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A simple model of bipartite cooperation for ecological
and organizational networks
Serguei Saavedra1,2,3, Felix Reed-Tsochas2,4 & Brian Uzzi5,6

In theoretical ecology, simple stochastic models that satisfy two basic
conditions about the distribution of niche values and feeding ranges
have proved successful in reproducing the overall structural
properties of real food webs, using species richness and connectance
as the only input parameters1–4. Recently, more detailed models have
incorporated higher levels of constraint in order to reproduce the
actual links observed in real food webs5,6. Here, building on previous
stochastic models of consumer–resource interactions between
species1–3, we propose a highly parsimonious model that can repro-
duce the overall bipartite structure of cooperative partner–partner
interactions, as exemplified by plant–animal mutualistic networks7.
Our stochastic model of bipartite cooperation uses simple speciali-
zation and interaction rules, and only requires three empirical input
parameters. We test the bipartite cooperation model on ten large
pollination data sets that have been compiled in the literature, and
find that it successfully replicates the degree distribution, nestedness
and modularity of the empirical networks. These properties are
regarded as key to understanding cooperation in mutualistic
networks8–10. We also apply our model to an extensive data set of
two classes of company engaged in joint production in the garment
industry. Using the same metrics, we find that the network of
manufacturer–contractor interactions exhibits similar structural
patterns to plant–animal pollination networks. This surprising
correspondence between ecological and organizational networks
suggests that the simple rules of cooperation that generate bipartite
networks may be generic, and could prove relevant in many different
domains, ranging from biological systems to human society11–14.

In ecology, the collection and analysis of empirical data on mutualistic
networks7 can help identify the most significant features that have
evolved in bipartite cooperative networks. In these networks, species in
one class (class A, for animals) cooperate with species in a second class
(class P, for plants) to mutual advantage. Species in class P offer rewards
with certain characteristics determined by reward traits, which may also
have evolved to reduce exploitation and favour mutualism15. Species in
class A foraging for resources can benefit from the rewards offered by a
given species in class P if the respective foraging traits (for example
efficiency, morphology and behaviour) and reward traits (for example
quantity, quality and availability) are complementary8,16. External factors
such as the environmental context (for example population density and
geographic and temporal variation) attenuate or amplify the value of
reward and foraging traits, and have an impact on the number of poten-
tial partners with which a given species cooperates17–19. Furthermore,
mutualistic networks exhibit constraints introduced by phylogenetic
relationships between species in the same class, which impact mutualistic
interaction patterns by favouring ecological similarity20.

Recently, mutualistic models21,22 have been proposed which incor-
porate the effects of complementarity and exploitation or growth bar-
riers on interactions between species in classes A and P (Supplementary

Information). Although a mixed model21 and a differential limiting
size model22 have proved successful at generating structural patterns
similar to those observed in real mutualistic networks, we find that they
are able to reproduce less than 25% of the total number of observed
metrics in different ecological networks (Supplementary Tables 1–4).

In organizational networks, cooperation between two different
classes of company (manufacturers and contractors) is subject to
equivalent structural constraints, which depend on the traits of the
companies and the complementarity between traits of potential part-
ners, as well as hierarchical relationships between companies in the
same class23. Companies are characterized by a set of organizational
traits24 (for example company size, competitive niche space and
brand positioning), and face interaction barriers generated by differ-
ences in status25, which limit the number and range of potential
partners. Again, the values associated with trait complementarity
and interaction barriers are not absolute, but are modulated by the
specific market context in which the companies operate24,25.

Inspired by previous food-web models1–3, we develop a new model
of bipartite cooperation that can reproduce more than 70% of the
total number of observed metrics in both ecological and organiza-
tional networks (Table 1, Supplementary Tables 3, 4). In the corres-
ponding ecological (species-based) and organizational (company-
based) contexts, plants and manufacturers are treated as members
of class P, and animals and contractors as members of class A. The
three inputs for the model are the size of class A, the size of class P and
the total number of links, L, all of which are given directly by the
empirical data (Table 1). The model consists of two mechanisms (see
Methods for a description of the model).

The first mechanism is specialization. The specialization rule deter-
mines how many partners, lp, each member p g P will cooperate with.
This number is determined by the reward value associated with p g P,
which is given by the reward trait, tRp, attenuated or amplified by an
external factor lp that accounts for effects such as geographic variation
and population diversity. Higher reward values increase the number of
potential interactions. Reward traits tRp are the result of a hierarchical
process, which in our model corresponds to the generation of an
ordered sequence in trait space, so tRp has a role equivalent to that of
the niche value in the niche model1 or nested-hierarchy model2. Note
that the specialization rule is only associated with class P. This is con-
sistent with previous findings which show that external factors affect
the level of specialization more strongly in plants than in animals18.

The second mechanism is interaction. The interaction rule deter-
mines which members a g A cooperate with each member p g P.
Here interactions are limited by the complementarity between the
reward traits, tRp, for p g P and foraging traits (organizational traits),
tFa, for a g A. The foraging trait tFa limits the range of possible
partners for each member of class A, but again external factors llp

such as temporal variation and population density can modify these
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interaction barriers. In both the specialization and interaction rules,
we assume that traits are normally distributed and that the effect of
external factors on members is inhomogeneous and a function of the
diversity of members and the density of interactions in the network.

We test our model using data from real-world ecological and organi-
zational networks. For the ecological networks, we use a diverse set of
ten extensive plant–animal pollination networks compiled in the lite-
rature (Supplementary Information), which can clearly be distin-
guished from random assemblages9. For organizational networks, we

use a data set of approximately 700,000 yearly bilateral production
transactions between more than 10,000 manufacturers and contractors
in the New York garment industry (NYGI) from January 1985 to
December 2003 (Supplementary Information)23. The NYGI exhibits
a significant turnover of companies each year with different declining
trajectories for each class (Supplementary Fig. 1), so the network struc-
ture at one time does not trivially map into the structure at other times.
For each network, we investigate three key features of bipartite
cooperation8–10: (1) degree distribution26, (2) nestedness27,28 and (3)
modularity29.

First we consider the degree distribution. In Fig. 1a and b we
respectively show the cumulative distributions for members of class P

Table 1 | Empirical values and model statistical significance

Data set/environment L | P | | A | KSP–KSA N Q

Marsh (Japan) 430 64 187 0.326*–0.438* 0.976* (0.969) 0.551* (0.553)
Grassland (Cass, New Zealand) 374 41 139 0.633*–0.385* 0.957* (0.960) 0.474{ (0.465)
Subalpine forest/meadow (Japan) 865 90 354 0.552*–0.0011 0.985{ (0.976) 0.545{ (0.532)
Subalpine (Arthur’s Pass, New Zealand) 120 18 60 0.108{–0.999* 0.8581 (0.936) 0.553{ (0.527)
Subalpine (Craigieburn, New Zealand) 346 49 118 0.0021–0.0011 0.961* (0.955) 0.480{ (0.468)
Tundra (Canada) 179 29 81 0.097{–0.989* 0.971{ (0.950) NM
Scrub/snow gum forest (Australia) 252 36 81 0.608*–0.076{ 0.935* (0.949) NM
Deciduous forest (USA) 65 7 33 0.911*–0.642* 0.953{ (0.930) NM
Arctic tundra (Greenland) 453 31 75 0.038{–0.118{ 0.7931 (0.914) NM
Subarctic rock slope (Sweden) 242 24 118 0.223{–0.005{ 0.927{ (0.952) NM
New York garment industry, 1985 7,250 823 2,562 0.061{–0.115{ 0.997{ (0.996) 0.5981 (0.502)
New York garment industry, 1991 3,981 325 1,590 0.101{–0.531i 0.994* (0.993) 0.6011 (0.529)
New York garment industry, 1997 1,450 148 700 0.003{–0.264{ 0.990{ (0.988) 0.653{ (0.625)
New York garment industry, 2003 228 62 128 0.370{–0.002{ 0.976{ (0.969) 0.711{ (0.700)

For each pollination data set and the four organizational networks used in this paper, the table presents its environment/location; the total number of links, L; the respective numbers of nodes, | P |
and | A | , in classes P and A; the combined Kolmogorov–Smirnov (KS) probabilities, KSP–KSA, calculated for the degree distributions using the two-group equivalence KS test between the empirical
and model-generated distributions for classes P and A, respectively; the observed nestedness, N; and the observed mean modularity value, Q. Note that all networks have a ratio | P | / | A | , 0.5,
which has been found to be an important factor limiting the appearance of scale-free distributions22. The model-generated mean values for N and Q are shown inside parentheses. Five of the observed
pollination networks have already been found to be non-modular (NM)10. All comparisons are based on 1,000 model simulations. Note that the model reproduces more than 70% of the overall
number of observed metrics with a good or excellent fit (27 out of 35 and 11 out of 16 for the ecological and organizational networks, respectively).
*KS $ 0.30, normalized errors less than one model s.d. (excellent fit). {KS , 0.30, normalized errors between one and two model s.d. (good fit). {KS , 0.05, normalized errors between two and
three model s.d. (poor fit). 1KS , 0.01, normalized errors greater than three model s.d. (bad fit).
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Figure 1 | Scaled degree distribution. a, The cumulative degree
distribution, Pcum(k), for members of class P (plants, manufacturers);
b, Pcum(k) for members of class A (animals, contractors). The number of
partners, k, is scaled by a multiplicative factor of 1/zP for members of P and
1/zA for members of A, where zP 5 L/P and zA 5 L/A. Filled symbols
correspond to pollination networks and open symbols to organizational
networks. Note that all distributions collapse into a single curve. The solid
line corresponds to the model-generated distributions averaged over 1,000
simulations (Supplementary Fig. 2).
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Figure 2 | Nestedness. a, b, Comparisons of the randomly generated (green
crosses) and model-generated (orange circles) nestedness values
(mean 6 2 s.d.) with the observed nestedness values for all the pollination
(a) and the NYGI (b) networks. The dashed lines correspond to there being
perfect agreement between predicted and observed values. Note that a
matrix with a nestedness value of one is perfectly nested.
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and members of class A. Note that pollination networks (filled sym-
bols) and organizational networks (open symbols) exhibit the same
patterns in both degree distributions. The solid line corresponds to the
model-generated degree distributions (see also Supplementary Fig. 2).
Table 1 provides statistical evidence for the correspondence between
the empirical and model-generated distributions for both ecological
and organizational networks.

To calculate the nestedness level, N, of the empirical and model-
generated networks, we use the BINMATNEST program28. Here
nestedness is defined in the interval [0, 1], where 1 corresponds to
a perfectly nested network9. Figure 2 shows the nestedness values for
empirical networks (dashed line), random assemblages generated
following the null model II proposed in ref. 9 (green crosses) and
model-generated networks (orange circles). Note that the model
always significantly outperforms random assemblages. Table 1 pre-
sents tests of statistical significance and shows that there is a high level
of correspondence between the model and data for most of the net-
works (Supplementary Fig. 3).

Modularity values, Q, for the networks are calculated using the one-
mode optimization algorithm proposed in ref. 30, because we want to
extract only cooperative units from the network. This algorithm has
shown that only five of the observed ecological networks are truly
modular10 (Table 1). For these five networks, we find a strong corres-
pondence between the empirical and model-generated modularity

values (Table 1). For each organizational network, we find a modu-
larity value that is higher than that generated from the corresponding
random assemblages30 (P , 1026), and this empirical behaviour is
replicated by the model (Table 1). Nodes have been shown to have
different connectivity roles (for example global or local hubs) depend-
ing on how they are embedded within their module and participate in
other modules30. Here we also test the ability of our model to accur-
ately reproduce the empirically observed number of nodes within each
connectivity role30 (Fig. 3). To do so, we measure the Pearson correla-
tion coefficient, r, and the ratio of the connectivity role norms, d, for
the observed and model-generated networks (Methods). We consis-
tently find values aligned with the empirical measurements for the
ecological and organizational networks (r 5 0.98, 0.9 , d , 1.1).

Our study identifies striking similarities in the general structural
characteristics of networks that are formed as a result of cooperative
mechanisms operating in radically different contexts, linking part-
ners in ecological and socio-economic systems, respectively. This
empirical finding motivates the proposed simple model for bipartite
cooperation, which captures the most important generic features of
mutualistic interaction patterns starting from a minimal set of input
parameters. At the level of partner–partner interactions, equivalent
behaviour in different systems appears to be driven by similar types of
interaction constraints. These correspond to complementarity in
traits or characteristics, a hierarchical organization limiting the range
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Figure 3 | Connectivity roles. a, b, Division of connectivity roles (R1–R7)
for members of the subalpine (Japan) network (a) and the 1997 NYGI
network (b). Plants and manufacturers are indicated with blue circles and
animals and contractors with red triangles. Nodes with a normalized within-
module degree (z score) z $ 2.5 have been heuristically defined as module
hubs, and nodes with z , 2.5 as non-hub nodes30. In addition, hubs and non-
hub nodes are classified according to a participation coefficient, Pc, which
gives the level of interaction of a node with the rest of the modules. The
complete classification is as follows. For non-hub nodes, R1 comprises nodes
with all their links connected within their own module (Pc # 0.05), R2
comprises nodes with most of their links connected within their own module
(0.05 , Pc # 0.62), R3 comprises nodes with many links connected to other

modules (0.62 , Pc # 0.80) and R4 comprises nodes with their links
homogeneously connected to all other modules (Pc . 0.80). For hub-nodes,
R5 comprises nodes with most of their links connected to their own module
(Pc # 0.30), R6 comprises nodes with most of their links connected to other
modules (0.30 , Pc # 0.75) and R7 comprises nodes with their links
homogeneously connected to all other modules (Pc . 0.75). c, d, Proportions
of nodes from the population within each connectivity role for the modular
pollination networks (c) and the NYGI networks (d). Points (various
symbols) correspond to the empirical values and bars (mean 6 s.d.)
correspond to the model-generated values. Note that the model accurately
replicates the proportion of nodes within each connectivity role for both
types of network.
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of potential partners, and the environmental context. The success of
this simple stochastic model in generating the overall structural char-
acteristics of mutualistic networks makes it a suitable starting point
for the development of more elaborate ecological models, with the
aim of addressing the important question of reproducing the actual
links observed in real mutualistic webs. Such an approach would
require more comprehensive statistical comparisons across different
network metrics using maximum-likelihood methods6. Beyond this
ecological context, and the specific organizational network that has
been considered, the generic nature of the bipartite cooperation
model and its underlying assembly rules suggests that it should be
relevant to many other cooperative networks in domains beyond
those considered here.

METHODS SUMMARY
Model. For the specialization rule, the number of links, lp, for each node p g P is

defined by lp~1zRound((L{jPj)tRplp=
X

j
tRjlj), where the reward trait tRp

is uniformly drawn from [0, 1], the external factor lp is randomly drawn from an

exponential distribution, j?j denotes set cardinality and Round(?) is the nearest-
integer function.

For the interaction rule, nodes from class P are sorted according to their

reward trait tRp in ascending order. Nodes from class A are sorted in descending

order according to their foraging traits tFa, which are uniformly drawn from

[0, 1]. Starting from the first node, pi, and continuing sequentially subject to

tRpi . llpi, each link lpi is connected to the first node a9 g A9, where A9 is the

subset of nodes in A that have not already been linked to by another node p ? pi.

Here llpi is an external factor drawn randomly from the same exponential dis-

tribution as lpi. If tRpi # llpi then the link is randomly connected to another node

a99 g A99, where A99 is the subset of nodes in A that have been linked in a

previous time step. If the supply of nodes in either A9 or A99 is exhausted before

all lpi links have been allocated, then nodes in the other subset are linked to

instead. The model is initialized by connecting the first node, pi, to lpi nodes in A9.

The exponential distribution used for lp and llp is of the form

p(x) 5 bexp(2bx), with b 5 jPj(jAj2 1)/(2(L 2 jPj)) 2 1. If we generalize our

formalism and use a beta distribution1,3, we do not find significantly different

results (Supplementary Table 5).

Ratio of connectivity role norms. The ratio of the norms, d, is defined by
d 5 jxj/jyj, where xj j~(

Pm
i~1 x2

i )1=2, yj j~(
Pm

i~1 y2
i )1=2, m is the number of

connectivity roles and xi and yi are the numbers of nodes within each role i for

the empirical and, respectively, model-generated networks. Ratios within

(0.9, 1.1) are fractions with a norm comparable to the empirical data.
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