Index

Key to index: n following page number indicates information in a footnote; Ap indicates information in the Appendix. Page numbers in bold refer to tables.

academic career gap, for child-birth and child-rearing 135
academic culture, negative consequences for women 84–6
academic and family life, mutual exclusion of 88
academic quasi-firms 119
academic structure
 actively discouraging women 84
 arguments for change, effects of 144
 female advisors feel powerless to change 150
 and pregnancy 89
 resistant to accommodating family needs 143–4
 and time extension before tenure review 144–5
active exploration, seen as male activity 40,42
administrators, female, become substitute advisors 198–9
admission tests, games theory 38
admissions procedure, women lack strategy to deal with 79–80
adolescence, girls’ scientific interest discouraged 42–7
adults
 perpetuate masculinity and femininity beliefs 37–8
 send differing messages to children 37
advising, gender-related blockages to 78–9
advisor–advisee relationships colored by sex-role stereotyping 22
female experiences with male advisors 79
negative interactional patterns 78–9
in the Ph.D. program 77–81
power of advisors 77
quality of crucial to success 77–8
suggestion of conference participation 96
advisors 248
contradictions of the job 148–53
female administrators substitute as 198–9
legitimation by 96–7
men can be successful 80–1
older female
 may not understand needs of female students 185
 tendency to forget insecurities 185
relationship with crucial 100–1
role of complex 149
style relates to earlier mentor relationship 147–8
suggestion of conference participation 96
younger male, more collaborative style 153–4
affiliation 60–1,190
affirmative action
 currently in retrenchment 238–9
 does not insure minorities with right credentials 239
 increases then denigrates women and minorities 237–8
 results not always as expected 237
 to increase number of women and minorities in science departments 106
anomie, experienced by women graduate students 73–4
anti-discrimination legislation, seldom fully enforced 336
anxiety
 coping differences 75–6
 and finishing the program 97
 may escalate into self-blame 94
INDEX

'apartheid system', gendered 86
assimilative strategies, used by girls for adaptation 41
AT&T program 194-5, 196-7
industry on side of female students 194-5
attitudes, come from top down 180, 199
Austria, female scientists and gender
dynamics 212-13
autonomous functioning, requirements for development 86
Barber, Leslie, reflections on mixed experiences of male and female peers 1-2
belonging and identity, problems of for women 58
bench science
pressures on women 27
success related to ability to adapt 37-8
biological sciences, attitudes to women changed 112
bottom up programs 189-93
characteristics of social movements 189, 190-1
flexible and low cost 192
weaknesses of 193
boundary heightening 109
boys, young, negative views of women scientists 34
brain development, and female characteristics 46
Brazil, female scientists, significance of traditional gender roles 206-7
bridging ties 168-9, 168n, 254-5A
men's and women's 170-1
Bulgaria
access to a scientific career 218-19
gender division of intellectual life persistent 218
career choice, women diverted from academic and research tracks 6
career plans, affected by gender socialization 47
Carron, Rachel
biologist and author 21-3
research career stunted 31
shows new type of scientific career 31-2
cascade effect 16, 133
challenge 55
moral and intellectual nature of 54
change
normative, too slow 244
resistance to 143-5, 236-7
child care 217, 245-6
a concern for academic parents 142
effects of expansion 216
traditional support
Mexico 208
Turkey 205
U.K., proposed expansion of 322
child-bearing strategies, Finnish women 214
Cinderella effect 99
co-authors, and research success 176
cognitive capital 117
collegeship 159-60
lacking for female scientists 137
lower levels of for women 161-2
reciprocal 160
social support or friendship 159-60
College Board examinations 7-8
courses and tutoring for 8
college teachers, should encourage female students 63
Columbia 204
competition, for grades, male testing process 55
courses
critical informal transition point for students 100-1
introductions outside the department 96
positive effects on careers 97
role in socialization of female scientists 95-7
confidence-building, through conferences 96-7
courses
core of college education 31
evaluation role 31
examination, as a sorting mechanism 31
mathematics, attitudes influenced by parental perception 44
official purpose of 41
Crick, Francis see Watson, James and Crick, Francis
critical mass 106, 163, 240
and balanced strong tie development 165
can change male attitudes 111
changing academic cultures 337
contradictory effects of 107
and division of women into sub-groups 111
fails to equalize social and professional ties
163
improves social support and identity
enhancement 163–4
is it sufficient? 110–11
made meaningless by isolation 245
magical statistic and false numbers 106–7
not achieved through affirmative action
244
only works in democratic departments
245
paradox of 244
overcoming problems posed by 243–6
reliance on difficult 112
critical transitions 56, 69–81
and female scientific careers 101
from student to research environment 69
in graduate education 69
informal 100
Ph.D. level 69

1 cultural lag

1 myth of the individual scientist 119
used by male faculty members against
female students 71

cumulative disadvantage
and additional disadvantages at the margin
237
and advantage, Matthew effect vs
Cinderella effect 99
rooted in differential socialization of men
and women 91–5
Curie, Marie 17

demand side, effects on women’s entry into
science/engineering 13

1 Denmark, female scientists, impact of
motherhood on scientific careers
217–18
departmental change, initiatives for 187–201
strategy for departmental reform 199–200
departmental cultures
changes when key male acquires feminist
values 181
negative and positive 179–86
departmental networks
gender differences in 164–6
intermediate number of ties 164
large number of ties beyond 164
strong department contacts 166
too many or too few contacts 165
departmental reform 199–200, 226, 241
departmental relationships

gender differences in quality of 160–4
more difficult for ‘token’ women 163
and social capital 158–60
women carry double burden 163
departments 132–3
avoidance of change 243
change must come from those in power 247
culture and organization important in
reform 183
division into subdisciplinary groups 111
hidden inequities 216–7
instrumental 179–80
more women, positive effects not always
there 177
overt procedure covers hidden decision-
making 249
policy recommendations for 241
relational 181–3
senior scientists as social capital bankers
132–3
strategy of attracting highly qualified
women 197
university-wide innovation, may change
policies 242–4
women faculty members, divided into sub-
groups 105
developing countries, women in science 204
Dimant, Stephanie, New York Times letter
27
disadvantage
accumulation of 91–5
and organizational reform 236
dissertation, transformation of 71
distribution requirements, US education
system 8
diversity committees 243–4
objectives 243
payment for work on 244
staffing of 243
diversity reviews 243
assess track record and current gender
balance 243
doctoral education
basic social unit of 72
see also Ph.D. program
double-bind situation, for women 58–9, 249
dual career families 233–4
economic competitiveness 226
and female scientists 231–2
economic deficit, from failure to use all talents 226
economic and structural barriers, recession 24
emotional energy, to deal with harsh social environment 93
equality of representation, in the scientific professions 247
of treatment differentiates against women 54–5
private sector, may overflow into academia 235–6
equity, a moral and legal imperative 226–9
Europe gender dynamics in 211–18
investment in education not realized 211–12
southern problems for women scientists 209
will women’s expectations be successful? 332
exclusion by departments, an undermining experience 138–9
due to parochial ways of U.S. science 241
effects of explicit and implicit 244
on faculty members 157–8
of female minority by male majority 60
from informal sources, Turkey 205
from social ties network and critical mass 133–4
of Italian women from upper-level positions 214–15
for women in scientific careers 116
extended family, supports women scientists 203
faculty appointments, problems for women after 16
faculty attitude, towards women’s competency 69–71
faculty members critical role in persistence of women 61–2
no difference between men and women in work experience 171–2
no statistical difference in education levels 172
relationships among 177
see also male faculty members, women faculty members
faculty status, job search, social capital and gender 133–5
families, and the scientific career 27,141–2,372
family commitments, factor in colleague evaluation 87–8
female scientists achieving faculty status 133
adherents of the male model Brazil, make male bias worse 206–7
rethinking their position 131
tension with younger female faculty members 184
areas of gain 203–4
assuming responsibilities for minority status 140–1
careers choice versus personal aspirations 15
versus family 134–5
versus relationships 135
contemporary dilemma of 15
devaluation by non-inclusion in professional events 84–5
in developing and semi-industrialized countries 204–11
driven to defensive research strategies 16–17
early onset of feelings of isolation, insecurity and intimidation 59–61
equals of male peers available for recruitment 238
first year establishment of relationships essential for self-confidence 61–2
need for affiliation 60–1
as ‘honorary men’ or ‘flawed women’ 2–3
invisible or conspicuous 86
and legitimation of an alternative model 241
must understand critical role of advisors 248
negative treatment effects carry over 140
older earlier solutions/mechanisms no longer relevant 249
now more able to reveal past experiences 244–5
share values and work styles of older men 105
post weed-out, mentoring depends on academic institution 62–3
high school, the social scene 7
higher education
Brazil, growth of female students 107
Finland, women lagging in higher teaching positions 223
Greece, militates against women in science 210
United States see United States higher education system
human capital 117
little difference between men and women
of women scientists, denigrated 16
Hungary, integration of women into research 219
hyper-competitiveness, of male scientists 242
idiosyncratic programs 197–9
In-balance program, Center for Particle Astrophysics, Berkeley 236–7
indebtedness, in social networks 131–2
India 204
female scientists more productive 203
inequality, between men and women in science, studies and reports 244
informal channels, for dissemination of news 125
informal exchange 190–1
informal transitions, role of conferences 93–7
insecurity, and negative feelings 92
institutional accommodation
available for business purposes 142
needed by women to combine family and career 143–3
institutional reform, benefits men and women 233, 242
instrumental departments 179–80
generational attitudes 180
interpersonal interactions minimal 181–3
low morale and high isolation of women in
179
power structure in hands of old eminent males 180
instrumental style, of advisor 148, 152–3
interdepartmental networks, gender differences in 166–9
interdepartmental ties
importance in women faculty careers 166–8
men's and women's, patterns of 170–1
see also Watson, James and Crick, Francis
Ireland, science seen as possible girl's career 48
isolation 101–2, 157
begins isolation 140
of female students in male-dominated research groups 111
major issue for women at academic level 116
overcoming the effects of 100–1
perpetuation of 107
professional, of post-graduate women researchers 116
and reduction of opportunities 83–4
of women
by organizational structures 110–11
in instrumental departments 179–80
Israel, female scientists, a few women at the pinnacle 216–17
Italy, female scientists, persisting marginality 214–15
Japan, demographic decline opening doors for women 233–5
job search 133–5
career detours held against women 135
geographical mobility barriers 35–6
impediments for women 133–4
'kula ring' of scientific success 113–30, 139, 177
laboratories
'degradation ceremonies' for women 80
lateral social organization in 154
Lane, Nancy 223, 224
law suits, for gender discrimination 246
leadership succession, crucial for successful programs 191
life-course events 87–8
may coincide with academic transition points 87
loneliness, of female faculty members 138
Luce professorships 240
McClintock, Barbara 137
an outsider operating with competitive disadvantage 138
majors, U.S. educational system 8–9
engineering/science 9
avoided by women 47
INDEX 275

exclusion of women from upper levels 53-4
male autonomy, illusion of 73-3
male faculty members
more likely to have children 173
social ties superior 163
young, interested in more gender-inclusive networks 177
male graduate students
attitude to women's scientific ability 98
and the unofficial Ph.D. program 73
male scientists
changing values of new generation 148
effects of attempts to reduce marginalization 245
wish for better personal-professional balance 24
managerial responsibilities, of today's academic scientists 119
marginal disadvantages 91, 237-40
marginalization, of women 231
marriage
and family, adverse effects on women's scientific career 88-91
as limiting factor 136
math anxiety issue 43, 44
mathematics 44
concepts understood equally at any age 43
developing countries, women in 204
Greek, increased number of women in 310
Hawaii 45
Hungary, women in 212
test performances 48
Mayer, Maria Goeppert
career on the margins of U.S. academia 19-20
encouraged by Enrico Fermi 20
place in the Manhattan project 20
Mead, Margaret and Metraux, Rhoda, study, girls' rejection of science 47-8
medicine, U.S. increase in female students 5-6
Meitner, Lise 17-19
always an outsider 19
excluded from the Nobel Prize 19
informal guidance by 18-19
supported by Max Planck 18
mentoring
arranged, enlarges women's access to social capital 239-40
by better male scientists 245
by powerful women 112
either sex may have requisite attributes 248-9
post weed-out, assured for men but not for women 62-1
University of Washington program 193, 194
women's undergraduate success ascribed to 102
Merton, Robert K., on long-term relative exclusion of women from science 25
Mexico, female scientists
come from well-to-do highly educated families 207-8
effects of gender socialization 207-8
seldom found in high level posts 208
military service
effects of 203
Portugal, women, increased scientific opportunities 209
wars offer opportunities for women 229-30
minorities
easy to marginalize 106
must attain power to overcome resistance 109
Mitchell, Professor Maria, women's scientific aspirations 225
mobility barriers 35-6
greater for Greek women 210-11
for women 135-6
National Science Foundation dilemma of too few women in science, solutions for 230
loss of funding for discrimination against women 246
program of visiting professorships for women 240
shortcomings of immigration and recruitment policies 230-1
national societies
informational and support networks 66
other strategies 66-7
Netherlands, The, female scientists, a continuing dilemma 215-16
networking, at conferences 96-7, 99
networks
benefits of 116
differential effects on men and women 115-16
opening up to women 244
Norway 48
nuclear family, strains on women scientists 203
nurturing environment, for a few women in college 49–50
obstacles, encountered by scientific women 2–3
old-boy networks, entrenched, power of 182, 183
organizational structures reform of 36
resist full female participation 35
organizations, of women scientists and technologists, strengthening member’s social ties 224
ostracism and the breaching of gender uniformity 108
professional and personal, unanticipated at faculty level 137
parental leave 245–6
parents, behavior influences gender awareness 38
peer acceptance, and conformity 42–3
personal worth, erosion of 93
personal–professional conflicts for women 16–9
Ph.D. program based on courses 9–10
finding an advisor 77–81
finishing by women 97–8
needs of upper class women not met 98
preparation for research 10
qualifying examination 10
unofficial 73–4
less open to women students 73
women excluded from study groups 74–5
vertical and lateral transitions in 93–7
quality of experience as important as numbers 100
transformed to a group effort 71
women unable to be assertive and risk taking 85
women see graduate school as stressful for male peers 93–4
Ph.D. attainment of under relative isolation 100
Portugal 209
science and engineering, women’s share of 11, 11
women encouraged by fathers 32
Philippines, the 204
physicists, young, effects of political change a pipeline thesis double-binds for women 249
for improving women’s participation in science 5–14
‘leaky joints’ 5
women leave, at disproportionate rates 6, 30
pivotal jobs defined 238
women’s recruitment to 238
Poland, integration of women into research 219
Portugal, female scientists, and loss of males 208–9
post-doctoral fellows 98–100
good and bad experiences for women 99–100
women may select on non-professional grounds 99
women’s careers harmed 98–9
post-secondary education 8
power imbalance 160–3, 163–4, 254 Ap
and publication rate 173, 174
and tokenism 160
pregnancy always the wrong moment for 143
and child-rearing, and younger professors 154
and choice of advisor 69
a disadvantage at critical transitions 87
may sometimes be taken into account 90
problems, aired but not resolved 195
professional identity 160–3
and colleagues 159
denied 137
neglect hurts development of 138
and social identity 248
programs important role of 144
informal, grass-roots 200–1
provide support, guidance and an independent perspective 188–9
qualities needed in a leader 195
and quality of women’s educational experience 187–9
support from above necessary 196
women’s programs 66
qualifying examinations [Ph.D.]
Science, article, biological male superiority and standardized testing 45–6
science
academic, negative female image of 137
conditions for successful career in 124
continual departure of girls and women from 135
covert resistance to women persists 222–3
dual male and female worlds 137–45
resistance to change 142–5
tenure 141–2
tenure stress 145–6
emergence of female-gendered subfields 113–15
foreclosing on women's choice to do 47–8
gender inequality and shortage 339–31
girls' interest discouraged during adolescence 42–7
graduate experience in 83–103
hampered by long-term relative exclusion of women 25
high-level careers for women to be seen as normal 337–8
interpersonal networks differ for men and women 17
lagging in its inclusion of women 2
low status, aids women's participation 203, 205–6
male culture makes women invisible 99
non-sexist framework, incorporating male and female perspectives 249–50
open to all talent, an emerging picture 241
paradox of women's participation 203–4
permeated by male standards of behavior 36
personal qualities needed for success changing 16
relationship to other spheres of life should be rethought 247
seen as 'masculine' 31, 33
sociology of is moving on 241–3
stereotyping of in the primary school years 38–42
boys, use of negative/inappropriate behavior 40
compliance by girls costly 40
enlightened parents dismayed at sexual stereotyping 39
girls, teachers less responsive to 39–40
girls tend to avoid lack of structure 41
masculine image already established 38–9
science – cont.
teachers dismayed at unconscious stereotyping 39
teachers encourage scientific skills in boys 40
teachers influence perceptions of scientific ability 40–1
university science becoming more entrepreneurial 335–6
‘Science is for Childless Women’, letter, New York Times 37
science teaching, U.K., to take gender differences into account 323
science/engineering
bachelors’ degrees, increased number to women 10
impersonal teaching environment, effects of 65–6
projected shortages did not happen 230
to succeed women must follow male model 58–9
women feared consequences of bringing actions 107–8
scientific achievement, high, fallacious notions 25–6
scientific activity, lack of full membership, effects of 139
scientific careers, new types of 21–2
scientific contributions, women’s, widespread devaluation of 84
scientific heroines 17–32
scientific identity, secure, creation of 85
scientific innovation 120
scientific mobility 332
works against exclusion of women 332
scientific production, new order of 118–21
pivotal role of social capital 119–20
scientific productivity
at odds with family life 150
Israeli female scientists 126–17
of Italian women 313
measurement of 253–4 Ap
of Mexican women 208
and social capital 253–4 Ap
women more frequently cited 242
scientific role
alternative 105
alternative career model crucial 144
division along generational and gender fault lines 105
scientific role and workplace, gender-neutral, need for 23
scientists
exchange of ideas, resources and information 115
image of 47
mature/distinguished, emotionally constricted and controlling 180
senior
deposit social capital with proteges and fellows 133
enhancing prestige and power 123
as social capital bankers 123–5
scientists, concept of, very young children 33–7
counteracting stereotypical notions 37
early gender differences in perception of 33
girls, see scientists as doctors 36
indicators of change 36
linking occupations with sex 35–6
power of popular culture on gender images 36
sex-typing 34
selection mechanisms
covert purposes 51–3
overt purposes 51
’self’
destructive impact of socialization 46
influenced by those close to the child 33
perpetuation of femininity–masculinity ideals 33
possibility of self-limiting constraints 33
social creation of 32–3
self-confidence
erosion of in graduate school 83, 92
of first year female scientists 61–2
lack of 109
low, increased attrition rate 92–3
and a scientific self-identity 183
self-definition, through role as advisor 148
self-in-science, certainty about lost 60
self-worth, enhanced feelings of 129–30
sexual harassment
and critical mass 107
important to be stringent on 197
shortage, effects of on women 236, 329–31
sociability, and success in group research 36
social capital 116–17, 1170
accumulation often gender-linked 118
and bridging ties 169
critical when evaluation is equivocal 122
defined 117–18
and departmental relationships 158–60
INDEX 279

distribution of at conferences 100-1
DNA and gender 134-8
and faculty network relationships 156-77
gender differences, and human capital differences 175-3
importance of in scientific production today 210-4
mobilization of in scientific careers 121-4
pivotal role of 119-20
raising of 128-30
and research productivity 173-6
role increases in a non-linear fashion 118
and scientific productivity 252-3
weak and strong ties 124
women have less access to 16
women’s access to through arranged mentoring 239-40
social capital banks 130
social networks
access to exclusive information 130
contain social capital that can facilitate success 123
and critical mass 111
defined 160
differences in shape level of social capital 116
exchange of ideas, information and resources 131-2
exclusion of women sends negative messages 132
quid pro quo of exchange 131
structure of, an underlying barrier to success 176
widened if in pivotal jobs 238-9
women need strong local ties and many bridging ties 169
women’s, poorer in social capital 171
seem also networks
social science, help in resolving the too few women in science dilemma 230
social support 160-2
from social ties 159
via networks 139-30
social ties
closer in the male world 158-9, 159-60
women with male colleagues 159
socialization
diverging experiences of young men and women 55
and education of girls, should this be changed? 57
female, traditional
effects of exacerbated 95
not compatible with graduate school 91-2
and political strategies for advance 79-80
and status as male or female 42
of young females and males 46
socializing processes, and differences in cognitive strategies, boys and girls 41
societies, neglect talent to their detriment 233
Sociologist’s anomie,
-anxiety–isolation–purposelessness feelings 74
Soviet Union, former, position of female scientists 319
Spain
academic harassment by men 320
women advancing in an expanding system 220
women’s entry into engineering 220
standardized testing
effects of ‘biological male superiority’ article 45-6
gap in gender differences narrowing 45
stress, and coevolution of family and work 234-5
strong ties 124, 165-8, 168n, 254-5
too few or too many 174, 176
study groups, women’s exclusion from 74-5, 102
subfields, female–gendered, emergence of 112-13
direction of women to 113
supply side, fallacy of 12-14
support schemes
function as social movements 189
origins and development of 189-90
survey
control variables 354
dependent variables 353-4
independent variables 354-5
methodology 253-2
regression analysis 352-3
Sweden, research funds attracting junior researchers 332
Taiwan, influence of stereotypical images 48
teachers, importance of to young girls 44
teleworking, proposed in U.K. 222

Social capital with proven and
was 123
social status, power 123
al capital bankers 122-\3
concept of, very young children 53-7
acting stereotypical notions 37
nder differences in perception of 33
scientists as doctors 36
rs of change 36
occupations with sex 35-6
popular culture on gender images 36
ng 34
ne mechanisms
purposes 52-2
roposes 51
ive impact of socialization 46
ed by those close to the child 33
ation of femininity–masculinity als 33
ity of self-limiting constraints 33
ulation 32-3
ence
of in graduate school 83, 92
ear female scientists 61-2
9
tesed attrition rate 92-3
cientific self-identity 183
ition, through role as advisor 148
ence, certainty about lost 60
h, enhanced feelings of 139-30
assment
ical mass 107
ant to be stringent on 107
effects of on women 226, 229-31
y, and success in group research 26
ital 116-17, 117n1
ication often gender-linked 118
aging ties 169
hen evaluation is equivocal 122
117-18
partimental relationships 158-60
tenure 141–2
allows slower pace only in later years 141
definitive goal for all junior faculty
members 145
uncertainty of impedes much-needed
relationships 145–6
tenure clock, slowing of 247
tenure clock—biological clock contradiction
141–3
tenure reviews, credit for mentoring and role
modeling 246
tenure stress 145–6
eased for male faculty members 162
tenured women, relationships with junior
faculty women 145
Tilghman, Shirley
ability to adapt to competition 18
students felt unable to follow her example
18
time pressures, and the competitive
environment 38–9
token overload 160, 160–2, 254AP
and publication rate 173
women compensate for false perceptions
162–3
tokenism 63, 161, 246
double disadvantage 164
effects of
demographic group power thesis 110
group interaction perspective 109–10
fewer bridging ties reported 170
promotes too many or too few strong ties
166
status as token woman 140–1
top down programs 193–7
could be made more effective 197
could be utilized for change 195
create monetary incentive structure to
promote change 196
difficult to implement 196
transition points
seen as threats 201
significant decrease in women at each 105
transition processes, affected by degree
program structure 70
Turkey, female scientists
class is stronger than gender 205–6
many of same informal barriers found 205–6
upper class women needed to fill
professional positions 205
women and 'kemalist' ideology 205
undergraduate education, major a part of 9
undergraduate schools
benefits of working under other women
63–4
may teach survival techniques for graduate
school 64
women's colleges give greater self-confidence 65
undergraduate science education, and gender
socialization 53–9
undergraduate teaching assistants, small
state university college 64–5
United Kingdom
dependent and independent tracks 221
experiences of women in science 221–4
Forum on Gender Policy for British Science
(1995) 223
gap between men and women in science
221
government, gender and science 222–4
'Oxford Revolt' 233–3
paucity of women in high-level scientific
positions 11, 222
position of women in science and
engineering 12
The Rising Tide, report and
recommendations 222
suggested strategies 222
University College London, a bright spot 12
universities 7
being held to standards of public
institutions 246
feminization of 204
Turkey, effects of expansion of 205
University of Washington program, projects
to address women's issues 193–4
'untutored observer' positions 238–9
untutored women, may have chosen to be
childless 72–3
United States
may lose post-doctoral talent abroad 231–2
traditional male model eroding 233–4
United States educational system 6–10
excels at graduate level 10
general education continues into
university 8
no early career choice 6–7
specialization 8–10
United States graduate education model 70–2
failure to incorporate the German model 70
invention of the department 70–1
women graduate students—cont.
 often excluded from informal training process 73
 problems of acting as advisor to 137
 problems with both female and male advisors 100
results of survey on departmental life 94-5
 solidarity among 90-1
undergraduate success related to mentoring 105
use female administrators as substitute advisors 198-9
women in science
 condition of, socio-economic systems have little effect on 310-20
 differences between 147-53
 instrumentals and relations 147-8
 a life-course analysis 2-3
 movement towards change 220-1
 overcoming resistance to 24-6
 allies among younger male scientists 24
more aggressive approach by alumni of Radcliffe College 35
policy for 335-10
beyond policy interventions 247-30
 a moral and legal imperative 226-9
 science policy for 241-7
 resistance to 15-16
 in socialist countries 218-20
 strategies already suggested for improvement of position 235-6
 successful, positive experiences and supportive mentors 133
 types of programs for 187-9
women's colleges, development of graduate departments 240
women's faculty experiences 131-6
young women, sense of identity sensitive to extrinsic response 56-7
Yugoslavia, former, advance of women but decline in science 219-20