which should be orders
of magnitude greater than the random graph equivalent, the
CC ratio of an affiliation network can be much smaller and
still reveal a significant difference in the level of clustering
between the actual and random networks.

As the CC ratio rises, the cross-team links increase and
are increasingly made up of actors who have previously
collaborated (i.e., repeated ties). This occurs because actors
that work on multiple project teams are inclined to prefer
teammates whom they have worked with in the past or who
have worked with others whom they have worked with in
the past, a process due to reciprocity and reputation
principles (Granovetter, 1985; Uzzi, 1996, 1997).

Table 2 shows the comparison of the bipartite and
unipartite small-world statistics for the Broadway Musical
creative artists network (Uzzi and Spiro, 2005). Using data T
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on Broadway musicals from Ol’ Neally, the first show
launched in 1877 to the last show produced in 1990, Uzzi
and Spiro (2005) reassembled the entire creative artist
network. In this network, two creative artists had a link if
they worked on the same show together and everyone who
worked on the same show were considered teammates. The
table indicates the rather large differences that can result
from using bipartite vs unipartite statistics to measure the
same bipartite network. Concentrating on the summary
statistic, Q, it is apparent from the chart that it is sizably
inflated by the unipartite statistics. In 1989, the bipartite Q
statistic is 1.62 while the unipartite statistic is 14.64, or over
nine times as large. This suggests that the unipartite
statistics can grossly overstate the degree to which a
network is a small world when it is not. Another important
difference is the systematically different behavior in the
unipartite and bipartite CC and PL ratios. The unipartite CC
ratio significantly overstates the amount of clustering in a
bipartite network while unipartite PL ratio understates the
average path length in a bipartite network. Finally, an
important difference is the change in the Q over time. The
unipartite Q statistic continues to grow over time while the
bipartite Q increases and decreases over time. This feature
seems to be driven most by the difference in the behavior of
the clustering in the network. We see that the random CC of
the bipartite varies up and down whereas the unipartite CC
drops and then stays low.

Another empirical finding regarding clustering in
bipartite networks showed that it occurs not because of
persons who are superconnectors, that is, persons who have
connections to many others as it does in unipartite small-
world networks. Rather, in the bipartite network, team
composition plays a dominant role. Robins and Alexander
(2004) showed that teams with superconnectors keep the
path lengths low and clustering high. They found that the
small-world structure of a bipartite network was not due to
highly connected individuals working on lots of teams but
on teams with many superconnectors. These findings were
observed by looking at US and Australia board of director’s
data – boards that follow different rules and exist in
different institutional structures. They looked at interlock
data for 229 companies and 489 directors and 198
companies and 225 directors in the US and Australia
respectively. Consistent with prior work, they showed that
the level of between-team clustering of individual directors
was no different than expected by random network of the
same size (Newman et al., 2001). Directors did not tend to
sit on more or fewer multiple boards than expected by
chance. However, at the company level of the network,
more companies were superconnectors than expected by
chance and these companies gained that position by having
more than the expected number of directors sitting on their
board who sat on more than one board. This suggests that
in bipartite networks the small-world properties are not
driven by superconnector directors who sit on many boards
but rather by boards that attract individuals with multiple
board membership. In other words, much of the bipartite
structure is dependent on the teams, not individuals,
although there is dependence between the two levels in the
bipartite structure. This suggests that an affiliation network
that cultivates individual star superconnectors without
an attempt to accumulate some stars onto similar teams,

may enhance an individual directors connectivity at the
expense of promoting connectivity across the broader
small-world network structure (Robins and Alexander,
2004: 89).

Moving from describing topography and change in a
bipartite small-world network to assessing its performance
implications, Balconi et al. (2004) examined the role of
small worlds in the transfer of proprietary knowledge
between non-academic and academic patentors from 1978
to 1999 using the EPO-INV database, which is an extract of
all Italian patentors’ location, professional activities, and
social ties. In this network, patentors on the same patent
were considered teammates in the affiliation structure.
Examining whether the broad small-world hypothesis of
information transfer across longs distances holds not only
for common knowledge but for the type of proprietary
knowledge that flows through patenting networks, they
mapped the networks of over 30, 243 Italian patentors to
look at the determinants that influence the entry of
academic patentors into commercial, non-academic patent
networks. Their work provided one of the first large-scale
descriptions of patenting networks as well as showed that
centrality in the academic patent network was significantly
associated with an academic patentor moving into the non-
academic network, suggesting that central academics
critically affect the flow of proprietary knowledge in this
small world.

Uzzi and Spiro (2005) examined the effect of a small
world on artists’ creativity. Their criteria for creativity were
based on two measures of creativity used in show business:
(1) profitability and (2) and critics’ reviews. The first
criterion variable was measured dichotomously (the size of
a show’s profits is proprietary data) and the second
criterion variable was measured as the average of the
critics’ reviews, which were recorded on a five point
Likert scale from pan to rave. As the main independent
variables, the authors correlated the CC ratio, PL ratio, and
small world Q of this network with the two dependent
variables.

They reported several findings about small worlds and
performance. First, because the study examined the small-
world topography over a long time frame, which included
the entry and exit of outstanding talent, as well as many
social and economic changes, including two world wars, the
Great Depression, the advent of TV and movies, and AIDS,
the data could reveal how changes in a small-world-affected
performance. They found that a small world changed
primarily along two dimensions that paralleled changes in
path length and clustering. When there was a low level of Q,
there were numerous disconnected clusters and the clusters
were prone to be linked through one tie. The connecting
links also have low cohesion in that they are not
disproportionately formed through repeat ties among the
actors in the network. At high levels of Q, there were few
disconnected cliques and many of the cliques were linked
by multiple actors who had worked with each other in the
past. As the level of Q increased, the network became more
interconnected and connected by persons who knew each
other well because there were more between team links and
these links are disproportionately made up of repeat
collaborators and collaborators who share third parties in
common.
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They argued, building on prior research (Granovetter,
1973, Uzzi, 1997; Collins, 1998; Burt, 2004; Fleming and
Marx, 2006) that a small world affects the performance of a
system as well as the performance of the actors within it in
relation to levels of Q. If Q is low, creative material remains
cloistered in the separate teams, an isolating process that is
aggravated by the lack of cohesive ties that link separate
teams and that promote risk taking on new material among
artists. When Q increases to a medium level, there is an
increase in the level of connections among teams and these
connections are increasingly cohesive. Repeated and third-
party ties facilitate the cross-team adoption of fresh but
unfamiliar creative material. These patterns suggested a
linear relationship but one that holds only up to a
threshold. After the threshold the effects reverse because
too much connectivity and cohesion can undermine the
very benefits it creates. If Q rises beyond a threshold, the
network increases in connectivity and cohesion to a point
at which connectivity homogenizes the pool of creative
material while cohesive ties promote common information
exchanges, limiting the diversity of the pool of creative
material and trapping artists in echo chambers of like
minded collaborators.

This reasoning suggested a parabolic relationship be-
tween a small world and the performance of the actors
within it. Consistent with this hypothesis, they found that
artists were statistically more likely to produce financially
and artistically successful shows at a medium level of Q
than they were at either high or low levels of Q. They also
showed that the yearly success of the entire industry varied
with the small world Q. Seasons with a medium level of Q,
produced more hit shows and received better artistic
notices than did seasons with a high or low level of Q. This
relationship proved robust for different statistical models,
control variables, specifications of a small world (i.e., using
Q alone or using CC ratio and PL ratio as separate
independent variables).

In a study of political behavior and network structure,
Fowler (2005) found a parabolic relationship between
voter turnout and the small worldliness of voter’s
personal networks. He constructed a simulated small-world
network using data on 2176 voters surveyed in Huckfeldt
and Sprague’s 1966 Indianapolis–St. Louis election study.
The actual survey showed that voter’s personal networks
were highly clustered. The probability that a friend is a
friend of a friend was 0.61. The probability that two of
one’s friends talk to each other was 0.47. They did not
know the true path length for the political discussion
network. They argued that clustering would enhance the
influence a committed voter has on the other in their
network. They reasoned that as clustering goes up, a
committed voter has more paths to influence others in his
or her clique. However, they also have fewer connections to
the rest of the social network. In their computer simula-
tions as well in regression analyses of actual data they
found results consistent with this parabolic hypothesis.
Respondents with a mix of in-clique and out-clique friends
were 1.5% more likely to vote than people in only in-clique
or non-clique networks. Moreover, they found that the
parabolic relationship increased as the desire of the
committed voter increased. This suggests that participation
rates rise with clustering but as clustering reaches high

levels in a small world the influence of any single person is
more localized.

Guimera et al. (2005) constructed the collaboration
networks for four academic disciplines – economics, social
psychology, astronomy, and ecology, using the co-author-
ship patterns of the papers written in the top 5–7 journals
in each field from approximately 1960 to 1990. In total, the
data spanned over 40 years of co-authorship ties among
107, 066 scholars who collaborated on 88,806 papers in the
four separate scientific disciplines. They examined the
effect of network structure on the scientific impact of the
papers written in the separate journal networks of each field
in terms of the journal’s impact factor, a measure of how
intensely the papers in the journal were cited by other
papers.

They showed that as the likelihood of teams being made
up of incumbents increased, the path lengths of the network
decreased relative to a bipartite random graph of the same
size. They also showed that as the likelihood of teams being
made up of scholars who repeated past relationships
increased, the more clustered these networks. This suggests
that as the connectivity of the network increases, perfor-
mance increases. However, as the network becomes highly
clustered, performance goes down. If one treats links
among incumbents as a measure of connectivity and
repeated links as a measure of cohesion, these finding are
consistent with Uzzi and Spiro’s (2005) findings that low
impact factors were associated with co-authors embedded
in networks in which connectivity and cohesion were too
high or too low whereas high impact factors were associated
with co-authors embedded in networks with a medium level
of connectivity and cohesion.

Frontiers of small-world analysis
The literature reviewed above leads to several conclusions
about small worlds and their implications for social science
and management theory. Below are five conclusions that
follow from the literature and current trends in research.

Diversity of research
Small-world research in social science and management is
surprisingly diverse for a relatively new domain of study. It
spans multiple levels of analysis from industries, to firms,
to people, and technology and has been conducted by
scholars in the physical sciences, social sciences, and arts
and humanities to problems of robustness, change,
stability, creativity, financial success, political participation,
productivity, friendship, and corporate strategy. The new
literature also has a focus on the systemic level of analysis,
since the study of individual networks can now be
connected with the properties of broadly defined network
classes which traverse specific contexts and domains. Most
prior work on networks was at the egocentric level whereas
small-world research is principally on the sociocentric level
of analysis of the structure and functioning of the entire
network. This shift in emphasis while more a matter of
degree than an absolute change in the direction of previous
research on networks, does promote the new examination
of how systemic level effects create performance outcomes
net of individual effects as well as prompts new questions
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on the relationship between micro behavior and macro
structures.

The range of dependent variables appears to be expand-
ing too. While research as focused on the historically
significant measures of performance such as creativity,
innovation, and M&A activity, new work is likely to
continue in this area as well as focus on context specific
outcomes. Iravani and Kolfal (2007) for example, used
formal models and simulations to show how small-world
thinking can be applied to derive the most efficient
structure for call center sales force staffing – a special case
of the more general operations research issue of efficient
queuing. Economists are also becoming more accepting,
and even proponents, of networks research in its entirety
(Jackson, 2007), an inversion of their initial critical point of
view on networks (Arrow, 1998). Because small-world
research can influence such a wide range of outcomes
variables across many different disciplines, this trend
suggests that there is likely to be continued strong growth
in small-world research.

Common mechanisms
While research on small worlds is diverse in applications,
the literature is driven by a common set of mechanisms
(e.g., connectivity/path lengths and cohesion/clustering)
that operate for different levels of analysis, contexts, and
dependent variables and across diverse methods of research
from on-line experiments to field research to simulations to
archival research. This characteristic of small-world re-
search is remarkable in that much social science literature
has developed different theories and mechanisms for
different levels of analysis and different methods of
research (Pfeffer, 1982; Hedström and Swedberg, 1998;
Davis and Marquis, 2005). For example, transaction cost
theory addresses a range of organizational boundary issues
but does not attempt to explain organizational or individual
creativity, prices, patent rates, scientific impact, Internet
robustness, diffusion, learning, job search, or knowledge
transfer. In this way, small-world mechanisms stand out as
providing an unusually parsimonious set of explanations
for many different systems as well as the behavior of the
actors embedded within them.

Another aspect of small-world research inviting addi-
tional study of mechanisms concerns formation and search.
Most research has examined the structure of mature
networks where the small-world features of high clustering
and short average path lengths can be observed. Compara-
tively, we know little about how these small worlds arise
outside of theoretical models. In other cases, research
suggests that new entrants disproportionately link to
already highly connected actors but that this process does
not hold for incumbents (Barabási, 2002; Powell et al., 2005;
Kogut et al., 2007), suggesting that several formation
processes may be at work. Search is another issue of
importance. Small-world research presumes that actors can
find the short paths. Kleinberg (2000) convincingly showed
that small-world networks are only searchable if the actors
are structured in a space in which they can conceptualize
pathways in terms of geographic space, social space, or
some other limiting space. While the participants in the
Milgram small-world experiment did make use of these

kinds of algorithms (i.e. geographical proximity to the
stockbroker, professional proximity to the stockbroker,
social proximity to the stockbroker, etc.) it is not yet clear
how actors would search a small-world network without
these guidelines or how variation in actors’ algorithms can
be stultified or enhanced by the small-world structure.

Universality
There has been speculation that small worlds appear to be a
universal organizing mechanism for social systems (Bucha-
nan, 2002). This review indicates that for the contexts
within which small worlds have been analyzed, not all
social systems are small worlds. For example, Moody (2004)
found that the collaboration network of authors who write
in sociological journals is not a small world whereas Goyal
et al. (2006) found that economics is a small world. This
suggests that while the range of contexts within which small
worlds has been found are remarkable, the initial general-
ization about their ubiquity may have been overstated,
since there can be competing modes of organization. A
consequence of this finding may be that the initial research
approach of showing that a system is a small world may
shift to showing that non-small-world structures can
powerfully affect performance. For example, research has
shown that scale-free networks and community structures
can affect system performance (e.g., Barabási, 2002; Moody
and White, 2003; Kogut et al., 2007). Currently, however we
know little about how global-level network structures
compare in their effects on similar systems. Future research
is likely to look for essential differences as well as
connections between small-world networks, scale-free,
community structure and so forth.

Inconsistent results
For studies examining performance, the results have been
mixed with small worlds sometimes affecting and some-
times not affecting performance in comparable ways. In
other cases, the effects of small worlds in one context do not
match the effects of small worlds in another context. For
example, Uzzi and Spiro (2005) found a non-linear
relationship between small worlds and the financial and
artistic performance of creative artists. Fowler (2005)
reported a similar association between small worlds and
voting participation rates. Consistent with both Uzzi and
Spiro (2005) and Fowler (2005), Guimera et al. (2005) used
different methods to show that too little or too much
cohesion or connectivity is associated with lower perfor-
mance in a small world. By contrast, Schilling and Phelps
(forthcoming) found a linear relationship between small
worldliness and performance while Fleming et al. (forth-
coming) and Smith (2006) found indirect or no associations
between small-world structures depending on the outcome
variable.

Attempting to reconcile these findings is made difficult
by the very strength of this new literature: its diverse
contexts, long and short time frames of analysis, and
differences in performance measurement. For example,
Schilling and Phelps (forthcoming) provided several
reasons that could account for the fact that their results
may have differed from prior work in the literature. They
note that while evidence for a parabolic association between
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small worlds and performance has been found, it has been
substantiated only in networks made up of people where
high levels of cohesion can demand that performance be
traded off for maintaining good personal relations. In their
work, they looked at links between corporate actors where
issues of interpersonal cohesion may be must less
important for collaboration. This suggests that variation
in findings across studies could be due to the types of links,
levels of analysis or both. Similarly, they looked at their
network during a relatively short period of time whereas
Uzzi and Spiro (2005), Fowler (2005) and Guimera et al.
(2005) looked at longer time frames during which levels of
clustering path length changed dramatically. This suggests
that they may only have observed part of the parabolic
relationship, not that it does not exist. In other cases, one
can imagine that variation in findings arise because of legal
or institutional factors or simply because actor’s objectives
vary. Smith pointed out that it is not entirely surprising that
there was no relationship between a Rapper’s position in a
small world and the Rapper’s album sales because not all
Rappers aim for gold records despite being in a position
that can enhance their ability to sell more records.
Nevertheless, the results suggest that even with the wide
variation in contexts and ranges of variable observed, small
worlds can affect key performance outcomes beyond what
is expected by conventional wisdom. It is likely that future
research will aim to reconcile inconsistencies, determine
contingent factors, and identify more precise outcome
variables.

Dynamics
Although many of the studies of small worlds have used
databases that span multiple years of activity or include
extremely large numbers of actors, most of the work on
small worlds has been cross-sectional. The effects of time
and the dynamics of growth and decline are still open
questions. Key questions regarding the conditions that give
rise to, support, or dismantle a small world, the influence of
micro behaviors on macro structures and vice versa, the
role of entry or exit, or the interaction between quality of
actors and their positions are still largely to be determined.
Similarly, there has been little attempt outside the
theoretical literature to capture the effect of weighted links,
the evolution and change or links, or heterogeneity of links
within a small world (Barrat et al., 2004; Sanchez et al.,
2007). For example, Watts and Strogatz (1998) showed that
a small world can form if just a few long distance links are
made at random in an ordered network (each actors has
approximately the same number of neighbors). However,
while random long distance links help explain how the
structure of a small world can arise at a very high level of
abstraction, it does not provide a model or explanation of
how small worlds evolve socially. Similarly, Guimera et al.
(2005) look at how the probability of linking to an
incumbent vs a newcomer or a past collaborator affects
the size of the largest group of connected actors in a small-
world network (i.e., the giant component). However, a
probability of connecting to an incumbent vs a newcomer
or a repeat relationship is a mechanical analysis. Work still
needs to be done on what the probability of linking to an
incumbent vs a newcomer means in theoretical terms of

actual human objectives of quality, trust, status, experience,
third parties in common, convenience or other variables
known to affect who links with whom (Kogut, 1989; Uzzi,
1997; Kossinets and Watts, 2006; Uzzi and Spiro, 2007; Uzzi
et al., 2007). Similarly, they look at the evolution of the
giant component but this is just one aspect of a small
world’s structure and it does not address how the key
dimensions of clustering and path length dynamically
change. As new ways of conceptualizing and measuring
differences in links within networks continues to advance,
the dynamic development of small worlds are likely to be
influence not just by characteristics of nodes but of links,
which could advance our understanding of search, com-
munity structure, and performance (Newman, 2001; Barrat
et al., 2004). Finally, while it may appear to any individual
that following a local strategy is beneficial, such as working
with past collaborators, the global effects that result when
many actors within the network operate by the same rules
may actually hurt the system’s the performance and the
performance of the actors within it. These links between
local and global strategies and their performance implica-
tions provide fruitful areas of new research particularly
when paired with unique longitudinal data on performance
(Kleinberg, 2000).

Conclusion
With the advent of unprecedented amounts of data on the
interrelationships among actors in social systems along
with new methods for studying large-scale networks, the
literature on small worlds has grown rapidly in the social
science and management literature. It also represents a
unique literature in that it is the product of an exceptional
level of interdisciplinary research within the social sciences
and between the social sciences and physical sciences. This
review has surveyed the empirical literature in this new
domain, outlining the unique methods, describing the
results, and providing an account of the unsettled issues at
the frontier of the field with the aim of promoting future
research. Our review shows that the small-world literature
is remarkable in the diverse range of outcome variables that
have been studied, contexts that have been explored, and
levels of analysis that have been treated while at the same
time parsimonious in its explanatory variables. Never-
theless, our review finds that small worlds that while small
worlds appear to organize many different types of systems
in different contexts they are not universal nor is their
effect on performance entirely consistent. Small worlds
appear to organize the co-authorship networks of diverse
disciplines but not all. They also appear to affect
performance but not always in the same manner with both
complex non-linear as well as linear effects being reported
across contexts. Our analysis suggests that these differences
may be due in part to the very strength of the literature – its
diversity. Because the studies analyzed here span different
time frames, the linear effects found in one context may be
truncated effects that appear when measuring only sections
of a true curvilinear effect that is observable only when
longer time frames are analyzed or they may represent true
differences that arise due to differences in actors and
connections. Our review suggests that these unsettled
discrepancies are likely to be resolved through the
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expansion of research from static to dynamic analyses as
well as to analyses that focus not just on the role of the
heterogeneity of actors but on the heterogeneity of links
between actors. At the same time, we encouraged the
continued development of research that is rich in context
and highlighting of unique mechanisms that show the
relationship between small-world networks and the beha-
vior of the systems as well as the behavior of the actors
within it.

Notes

1 At the same time, physical scientists interested in studying
economic and social phenomena such as the growth of firms,
profitability, and stock market data began to show that there
were connections among what had been viewed as dissimilar
systems (Watts and Strogatz, 1998; Amaral et al., 1999; Newman
and Park, 2003). Before this work, few saw the possible links
between metabolic pathways, a biological system; the Internet, a
man-made creation; food webs, an ecological system; collabora-
tion and creativity, a psychological and social process; and the
spread of infectious diseases, a combination of biological and
social processes. All of these complex networks exhibit similar
characteristics with respect to certain network properties
(Amaral and Ottino, 2004: 147).

2 In a typical experiment, Milgram (1967) chose a target person at
random and a set of about 150 or so sender persons at random.
In one of his best-known experiments he chose a stockbroker
from Cambridge, Massachusetts as his target and 169 senders at
random from a small town outside Omaha, Nebraska. These
people were diverse – butchers, bakers, homemakers, farmers,
clergy, law enforcement officials, sales people, and so on. He
sent each of the senders a letter, and in the letter was the name
of the single stockbroker. Milgram asked each sender to send
the letter back to the stockbroker if he or she happened to know
the stockbroker personally. If they did not know the stock-
broker, the senders were asked to send the letter to someone
they knew personally who could send it directly to the
stockbroker or another intermediary and so on until the letter
reached the target. Milgram aimed to count the number of
intermediaries between two people essentially chosen at
random. After he received the letters back from his target
person he found that on average it took just six intermediaries
to connect two people chosen at random, a number that seemed
much lower than most anyone had expected. ‘When I asked an
intelligent friend of mine how many steps he thought it would
take, he estimated that it would require one hundred
intermediate persons or more to move from Nebraska to
Sharon,’ said Milgram. From this remarkable finding, Milgram
coined the phrase, ‘six degrees of separation,’ which has since
become part of scientific jargon and popular wisdom.
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