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Early detection is the first line of defense against any epidgic, including seasonal and
pandemic influenza. One way to improve early detection is to wnitor health-seeking be-
havior. Online web search queries, a new form of health-se@kg behavior, are submitted
by millions of users around the world each day. We present a nthod of analyzing large
numbers of Google search queries to track influenza-like ifless in a population. Because
the relative frequency of certain queries is highly correlded with the percentage of physi-
cian visits in which a patient presents with influenza-like gmptoms, we can accurately
estimate the current level of influenza activity in each regin of the United States, with
a reporting lag of about one day. This approach may make it pasible to utilize search

queries for influenza surveillance in areas with a large poplation of web search users.

Epidemics of seasonal influenza are a major public healtbezon causing tens of mil-
lions of respiratory illnesses and 250,000 to 500,000 deatirldwide each year Influenza-
related health care expenses and lost productivity cos¢tyodoetween $71 billion and $167
billion annually*. In addition to seasonal influenza, a new strain of influemzs\against which

no prior immunity exists and that demonstrates human-todmtransmission could result in a



pandemic with millions of fataliti€s Early detection of disease activity, when followed by a
rapid response, can reduce the impact of both seasonal ademé influenzad*. A surveil-
lance system which quickly and accurately detects influexctaity is therefore an important

line of defense against an influenza epidemic.

Traditional surveillance systems, including those emgtbipy the U.S. Centers for Dis-
ease Control and Prevention (CDC) and the European Influduesillance Scheme (EISS),
rely on both virologic and clinical data. A network of serimaboratories performs virologic
testing, by counting and classifying influenza virusesemi#td from patients, while a network
of sentinel physicians reports the fraction of patientsenting with an influenza-like illness
(ILI). CDC publishes national and regional data from theseaillance systems on a weekly

basis, typically with a 1-2 week reporting lag.

In an attempt to provide faster detection, innovative sillaree systems have been cre-
ated to monitor indirect signals of influenza activity, swashcall volume to telephone triage
advice lines and over-the-counter drug sdle®ifferent measures of internet activity have also
been used to survey influenza. About 90 million American tsdarle believed to search online
for information about specific diseases or medical probleach year, making web search
queries a uniquely valuable source of information aboulthéigends. Previous attempts at us-
ing online activity for influenza surveillance have countedine search queries submitted to a
Swedish medical websftgvisitors to certain pages on a U.S. health weBsaead user clicks

on a search keyword advertisement in Candda

Our proposed surveillance system builds on these earliemats by utilizing consid-



erably more data: hundreds of billions of individual sealfrom five years of Google web
search logs. This enables us to create more comprehensdedsrior use in influenza surveil-
lance, with regional and state-level estimates of infludikasaillness (ILI) activity in the United

States. Widespread global usage of online search enginggsveatually enable models to be

developed in international settings.

In this paper, we demonstrate that Google web search qusareprovide accurate in-
fluenza surveillance in the United States, with a reportaggdf about one day. We present a
method of identifying a set of search queries related to @mfha-like illness (ILI) which are

used to model weekly regional influenza activity.

Spatiotemporal patterns in online web search queries

By aggregating historical logs of online web search quesidgsnitted between 2003 and 2008,
we computed a time series of weekly counts for 50 million @fithost common search queries
in the United States. Billions of queries occurred infragileand were excluded. Using the
internet protocol (IP) address associated with each seprety, the general physical location
from which the query originated can often be identified, unlthg the nearest major city if

within the United States. Separate aggregate weekly cavaris kept for every query in each

city and state. No information about the identity of any usas retained.

Each time series was normalized by dividing the count fohepery in a particular week
by the total number of online search queries submitted iridication during the week, resulting

in a query fraction. A query fraction for the search queig equivalent to the probability that a



random search query submitted from a particular region attcplar time is exactly. Figure
1 shows one example of a query fraction time series, for taechequery “solar eclipse” in the
United States. Note that a spike in query volume coinciddati @ach occurrence of a solar

eclipsé’.

A model for influenza-like illness

We sought to develop a simple model which estimates the pilitlyehat a random physician
visitin a particular region is related to an influenza-likkegss (ILI); this is equivalent to the per-
centage of ILI-related physician visits. A single explawgtvariable was used: the probability
that a random search query submitted from the same regiafislhted, as determined by an
automated process described below. We fit a linear moddj tiselog-odds of an ILI physician
visit and the log-odds of an ILI-related search query: Igdit)) = « x logit(Q(t)) + ¢, where
I(t) is the percentage of ILI physician visit9,t) is the ILI-related query fraction at time «

is the multiplicative coefficient, andis the error term. logip) is simplyin(p/(1 — p)).

Publically available historical data from the CDC'’s U.Slulenza Sentinel Provider Surveil-
lance Network? was used to help build our models. For each of the nine siame# regions
of the United States (Figure 2), CDC reported the averageepéage of all outpatient visits to
sentinel providers that were ILI-related on a weekly basls. data were provided for weeks

outside of the annual influenza season, and we excluded sie$iftom modeling and analysis.

An automated process was used to select a group of ILI-cetearch queries, by measur-

ing how effectively our linear model would fit the CDC ILI dataeach region if we used only



a single query as the explanatory variatig;). Each of the 50 million candidate queries in
our database was separately tested in this manner acrasisi¢hegions, to identify the search

queries which could most accurately model the CDC ILI vigitgentage in each region. De-
spite the large overlap in timing of the seasonal epidemiw®en regions, the reported regional
ILI percentages often varied widely (Figure 3). Our apploawarded queries which exhibited
similar regional variations: the chance that a random $egwery can fit the ILI percentage in

all nine regions is considerably less than the chance thatdom search query can fit a single

location.

Results

The automated query selection process tested 50 milliodidate search queries, and pro-
duced a list of the highest scoring queries, sorted by metmariformed correlation across
the nine regions. We noted that the 53 highest scoring seprehies appeared to be related to
influenza-like illnesses. They describe symptoms, treatsjenedications, and other diseases
that an average person might associate with influenza. Tkiehighest scoring query, “high
school basketball”, was the highest scoring off-topic guar the list: basketball season tends
to coincide with influenza season in the United States. Thaiber influenza-related queries
scored well and appeared near the top of the list, we wishedrtionize manual intervention in
the query selection process and thus retained only the tgquéBes, summing them to obtain

our estimate of the ILI-related query fraction in each regiadditional details in Methods).

Using this ILI-related query fraction as the explanatoryiatale, we fit nine final predic-
tive models, one per region. Despite using only a singleatéei the models were able to ob-
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tain a good fit with CDC-reported ILI percentages, with a meamelation of 0.90 (min=0.76,
max=0.95, n=9 regions) (Figure 4). The models were therdasd on 42 points per region
of previously untested data. Estimates generated by theelsidor these 42 points obtained
a mean correlation of 0.97 (min=0.92, max=0.98, n=9 regiovith the CDC-observed ILI

percentages.

Throughout the 2007-2008 influenza season, we used prealignuersions of our mod-
els to generate ILI estimates, and shared our results eaekh wigh the Epidemiology and
Prevention Branch of Influenza Division at CDC to evaluateeliness and accuracy. Fig-
ure 5 illustrates the most recently available data at d@fiepoints throughout the 2007-2008
influenza season, comparing our model’s latest ILI estimatginst the latest CDC reports.
Across the nine regions, we were able to consistently eggitn@ current ILI percentage one
to two weeks ahead of the publication of ILI percentages bya@BC’s U.S. Influenza Sentinel

Provider Surveillance Network.

CDC does not make weekly ILI percentages for each state gallyliavailable; there-
fore, state-level ILI estimates cannot be directly geregtatsing our methodology. However,
because localized influenza surveillance is particulasigful for public health planning, we
used our regional ILI models to estimate the ILI percentdgesdividual states, by applying
the appropriate regional coefficients to the ILI-relate@myufraction from each specific state.
Such estimates are accurate if the relationship betweameoméalth-seeking behavior and ILI

percentage varies little across a multi-state region.

Using this approach, our ILI estimates for Utah matched theegeported ILI percentage



with a correlation of 0.85 (Figure 6). While a better fit colel obtained by training a model
directly on the state-reported ILI percentages, this extimethodology can be applied to all

fifty states regardless of the availability of state-levdlgercentages.

Discussion

Google web search queries can be used to reliably and aelyueatimate influenza-like iliness
percentages in each of the nine public health regions of thigetd States. Because search
queries can be processed quickly, the resulting ILI esesyatere consistently one to two weeks
ahead of the traditional CDC ILI surveillance reports. Tlaele detection provided by this
approach may become an important line of defense againsefuifluenza epidemics in the
United States, and perhaps eventually in internationéihgst including those which lack the

infrastructure required for traditional influenza surlaxke.

Up-to-date influenza estimates may enable public healtbiaiand health profession-
als to better respond to seasonal epidemics. If a particetpon experiences an early, sharp
increase in ILI physician visits, it may be possible to foaaslitional resources on that region
to identify the etiology of the outbreak, providing extraceame capacity or raising local media

awareness as necessary.

This system is not designed to be a replacement for traditisurveillance networks or
supplant the need for laboratory-based diagnoses andilkamge. Notable increases in ILI-
related search activity may indicate a need for public hdaljuiry to identify the pathogen or

pathogens involved. Demographic data, often provided &gitional surveillance, cannot be



obtained using search queries. We intend to update our medeh year with the latest sentinel
provider ILI data, obtaining a better fit and adjusting ashgaapulation’s online health-seeking

behavior evolves over time.

In the event that a pandemic-causing strain of influenza geseaccurate and early de-
tection of ILI percentages in each region or state may enaibidic health officials to mount
a more effective early response. Though we cannot be cdrtainsearch engine users will
behave in such a scenario, affected individuals may sulbvaisame ILI-related search queries
used in our models. Alternatively, panic and concern amaegaithy individuals may cause a
surge in the ILI-related query fraction, resulting in urgeaably exaggerated estimates of the

ongoing ILI percentage.

By way of comparison, internet-based surveillance sys&ml as GPHI and HealthMap
harvest newspaper articles and other web pages to deteasdisutbreaks. Such systems track
cases of H5N1 as they emerge around the world, as even a saggeof HSN1 can attract
media coverage. Our approach cannot be used to detect aimabens of influenza cases, but

can detect and quantify ILI activity without any news aggbeing published.

The search queries used in our model are not, of course,saxely submitted by users
who are experiencing influenza-like symptoms. Our systesmlbaability to determine that any
individual search user is ill, as the correlations we obseme only meaningful across large
populations. And despite strong historical correlatians, system remains susceptible to false
alerts caused by a sudden increase in ILI-related querigsurisual event, such as a drug

recall for some popular cold or flu remedy, could cause suecitsa alert.



Even without specific knowledge of which search queries airgouseéd, media cov-
erage about our system may noticeably change the heakimgdeehavior of Google search

users. It is difficult to predict the extent to which this migiccur.

Some element of selection bias may remain in this work. Itiqdar, the query selec-
tion process requires some manual determination of Ildteelness, which could be skewed to

obtain more favorable results.

We hope to extend this system to enhance global influenzaifance, especially in areas
which currently lack the necessary resources, includibgratory diagnostic capacity. Though
it may be possible for this approach to be applied to any cgumith a large population of web
search users, we cannot currently provide accurate estniait large parts of the developing
world. Even within the developed world, small countries &&b common languages may be

challenging to accurately survey.

This system may be capable of providing ILI estimates faydacities and metropolitan
areas with high internet penetration, providing even mocallinfluenza surveillance. We hope

to explore this topic as well.

This approach may not easily extend to any other commureaddibkases. In the devel-
oped world, a patient experiencing obviously severe onalag symptoms may be unlikely to
consult a search engine, especially if a physician or emeggeom is nearby. Millions suffer
from influenza each year, while most disease outbreaks teinddlve significantly fewer cases

and therefore may be impossible to detect in a large populati search engine users. Our at-



tempts to reliably detect smaller outbreaks of other desgéacluding enterics and arboviruses)

using search queries have not yet succeeded.

Conclusion

Search engine queries can be utilized to rapidly surveyenita activity in large user popu-
lations. Harnessing the collective intelligence of mitigoof users, Google web search logs
can provide one of the most timely, broad reaching syndrauigeillance systems available
today. We demonstrated that the relative frequency of dlated queries is highly correlated
with the percentage of ILI physician visits, and that we cecuaately estimate weekly regional
ILI percentages in the United States. While traditionaltsys require 1-2 weeks to gather
and process surveillance data, our estimates are curreintdag. Because search queries are
an indirect signal of disease activity, the potential fdsdaalerts and the need for laboratory
confirmation of disease etiology must be acknowledged. Als ather syndromic surveillance
systems, the data are most useful as a means to spur furtbstigation and collection of direct

measures of disease activity.

This system will be used to track the spread of influenza-ikess throughout the
2008-2009 influenza season in the United States. We plan ke mesults freely available
without restriction, so that users are able to view the eurestimated influenza burden for
all regions of the United States, with a map indicating therall national situation and re-
gional graphs to illustrate recent trends. Informationwlibis system is available online at

http://www.google.org/flu.

10



Methods

Privacy. At Google, we recognize that privacy isimportant. None efdneries in our project’s
database can be associated with a particular individual p@ject’'s database retains no infor-
mation about the identity, IP address, or specific physmedtion of any user. Furthermore,
any original web search logs older than 18 months have beamyarized in accordance with

Google’s Privacy Policy (http://www.google.com/privaaficy.html).

Query selection. In the query selection process, we fit models using all weeksdren Septem-
ber 28, 2003 and March 11, 2007 (inclusive) for which CDC regmba non-zero ILI percentage,
yielding 128 training points for each region (each week is data point). Using linear regres-
sion with 4-fold cross validation, we fit models to four 96htsubsets of the 128 points in each
region. Each model was validated by measuring the corosldietween the model’s estimates

for the 32 held-out points and CDC's reported regional ILigeatage at those points.

Each candidate search query was evaluated nine times, encegion, using the search
data originating from a particular region to explain the fidrcentage in that region. With four
cross-validation folds per region, we obtained 36 difféi@rrelations between the candidate
model’s estimates and the observed ILI percentages. Toioentlhese into a single measure
of the candidate query’s performance, we applied the Figkteansformatiotf to each corre-

lation, and took the mean of the 36 Z-transformed corrahatio

Computation and pre-filtering. In total, we fit 450 million different models to test each oéth
candidate queries. We used a distributed computing framéwm efficiently divide the work

among hundreds of machines. The amount of computationmesticould have been reduced by
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making assumptions about which queries might be correlatddILI|. For example, we could

have attempted to eliminate non-influenza-related quéeeésre fitting any models. However,
we were concerned that aggressive filtering might accidlgréaminate valuable data. Fur-
thermore, if the highest-scoring queries seemed entirglglated to influenza, it would provide

evidence that our query selection approach was invalid.

Constructing the ILI-related query fraction. We concluded the query selection process by
choosing to keep the search queries whose models obtaiaddghest mean Z-transformed
correlations across regions: these queries were deemed‘tblirelated”. To determine how
many search queries to select, we visually inspected theflisighest scoring queries, sorted
by mean Z-transformed correlation, and noted the first qoarthe list which seemed clearly
unrelated to influenza. We discarded this query, and alligsi@r the sorted list which appeared

below this query, even if they seemed to be related to inflaenz

To combine the selected search queries into a single aggregaable, we summed the
query fractions on a regional basis, yielding our estiméthel|LI-related query fractiony)(t),

in each region. Note that the same set of queries was selectedch region.

Final validation of regional models. We fit nine final models, one per region, now using all
128 training points from the query selection process. Welasdd the accuracy of these models
by measuring their performance on 42 additional weeks ofipusly untested data, from the

most recently available time period (March 18, 2007 throligly 11, 2008).

State-level model validation. To evaluate our ability to generate state-level ILI est@satsing

a model which was fit over a larger geographic area, we cordpaneestimates against weekly
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ILI percentages provided by the state of Utah. We appliecctw®dficients from our Mountain
Region model to the online search query fractions obsemddtah between September 28,

2003 and January 6, 2008, inclusive, resulting in 139 nan-zalidation points.
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Figure 1 Weekly frequency of the search query “solar eclipse” in the United States
from January 2003 to May 2008 and occurrences of solar eclipses, indicated by black

dots.

Figure 2 The nine influenza surveillance regions of the United States, which are
equivalent to census regions. CDC reports ILI physician visit percentages for each

region on a weekly basis.

Figure 3 Regional variations in weekly ILI percentages for the South-Atlantic and

Pacific Regions (source: CDC Influenza Sentinel Provider Network).

Figure 4 A comparison of model estimates for the Mid-Atlantic Region against CDC-
reported ILI percentages, including all points over which the model was fit and vali-
dated. A correlation of 0.88 was obtained over 128 points to which the model was fit,

while a correlation of 0.94 was obtained over 42 validation points.

Figure 5 ILI percentages estimated by our model (black) and provided by CDC (red)
in the Mid-Atlantic region, showing data available at four points in the 2007-2008 in-
fluenza season. During week 5, we detected a sharply increasing ILI percentage in
the Mid-Atlantic region; similarly, on March 3, our models indicated that the peak ILI
percentage had been reached during week 8, with sharp declines in weeks 9 and 10.

Both results were later confirmed by CDC ILI data.

Figure 6 Weekly ILI estimates for Utah, 2003-2007. Estimates are generated using
search query data from Utah with model coefficients from the larger Mountain Region.
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Across 139 points, model estimates obtained a correlation of 0.85 against the state-

reported ILI percentages.
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